Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Session
1.F: Big Data / Machine Learning I
Time:
Wednesday, 04/Sept/2024:
10:30am - 12:00pm

Chair I: Alina Roitberg
Chair II: Estefanía Žugelj Tapia
Location: 02.005

KII, Keplerstraße 17, Stuttgart 2nd floor, Room no. 005

Show help for 'Increase or decrease the abstract text size'
Presentations
10:30am - 10:45am
1.F: 1

A computationally efficient deep learning model for high-resolution transient hemodynamics estimation in complex vascular geometries

Noah Maul1,2, Katharina Zinn1, Fabian Wagner1, Mareike Thies1, Maximilian Rohleder1,2, Laura Pfaff1,2, Markus Kowarschik2, Annette Birkhold2, Andreas Maier1

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; 2Siemens Healthineers AG, Forchheim, Germany



10:45am - 11:00am
1.F: 2

Parameter estimation in cardiac biomechanical models based on physics-informed neural networks

Federica Caforio1,2,3, Francesco Regazzoni4, Stefano Pagani4, Matthias Höfler1, Elias Karabelas1,2,3, Christoph Augustin2,3, Gernot Plank2,3, Gundolf Haase1,3, Alfio Quarteroni4,5

1Department of Mathematics and Scientific Computing, NAWI Graz, University of Graz (Austria); 2Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz (Austria); 3BioTechMed-Graz (Austria); 4MOX, Department of Mathematics, Politecnico di Milano (Italy); 5Institute of Mathematics, EPFL (Switzerland) (Professor Emeritus)



11:00am - 11:15am
1.F: 3

Finite volume informed graph attention network for solving partial differential equations — Application to myocardial perfusion

Raoul Sallé de Chou1,2, Matthew Sinclair3, Sabrina Lynch3, Nan Xiao3, Laurent Najman4, Hugues Talbot2, Irene Vignon-clementel1

1Inria, Palaiseau, France; 2CentraleSupelec, Inria, Université Paris-Saclay, France; 3HeartFlow Inc., Redwood City, USA; 4ESIEE, Université Gustave Eiffel, France



11:15am - 11:30am
1.F: 4

Machine learning-based models to predict axillary lymph node metastasis in breast cancer patients

Alba Fischer-Carles1,2,4, Carlos López Pablo1,2,3, Esther Sauras-Colón1,2, Noèlia Gallardo-Borràs1,2, Alessio Fiorin1,2,3, Mikel R. Ortiz de Uriarte1,2, Laia Reverté Calvet1,2, Marylène Lejeune1,2,3, Elena Goyda2, Laia Adalid Llansa2, Daniel Mata Cano2, Ramon Bosch Príncep2, Jérôme Noailly4, Gemma Piella4

1Oncological Pathology and Bioinformatics Research Group, Institut d'Investigació Sanitària Pere i Virgili, Tortosa, Spain; 2Department of Pathology, Hospital de Tortosa Verge de la Cinta, Institut Català de la Salut, Tortosa, Spain; 3Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Tarragona, Spain; 4BCN MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain



11:30am - 11:45am
1.F: 5

Predicting post-traumatic stress disorder (PTSD) symptoms in women suffering from breast cancer using machine learning

Konstantinos N. Rizavas1, Eleni A. Klokotroni1, Paula Poikonen-Saksela2, Georgios S. Stamatakos1

1National Technical University of Athens, Athens, Greece; 2Helsinki University Hospital, Helsinki, Finland