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Abstract
Electric grid asset inspections are critical to ensure that modern society
can continue to depend on a stable and uninterrupted supply of electric-
ity. This paper represents an initial investigation to test the efficiency of a
deep learning model to address the problem of identifying defects on vis-
ible light images of power line insulators. We tested a publicly available
dataset with 1688 images containing over 6000 shell insulators, using a
Faster R-CNN architecture on the Detectron2 framework. We achieved a
mean average recall (mAR@50:95) of 82,6% with a 79,9% mean average
precision (mAP@50:95) for the three considered classes.

1 Introduction
Utility companies employ a range of strategies to maintain the availability
and reliability of electric power distribution systems [1]. Common prac-
tices include scheduled maintenance routines involving checks, servicing
and replacements. These routines proactively identify and address deteri-
oration before it leads to significant issues. Additionally, emergency re-
sponse plans ensure prompt reactions to unexpected outages, swiftly mo-
bilizing repair crews and efficiently allocating resources. These tasks are
facilitated by Digital Asset Management systems, that track equipment
conditions and locations, maintenance history and performance data, pri-
oritizing maintenance tasks and allocating resources effectively.

In recent decades, real-time remote monitoring of critical equipment
has been implemented, enabling operators to identify anomalies without
requiring a physical presence. Skilled technicians and engineers play a vi-
tal role in interpreting data, and making informed decisions based on their
expertise. Critical equipment often utilizes sensors for real-time assess-
ment of operational conditions. When deviations from normal parameters
are detected, it triggers alerts for immediate investigation. By combin-
ing sensor information and advanced data analysis, the aim is to predict
equipment failures based on performance trends and operating conditions,
enabling timely interventions, and subsequently reducing downtime and
costs [2]. Some examples are given next.

Infrared cameras are utilized to detect abnormal temperature varia-
tions in equipment. Ultraviolet inspection is employed to identify con-
taminants on the surface of insulators and, in other cases, to detect the
ionization of the air surrounding a conductor, a phenomenon known as
corona discharge. Ultrasound Technology is employed to detect sound
waves emitted by malfunctioning equipment, revealing issues like electri-
cal arcing, leaks, and mechanical faults. LIDAR can detect and analyze
vegetation growth around power lines and substations. Drones equipped
with sensors such as cameras can inspect power lines, towers, insulators
and substations from above, while ground-based robots access confined
spaces and hazardous environments for inspections. AI and big data ana-
lytics can analyze extensive data to predict equipment failures by identify-
ing patterns, enhancing maintenance decisions. However, the increasing
volume of collected data such as images, during infrastructure inspec-
tions, creates a bottleneck in the human interpretation task resulting in
a expensive and slow processe. Minor inspection responsibilities can be
automated using computer vision and deep learning techniques.

2 Literature review
Haiyan Cheng et al. [3] proposed a method for self-shattering defect de-
tection of glass insulators based on spatial features using classical com-
puter vision methods. The approach begins by applying a double-limit
threshold in the RGB color space to achieve insulator segmentation and
simple morphological operations to eliminate noise. The class evaluation
involves analyzing the number of pixels in each Region of Interest (ROI),
along with region length and the distances between regions, considering

specified tolerance levels. Despite the fact that this and similar classical
approaches achieve an accuracy exceeding 90%, these techniques do not
demonstrate generalization across various insulator materials with differ-
ing colors. The primary constraint lies in their capacity to solely identify
the absence of a skirt in the insulator string, while overlooking the detec-
tion of other prevalent issues like surface contamination.

