Electrical grid automated visual asset inspection - an example application to PV modules
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Abstract

Periodic inspection of electrical grid assets is fundamental to efficiently
manage maintenance activities and guarantee the safe and reliable oper-
ation of the grid. For efficient visual inspection, given the huge amounts
of collected image data, automated inspection is mandatory. In this paper
we investigate a deep learning approach to the automated classification of
defects in operating photovoltaic modules through the analysis of outdoor
collected thermography images. We test several variants of a simple deep
learning architecture on a publicly available dataset of labeled infrared
images divided into 12 classes. The classification results yield Precision,
Recall and F1-score of 0.87, 0.86 and 0.86, respectively, demonstrating
the practical value of the presented automated approach.

1 Introduction

Globally installed solar power exceeded 1000 GW at the end of 2022 with
up to 400 GW expected to be installed in 2023 alone [1]. With the rapid
expansion of solar photovoltaic (PV) plants, robust and efficient inspec-
tion methods are crucial for detecting defects in PV modules and associ-
ated systems [2]. Thermographic imaging of PV modules, using thermal
infrared (IR) cameras to detect temperature irregularities when compared
to healthy ones, has emerged as a valuable inspection approach. To this
end, the IEC 62446-3 standard defines outdoor thermographic inspection
of PV modules and plants in operation [3]. In the context of the rapidly
expanding installation of modern PV systems, manual collection and anal-
ysis of images becomes impractical. In practice, huge amounts of images
are collected by UAVs equipped with thermal cameras while automated
analysis using computer vision with machine learning allows to identify
patterns linked to defective modules within thermographic imagery.

2 Literature review

Traditional fault detection methods for PV modules often use classical
computer vision techniques. These include binary thresholding for con-
tour extraction and PV module segmentation, as well as obtaining texture
features for classification with Support Vector Machines (SVMs). Other
approaches involve detecting module edges using morphological opera-
tions or the Hough transform. However, these methods have strong lim-
itations. They heavily depend on manual assumptions and heuristics, re-
quiring extensive hyperparameter tuning. They struggle to generalize to
new images, making them less adaptable. Moreover, classical algorithms
can’t handle domain shifts or identify unknown anomalies, limiting their
real-world robustness. Despite their historical use, these methods have
been largely surpassed by more advanced techniques, particularly using
deep learning, which offers accurate and adaptable fault detection solu-
tions. Some representative examples are reviewed here.

Lukas Bommes et al. [4] collected a dataset containing millions of
RGB and thermographic video frames over seven large PV plants using
a UAV equipped with GPS. They developed a tool to map the PV panels
using a Mask R-CNN to perform module segmentation and a ResNet-50
deep convolutional classifier to catalog the thermal anomalies in ten
classes: Healthy, Open-circuit, Short-circuit, Substring open-circuit, Sub-
string short-circuit, Module PID, Multi hot-cells, Single hot cell, Warm
cell(s), Diode overheated and Hot spot. The study demonstrated signif-
icant improvements over state-of-the-art methods, achieving a test accu-
racy exceeding 90% across various plant domains without requiring hy-
perparameter adjustments.

Jacek Starzynski er al. [5] highlighted the impact of radiance depriva-
tion effects, often caused by bird droppings and shadows from vegetation,
on a PV module’s power output. They used recent DL architectures, in-
cluding YOLOV4, on a dataset of thermal images collected with UAVs,

but revealing modest accuracy. This emphasized the need for data aug-
mentation. The proposed strategy focused on enhancing the Recall score
during training to reduce false negatives and perform real-time detections
during PV farm overflights, with an adaptive flight path for additional
shots from different angles, heights and directions, suggesting a method
to address the common scarcity of data examples in defective classes.

In the study led by Yahya Zefri et al. [6], PV modules were segmented
using images from UAVs. They categorized the modules into six groups:
Non-defective module, One hotspot, Patchwork pattern of hotspots, Over-
heated module row, Overheated module, and Pointed heating. They then
compared two models: one they fine-tuned from a pre-trained VGG16
model and another they built from scratch with five convolutional lay-
ers. Surprisingly, their own simple model outperformed the more com-
plex VGG16 model, suggesting that the model complexity should match
the data complexity to achieve better results.

Ekaterina Engel and Nikita Engel [7] extensively reviewed applica-
tions and the performance of machine learning techniques in PV power
plants and presented a structured benchmark of recently published arti-
cles. Typical applications include modeling and optimizing the design
and size of solar plants, as well as forecasting the received irradiance
and the generated power through regression. Additionally, reinforcement
learning is employed to control the configuration of solar plants and opti-
mize electronic energy conversion, also known as Maximum Power Point
Tracking (MPPT). For Maintenance, they reviewed the imagery sensor
techniques for failure diagnostics and developed a fault forecasting sys-
tem based on a Modified Fuzzy Neural Network (MFNN), that was tuned
using a two-year historical dataset with signals from a 20 kW PV array.

