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Abstract

As deepfakes popularity increases, so does their quality. It has become
an absolute necessity to be able to distinguish between synthetic and real
footage. The research community has dedicated substantial efforts to ad-
dress this threat, which has led to an explosion in the number of papers
related to deepfakes in recent years, and we can see that the most common
techniques today involve the use of deep learning and neural networks to
detect deepfakes. In spite of the myriad of methods devised to tackle this
problem, they fail to generalize to unseen data, raising the need for devel-
oping architectures inherently robust to deep fake attacks. For this, Neu-
ral Architecture Search (NAS) has started recently to be applied to this
problem. This paper reviews the works that have used NAS for deepfake
detection. In particular, we explore deepfakes and the processes involved
in their creation and detection. It also presents NAS and some fundamen-
tal concepts associated with it. In this article, we will explore the research
opportunities that arise from the intersection of these two topics.

1 Introduction

Recent advancements in deep learning ignited significant progress over
tasks such as image recognition, speech recognition, and machine learn-
ing translation. It has been successfully applied to solve various complex
problems ranging from big data analytics to computer vision and human-
level control.

However, it has also been employed to develop new threats to privacy,
democracy, and national security. One of these threats has been materi-
alized in the form of deepfakes. Deepfakes algorithms can be used to
create fake images and videos that make the boundary between authen-
tic and synthetic media very thin. Public figures such as politicians and
celebrities were the first targets of these attacks since these models re-
quired considerable data to train models that could create photo-realistic
images and videos. Public figures usually have that amount of data al-
ready available. With recent algorithmic and training improvements, less
data from the target is required to create synthetic images. Recent meth-
ods now allow non-experts to generate synthetic images with just one
image of the target. Naturally, these methods have become a considerable
concern recently [7, 8, 15, 16].

2 Related Work

2.1 Deepfakes Detection

Deepfakes are digitally altered photos, videos, or audio using deep learn-
ing techniques. They are difficult to distinguish from real images [8, 13,
16]. We can divide deepfakes into four categories [2, 15, 16]: Face syn-
thesis consists of generating entirely new human faces that do not exist.
Face swapping involves replacing a person’s face with another person’s.
Face attribute consists of modifying some facial attributes, such as adding
glasses and altering skin colour. Facial re-enactment, also known as ex-
pression swap, consists of transferring facial expression from a source
face to a target face and retaining the features and identity of the target
face.

Deepfake detection has been customarily assumed to be a binary clas-
sification problem. It aims to create a classifier to distinguish between
authentic and synthetic images. Deepfakes started to be created manually
via traditional visual effects or computer graphics approaches. It is com-
mon to use deep learning models to generate synthetic images [14, 15].

Neural networks are effective for deepfake detection, but some prob-
lems exist[2, 8, 13, 15, 16]. Most models prioritize accuracy, making

them computationally expensive. Another problem is the need for gen-
eralization, as they fail in unseen conditions. Deep learning models are
prone to adversarial attacks, requiring robust networks [4, 6]. Overfitting
can lead to adversarial vulnerability. Innovative techniques are necessary
to stay ahead of manipulation methods in this battle between creating and
detecting deepfakes.

2.2 Neural Architecture Search

Deep Neural Networks (DNNs) have advanced tasks like image recog-
nition, speech recognition, machine translation, and deepfakes detection
[3, 12]. However, designing networks is a trial-and-error process that re-
quires expertise [7, 11]. Neural Architecture Search (NAS) automates net-
work design for a given dataset. It has outpaced manual design on many
tasks and is the next step in automating machine learning. NAS allows the
discovery of more complex architectures. Designing these networks in a
trial-and-error way is tedious and requires architectural engineering skills
and domain expertise. Experts use their experience or technical knowl-
edge to create and design a neural network [4, 5, 6, 11, 12, 18].

