Detection of organelles in FIB-SEM microscopy images
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Abstract

This paper presents a novel application of the YOLOvVS model for ad-
dressing the task of detecting organelles in Focused Ion Beam Scanning
Electron Microscopy (FIB-SEM) biological images. The motivation be-
hind this research stems from the need for accurate and efficient detec-
tion techniques to identify complex microstructures in biological mate-
rial samples. The primary objective of this project involves fine-tuning of
YOLOVS, a state-of-the-art object detection model, for semantic detection
on FIB-SEM images. The study involves retraining the YOLOv8 model
to suit the unique characteristics of FIB-SEM data, optimizing its perfor-
mance for precise delineation of cellular structures. Experimental results
showcase the model’s performance in effectively detecting intricate fea-
tures while maintaining computational efficiency, enabling in-depth anal-
ysis and understanding of diverse microscopy samples in scientific re-
search and industrial applications.

1 Introduction

Focused Ion Beam Scanning Electron Microscope (FIB-SEM) Images are
captured using a ion beam to directly interact with sample surfaces [1].
The process involves removing a thin surface layer, exposing a new sur-
face that is imaged by an optical sensor. The process is repeated for the
entire three dimensional sample, producing a stack of slices. Typically
these images have nanometer resolution, with around 2000 pixels on the
longer side. They are often stored in a format that permits stacking for
easy random access to regions of the image, which proves advantageous
for FIB-SEM images and 3D visualisation of the analysed material. Due
to their very large resolution, detection in FIB-SEM images is a time-
consuming task, being desirable to have computerised tools to automate
the process. Unfortunately, FIB-SEM images are quite noisy and current
detection algorithms often fail to identify small objects. In this work, we
propose using YOLOVS to perform FIB-SEM biological image detection,
retraining the model using a proprietary FIB-SEM dataset.

2 Literature review

Aswath et al. [2] reviewed 38 research papers surrounding the theme
of using Deep-Learning techniques applied to FIB-SEM images, mainly
covering Convolutional Neural Networks (CNN), resulting in a table com-
paring how they were acquired for analysis, the region from where they
were taken, the number of pixels per nanometer, the size of the dataset
in pixels, the labeled (sub) cellular structures to be detected in the images
and the paper’s source. They conclude that Fully Convolutional Networks
(FCN) and U-NET are the most notable backbone networks due to their
use of deeper contextual network architectures, which are essential for 2D
prediction and subsequently 3D reconstruction. Rosebrock [3] has pub-
lished a book detailing several ways Al behaves with different datasets
for certain purposes, while accompanying the concepts with Python code
to better condensate the learning. From how images are composed in an
RGB matrix and operate them with Python libraries, to studying libraries
and packages used in Deep Learning and image analysis, to developing
and training the user’s first CNN and saving its results, this book can pro-
vide assistance to both newcomers to the technology as well as to experts.

3 Architecture and implementation

The chosen model was YOLOVS [4] due to already having a pre-trained
model for object detection, lacking only the dataset and the labels to fine-
tune it for the task at hand. In addition, the creation of the labels was
relatively easy, abiding by the structure "[class] [x] [y] [width] [height]"
for every sample to be detected in training, with "class" adverting to the
class number attributed to the sample. For example, an algorithm to detect
animals would have "0" for dogs, "1" for cats, etc., "x" and "y" refer to
the position in the image where the sample is found, and "width" and
"height" refer to the dimensions the sample occupies in the image. Note
that "x" and "width" must be ratioed according to the number of pixels in
the image on the x axis and "y" and "height" to the number of pixels in
the y axis. The resulting numbers must be ratios between 0 and 1 [5].