3 Methodology and implementation

A complete solution for inspecting a PV plant starts with data acquisi-
tion, including UAV route planning, followed by video frame cropping to
create thermographic images of PV modules. These images are then cate-
gorized into different defect classes, ultimately leading to the elaboration
of a maintenance report. In this study we focus on the central part of this
pipeline system: the computer vision core functions as a sensor that inter-
prets physical quantities and provides valuable calssification information.
Our system involves using cropped thermal images of PV modules as in-
put data and generates predictions of defects within one of the 12 classes,
according to the used dataset [8] and exemplified in Figure 1 .
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Figure 1: Sample of IR images in 12 classes

3.1 Dataset

From the original dataset, we randomly selected 150 images from each
class. Out of these, 100 were reserved for validation and testing. To ex-
pand the training dataset we did multiple doubling operations as follows:
a 180-degree rotation (2X50); a vertical flip (2x100) and an horizontal flip
(2x200). This process yielded a total of 400 images per class for train-
ing, across the 12 available classes, amounting to a total of 6000 images
(80%, 10%, 10%), when considering all dataset splits.



This option resulted from the recognition that an imbalanced dataset,
when used for multi-class classification, can lead to sub-optimal training
outcomes. There is a risk that the model might predominantly predict
the majority class for most instances, minimizing the overall loss but ne-
glecting the minority classes, overshadowing in the learning process, and
affecting the model’s ability to discern significant patterns and generate
precise predictions across all classes. Figure 2 illustrates the data imbal-
ance before and after the augmentation process.
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Figure 2: Dataset class counts (original and class augmented)

The augmentation procedure involved only basic operations, such as
rotation and mirroring, because other conventional transformations such
as cropping, shearing, and adjustments in brightness and contrast have the
potential to modify crucial features.

3.2 Architecture and training

Ensuring feature consistency, we maintained the original 40x24 spatial
resolution and the 8 bit amplitude resolution of the images in the dataset.
We investigate a model architecture based on [6] with structure modifi-
cations to better adapt to the used dataset and the features to be identi-
fied. Furthermore, our implementation of the architecture in [6] (M1 in
Table 1 and Table 2) is used as a reference for performance comparisons.
All tested models consist of a block of convolutional layers followed by
a block of dense layers. Between these main blocks, there is a flatten
layer. The first layer is a normalization layer, and the last dense layer uses
softmax activation for the 12 classes mentioned above. The convolutional
layers use a kernel size of 3x3, with padding set to same, and a stride of 1
to maintain the output size, or a stride of 2 to replace a maxpooling layer.
ReLU activation is applied to both the Conv2D and dense layers. Table 1
presents a comparison between the different tested architectures.

Table 1: Comparison of model architectures

M Dimensions of layers
Conv2D Dense
1 | 40x24x8 - 40x24x8 - 20x12x8 - 20x12x8 - 10x6x8 512-512-512
2 40x24x32 - 40x24x32 - 20x12x16 - 10x6x16 256 -512-256-512
3 40x24x64 - 40x24x32 - 20x12x16 128 - 256 - 128
4 40x24x128 - 40x24x64 - 20x12x32 - 20x12x32 64-64-64-64

The final fine-tuned hyperparameters choice for training lead to a
batch size of 64, learning rate starting at 0.0025 with a momentum con-
trolled by the adam optimizer, regularization applied to the dense layers
from an L2 penalty loss of 0.0001, and the inclusion of dropout layers
to mitigate premature overfitting. The evolution of the loss function as a
result of the training procedure is presented in Figure 3.

M1 train  ——M1val
2.5
M2 train M2 val
2
2
S ——M3train ——M3val
o 15
°
§ ——M4 train

o

o
n

0 10 20 30 40 50
Epochs

Figure 3: Evolution of the loss function over epochs

4 Results and evaluation

The performance of the tested models, subsequent to loading the corre-
sponding weights before overfitting takes place, is summarized in Table 2
through the calculated Precision, Recall and F1-score. In this application
the Recall is considered more relevant since disregarding a false negative
has a greater impact than responding to a false positive.

Table 2: Bechmarking of the tested models

Precision Recall F1-score
M train valid test train valid test train valid test
1 0.70 0.66 0.66 | 0.69 0.65 0.66 | 0.68 0.63 0.64
2 | 074 0.68 0.70 | 0.72 0.67 0.70 | 0.72 0.66 0.69
3 1092 0.88 0.87 | 0.93 0.88 0.86 | 0.92 0.88 0.86
4 | 0.84 075 0.79 | 0.83 0.74 0.79 | 0.83 0.74 0.78

In adition, we obtained the confusion matrix, providing a comprehen-
sive overview of the predictions made by model M3 on the test dataset
compared to the actual ground truth labels, as it can be seen in Figure 4.
The mispredicted images belong to classes with very similar shapes and
features in the limited resolution images.
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Figure 4: Confusion matrix of the best model (M3)

5 Conclusions and future work

In this work we investigated the use of simple deep learnig models to
classify defects in PV modules through the analysis of UAV collected ter-
mographic images. The obtained results demonstrate that the proposed
model structures are of high practical value in the context of automated
electrical grid asset inspection. In future work we intend to improve the
model by analysing mispredicted examples and test its adaptability with
different datasets. More roboust results can be obtained merging thermog-
raphy analysis with other sensors such as RGB images and V-I signals.
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