Figure 1: How NAS works [5]

To create a Neural Architecture Search (NAS), three components are
needed: a search space, a search strategy, and a performance estimation
strategy. The search space consists of a pool of possible operations (lay-
ers) and configurations, which outlines the types of architectures that can
be designed. The search strategy is responsible for optimizing the NAS
algorithm to experiment and find the optimal architecture within the de-
fined search space. The performance estimation strategy is used to es-
timate the performance of a predicted neural architecture in the search
space. In short, the search space defines all the possible candidate neural
architectures, the search strategy determines how they are generated, and
the performance estimation strategy guides the search process to find op-
timal models [5, 10, 12, 18]. In Figure 1, we can see how these concepts
interact.

There are two categories of search spaces: macro-search and micro-
search (also called cell-based search). Micro-search builds cells within
a pre-existing architecture, while macro-search develops entire architec-
tures.

Cell-based search spaces are a popular type of search space in neural
architecture search (NAS) [12, 18]. In this approach, the network archi-
tecture consists of a fixed outer skeleton and searchable cells that make
up the microstructure, allowing for faster and more efficient searches [12].
However, human experts must pre-define design choices, limiting the ex-
pressiveness of the NAS search space. In cell-based search spaces, the
network architecture is divided into two parts: a fixed outer skeleton
and a set of searchable cells that comprise the microstructure. Instead
of searching for the entire network architecture from scratch, cell-based
search spaces propose searching over smaller, modular cells and stack-
ing them in a pre-defined outer skeleton to form the overall architecture
[12, 18]. On the other hand, macro search spaces have high representation
power but are inefficient to search [12, 18].

Gradient-based methods, such as DARTS [9], are a type of search
strategy that relaxes discrete decisions in architecture design to continu-



ous variables, enabling efficient gradient-based optimization. Although
differentiable NAS requires little computational resources, it has lower
accuracy than other NAS methods. Once a supernet is trained, each ar-
chitecture can be evaluated by inheriting weights from the corresponding
subnet. The scalability and efficiency of supernets are due to a linear
increase in computational costs for training [12, 18].

Zero-cost proxies are a popular type of performance estimation strat-
egy that offer an efficient way to estimate the performance of architec-
tures using inexpensive computations or heuristics. These estimators an-
alyze the characteristics or properties of the architectures, such as their
design or modelling capabilities, without the need for training until con-
vergence. When combined with other strategies, they can yield excellent
results [12, 17, 18].

3 Neural Architecture Search for Deepfake Detection

Exploiting the fact that deepfake detection methods have their perfor-
mance substantially reduced across different datasets (lack of robustness)
and that the architecture design in these methods is usually done manu-
ally, which means it is done in a trial-and-error way, Jin et al. [7] de-
cided to use NAS to develop an end-to-end framework capable of design-
ing network architectures without human intervention. They designed a
forgery-oriented search space by focusing on Central Difference Convo-
lutions (CDC), which have shown effectiveness for face forgery detection
and introduced a novel performance estimation strategy that leads to a se-
lection of more robust architectures achieving competitive results in four
benchmark datasets.

Figure 2: Central Difference Convolution [7]

A similar approach [10] also exploits the idea that manually designing
neural network architectures is a time-consuming process that involves
much prior knowledge that, when incorrect, may deteriorate the model
performance. Liu decided to employ NAS to search for an architecture
capable of deepfake detection. The authors use NAS to search in a cell-
based search space and then employ those cells in a pre-defined architec-
ture. They introduce a strategy of localizing the potentially manipulated
region to add robustness to the method. Their method learns two tasks
simultaneously, finding the most probable place for the manipulation and
differentiating between fake and actual samples.

Another exciting approach [14] employed p-DARTS [1] to search for
robust architectures capable of detecting deepfakes. The author concluded
that data augmentation techniques can help the model detect deepfake
techniques, but a good trade-off must be found to avoid underfitting.

One idea could be to evaluate the impact NAS has on the lack of
robustness and efficiency. This could be done by comparing manually
designed architectures and those obtained with NAS.

4 Conclusion

As we can see, even though NAS has already been applied to this topic,
there is still much to explore. In other fields, NAS already achieves com-
petitive results while discovering lighter networks, spending less time in
the process, and requiring much less expertise in the field. Another ad-
vantage of NAS is its ability to discover innovative methods, which in the
case of deepfake detection is essential. For that reason, we believe NAS
can still improve deepfake detection techniques.
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