3.1 Dataset

The dataset consisted of a FIB-SEM sample with 1776 slices, divided into
a training set (1066 images), a validation set (355 images) and a test set
(355 images), all provided by Prof. Dr. Andreas Walter from the Zen-
trum fiir Optische Technologien at Aalen University, Germany. As stated
above, FIB-SEM images are saved such that one file stores 1776 images
separated by page numbers. A Python program was used to convert each
page into a .png file, a file extension accepted by YOLOv8. With the im-
ages, the model still required labels for each object to detect, which were
created with Python and Sherlock [6]. Since the dataset was split into
masks for every sample for better management of classes, resulting in 5
masks, Sherlock was a good choice. This is because it would be possi-
ble to actively see what was detected by the software and consequently
added to the labels by establishing a threshold, finding white blobs with
area greater than a given number, and thus obtaining the values required
and writing them into a .txt file with in-program Javascript. Python was
then used for masks where the sample was presented in a way Sherlock
couldn’t work with it. With each image and associated labels (each image
and associated label file must have the same name) the last step before the
training would be creating a .yaml file that contains information about the
images and labels such as the relative location of the training set, the test
set and the validation set (the images are to be located in one folder and the
labels in another inside each set location, so the training set would have
training/images/imgxx.png and training/labels/imgxx.txt), and the names
of the classes in numeric order. This .yaml file would then be located next
to the folders containing the sets.

3.2 Training

The neural network model used, YOLOVS, has the function to identify
the cell’s nuclei, lysosomes, early-endosomes, late-endosomes and mito-
chondrias. To train the YOLOvS8 neural network, we used the model’s
default method for object detection, using its auto-batch feature to define
the batch size. The neural network was trained for 100 epochs, with an
initial learning rate of 0.01 (model’s default) and a momentum of 0.937
(model’s default), using an image size of 2023*846 pixels (original image
size). The model also used the validation set after the training period.

4 Results and evaluation

After the training and validation processes, the model presented the fol-
lowing confusion matrix (Figure 1). The results show a good performance
overall, specially with predicting the nuclei (biggest structure in the im-
age). Mitochondria is the most difficult to identify due to its similarity
with the cell’s cytoplasm.
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Figure 1: Normalised confusion matrix

The relation between the F1 score and the confidence, in addition to
the relation between precision and confidence, help to consolidate the pre-
vious observations about the nuclei and the mitochondria identification, as
shown in Figure 2 and Figure 3.
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Figure 2: F1-Confidence relation

Precision-Confidence Curve
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Figure 3: Precision-Confidence relation

‘We proceeded to use the best parameters (selected by YOLOVS dur-
ing the training epochs) to apply on the test dataset. After comparing
the results with the original labels, we obtained the results presented in
Table 1. These results are slightly higher than the ones presented in the
literature for similar objectives. However, in our experiments, the images
used to train and test the neural network came from a single dataset.

Table 1: Test set results
Recall | Precision F1
0.938 0.908 0.922

ToU
0.857

Visual results representing identification examples of organelles with
nuclei, mitochondria, early-endosomes, lysosomes and late-endosomes,
together with associated accuracy, can be observed in Figure 4.

5 Conclusions and future work

The obtained results reflect a high Recall (how much of the object was
correctly detected, from O to 1), high Precision (how much of the de-
tected content belongs to the sample, from O to 1), high F1 score (the
harmonic mean between Precision and Recall) and high IoU (Intersection
over Union - relation between the correctly detected and the incorrectly
detected/not detected).
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Figure 4: (a): Original image to be analysed; (b): Location of the or-
ganelles with nuclei in pink, mitochondria in yellow, early-endosomes in
orange, lysosomes in red and late-endosomes in green); (c¢): Prediction
made by YOLOVS to detect said organelles and respective accuracy

This means that, after fine-tuning, the Al-based detection model
(YOLOVS) performed well despite the noisy characteristics and high res-
olution of the images in the test dataset.

FIB-SEM image detection with Deep Learning is a technology still
in development and needing improvements. Inaccuracies in the results
such as false positives (the detector incorrectly attributing a class to an
object with a different class/no class) and false negatives (failure to de-
tect a classified object) need to be minimized. A possible improvement
may involve the use of preprocessing to diminish the effect of image noise
which is quite high in these images. Future work will target the improve-
ment of the detection task performance and modifying the model for the
task of pixel-level semantic segmentation.
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