High-resolution aerial images captured by UAVs with intricate back-
grounds and small target detection present a critical challenge for insula-
tor defect detection. Qiaodi Wen et al. [1] overcome these complexities
with two deep learning methodologies, Exact R-CNN and CME-CNN,
both based on Faster R-CNN. Exact R-CNN incorporates advanced tech-
niques such as FPN, cascade regression, and GIoU, along with innova-
tive approaches like RoI Align and depthwise separable convolution to
enhance accuracy while reducing computational demands. Additionally,
CME-CNN introduces an insulator mask extraction network to eliminate
background interference and employs Exact R-CNN for defect detec-
tion. Experimental results demonstrate the superior effectiveness of these
methods, with CME-CNN-ResNet50 achieving an average precision of
88.7%, outperforming various established detection algorithms.

Van Nhan Nguyen, Robert Jenssen, and Davide Roverso [4] identified
some of the main challenges in DL vision-based UAV inspection and pro-
posed a set of solutions. Being the first challenge the lack of training data,
they collected a total of 28,674 images with a resolution of 6048x4032.
By cropping the bounding boxes, they managed to create three additional
datasets, resulting in a total of 94,477 256x256 images. Recognizing the
time-consuming nature of labeling a large dataset, they used data aug-
mentation to address class imbalance. This included making several crops
around the bounding boxes and applying operations such as flipping, mir-
roring, blurring, adding noise and zooming during training, increasing
the dataset size by 12 times. To address the challenge of detecting small
power components and small faults, they proposed a multi-stage compo-
nent detection and classification pipeline. It allows for a ’zoom-in’ oper-
ation during inspection, enabling the detection of small faults on power
line components, such as cracks on poles. Their best results in terms of
mAP reached 81.3%, outperforming the other two methods in 7 out of 10
classes and achieving an inference speed of 300 images per minute.

3 Methodology and dataset
Our work focus on the central core of an automated inspection pipeline.
The implementation receives high resolution color images, obtained in
real life scenarios of electric power transmission and distribution, con-
taining different types and amounts of electric insulators, and generates a
localization bounding box with a respective class of the predicted defect.

We used a publicly available dataset [5] that contains over 1600 high-
resolution images of transmission line ceramic insulator strings, in a di-
versified range of colors, captured from various angles and lighting con-
ditions. Each image is annotated using COCO-style annotations, which
include the bounding box top-left coordinates, width, height and a class
label designation corresponding to the defects zoomed-in in Figure 1:
Flashover damage insulator shell, Broken insulator shell or Good insu-
lator shell. We used 5780 single insulator shell assets labeled for training
and 300 insulator shell assets spread across 88 images used for testing.

Figure 1: Flashover damage, Broken and Good class examples



4 Model architecture
Our defect detection system relies on a robust computer vision framework
developed by Facebook AI Research (FAIR), Detectron2 [6], that stands
out for its adaptability and effectiveness across multiple computer vision
tasks, including object detection, instance segmentation, and keypoint de-
tection. Its modular design simplifies customization for precise specifica-
tions and streamlines data handling with utility functions for tasks such
as data augmentation, resizing, training, evaluation, and even architecture
selection, making it a comprehensive choice for computer vision projects.

Our architecture selection was a Faster R-CNN model [7] that is
well-known for addressing the computational bottleneck of its predeces-
sor, Fast R-CNN, replacing a traditional region proposal algorithm for a
Region Proposal Network (RPN) that shares the convolutional features
for better inference performance. The images feeding the CNN originate
features, such as edges, shapes and object parts, that are encoded in fea-
ture maps and processed by the RPN, which tests different box shapes
through these maps using larger sliding steps. This process results in a
set of anchor boxes, each with a respective score related to the probability
of an object’s existence. Subsequently, the model applies Non-Maximum
Suppression (NMS) to eliminate redundant or highly overlapping propos-
als. Finally, the classifier block utilizes the proposal regions to efficiently
reduce the feature map search. It achieves this through an ROI pooling
operation, which converts irregularly sized regions into a fixed-sized for-
mat. This approach allows Faster R-CNN to focus its object identification
efforts on regions with high probability, rather than inefficiently conduct-
ing a sequential or random search.

We obtained similar results by mirroring the approach of [8], that
was tested in the same dataset, characterized by three output classes to
suit the defect detection task. Preprocessing involved image resizing and
pixel value normalization. Transfer learning was used by loading the
pre-trained Faster R-CNN weights from the model-zoo community. For
hyperparameter configuration, the base learning rate was set at 0.001, a
batch size of 4 images per batch and a maximum of 5000 iterations. This
learning process was further refined by implementing a schedule with 200
warm-up iterations, dynamically adjusting the learning rate based on the
performance. To continually assess the model’s progress, periodic eval-
uations every 1000 iterations were made, allowing to closely monitor its
performance trends. Test-time augmentation (TTA) was used during in-
ference to improve prediction accuracy, reducing overfitting and ensur-
ing more robust results by making multiple predictions of multiple input
transformations and averaging the predictions.

5 Results and evaluation
We conducted quantitative evaluations using standard metrics, including
the mean Average Precision (mAP) and the mean Average Recall (mAR),
across typical Intersection over Union (IoU) thresholds within the MS
COCO benchmark. As shown in Table 1, the average precision is rela-
tively high, and higher for IoU@50 and IoU@75 threshold limits in all
classes. These metrics can not be blindly trusted because of the overlap-
ing objects in this contex. This is why we see a noticeable drop in perfor-
mance for mAP@50:95, especially in the ’Broken’ class. This drop was
expected, as higher threshold values only consider more accurately local-
ized decisions. Looking at recall, the ’Broken’ class exhibits the highest
recall in the initial detection. This suggests that approximately half of the
top-scored region proposals are related to broken shell insulators. This re-
sult is not surprising, as broken insulators often exhibit more distinct fea-
tures such as sharp white edges. In the defective classes, within the first
10 detections (in the same image), the model identifies a significant por-
tion of all the objects it will eventually detect. An exception to this trend
is observed in the ’Good’ or ’No-issues’ class, which still experiences a
significant increase in recall after the 10th detection. This is primarily
because some images contain more than 10 good insulator shells.

Table 1: Scores for metrics on the test dataset

Metric IoU max
Dets

Class
Good Broken Flash All

mAP
@50:5:95 100 0.819 0.726 0.822 0.799

@50 100 0.966 0.955 0.969 0.951
@75 100 0.954 0.860 0.965 0.914

mAR
@50:5:95 1 0.108 0.521 0.290 0.305
@50:5:95 10 0.723 0.781 0.856 0.776
@50:5:95 100 0.866 0.785 0.870 0.826

Observing examples of wrong detections, like the first 3 images in
Figure 2, we conclude that the model fails to detect a broken shell insu-
lator if it doesn’t have a brighter, sharp edge visible. The second group of
2 images fails to identify good insulators near broken ones, what is not as
critical as failing to identify defective ones. Illustrated by the 6th image is
the confirmation that allowing a high number of maximum detections can
lead to less accurate predictions, with a wrong class overlapping a correct
prediction. Next, the misclassification of a good insulator for a broken one
suggests that the elliptical shape of a shell insulator doesn’t carry as much
weight in the final decision as needed. The model is clearly not well-fitted
yet for evening light conditions and prominent shadows due to a lack of
training examples like the 8th image. Lastly, translucent glass insulators
cannot be correctly detected because of the lack of training examples.

Figure 2: Examples of miss predictions during test inference

6 Conclusions and future work
In this work we tested the use of a deep learning model to detect defects
in power line insulators through the analysis of visible light images. The
obtained results demonstrate the high practical value of this approach in
the context of automated electrical grid asset inspection. After this suc-
cessful initial investigation we intend to evolve to a broader project in
collaboration with a Distribution System Operator (DSO). For the future
work, we propose to adapt the model architecture in order to enable it
to classify different environmental conditions such as lighting, focus, and
object distance. This approach will allow for precise optimization aim-
ing to enhance performance and robustness under varying conditions. We
also aim to integrate inspection results with maintenance management.
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