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Abstract

Ensuring the quality of individual parts during manufacturing is crucial
for upholding the integrity of the final products and fostering confidence
among customers in the global market.

In this paper, we explore the potential of applying deep learning tech-
niques in a computer vision task, aiming to classify manufactured parts
as either defective or non-defective, based on the processing of grayscale
images of these parts. We conducted experiments on a publicly avail-
able dataset comprising 1300 images of casted submersible pump im-
pellers, utilizing a custom CNN implemented with the Keras framework.
We attained a recall rate of 94% for the defective class and a precision
of 89% for the non-defective class. Additionally, we discuss qualitative
insights gained through the application of Grad-CAM (Gradient-weighted
Class Activation Mapping) for better understanding of the model’s
decision-making process.

1 Introduction

Effective quality control procedures are essential for manufacturing com-
panies, directly influencing their reputation and the reliability of their
products. The most common procedures include geometric inspection,
which ensures that a product’s shape and physical measurements align
with specified requirements and tolerances, and surface inspection, which
involves comparing attributes like color, texture, brightness, and opac-
ity to predefined standards within acceptable quality ranges. Relying on
manual labor for these repetitive tasks introduces variability in quality
control outcomes. In our rapidly evolving industrial landscape, time is an
increasingly valuable resource. To meet the demands of 24/7 manufactur-
ing, technology-driven solutions have become indispensable, benefiting
both employers and employees.

The casting industry is a pivotal segment of manufacturing, involv-
ing the production of metal components through the casting process. In
this process, liquid material, typically metal, is poured into a mold with
a hollow cavity of the desired shape. The material cools and solidifies,
resulting in a part or product with the intended shape [1]. During this
process, irregularities or imperfections can occur, significantly impacting
product quality and reliability. Common casting defects, include inclu-
sions, porosity, runout, flashing, cold shuts, blowholes, pinholes, burrs,
shrinkage defects, problems with mold materials, and issues with metal
pouring. Quality control in the casting industry is of utmost importance,
ensuring that the final products meet required standards and are defect-
free. Traditionally, quality inspection has relied on manual inspections by
human inspectors. However, this manual process is time-consuming and
susceptible to inaccuracies due to human limitations.

The limitations of manual inspection can lead to the rejection of entire
orders due to defects in just a few products, resulting in significant finan-
cial losses for manufacturing companies. To address these challenges, the
industry is increasingly turning to automation and technology [2]. One
promising approach is the use of deep learning-based classification mod-
els to automate the inspection process. These models can analyze images
of cast products and identify defects with a high degree of accuracy, re-
ducing the reliance on manual inspection and enhancing overall quality
control. By implementing deep learning classification models, manufac-
turing companies can improve the efficiency and accuracy of their quality
control processes, reducing the likelihood of defective products reaching
the market. Ultimately, this approach can enhance their bottom line by
minimizing losses due to rejected orders.

2 Literature review

In the study made by Bart De Ketelaere et al. [3], it is emphasized that
with the the arise of computational power to leverage deep learning al-
gorithms and multispectral or hyperspectral imaging systems, there is the
potential to extract richer chemical information from object samples be-
yond the visible light spectrum. This capability enables the visualization
of aspects that are otherwise imperceptible to the human eye, such as food
packages sealing conditions.

Matthias Becker [4] explored the concept of controlling the mold
heating and cooling operation in the light metal die casting process through
real-time monitoring, using infrared cameras and low-end embedded pro-
cess control computers runing a Convolutional Neural Network (CNN).

Using cast product images for quality inspection Seokju Oh et al. [5]
achieved an increase of 7.6% (from 90.92% to 98.58%) in the F1-score
performance by employing data augmentation via a Convolutional Au-
toencoder (CAE) in their proposed CNN. After that, Seokju Oh, along
with Juyong Park et al. [6] evaluated the classification performance on the
Xception deep leaning model, improving defect detection by proposing
the use a Wavelet Transform Denoise algorithm after applying a Gaussian
noise filter to the input.

Max Ferguson et al. [7] developed XnetV2, a defect classifier based
on the Xnet architecture, to localize casting defects in X-Ray images.
They conducted a comprehensive study exploring the use of several state-
of-the-art object detectors, including Faster R-CNN, R-FCN, and SSD.
Decoupling the feature extraction layer from the object detection archi-
tecture allowed them to assess the performance of each object detection
method with different feature extractors. Using an adapted version of the
Faster R-CNN architecture, they achieve a mAP of 0.921 on test.

3 Methodology

In a production line, components on conveyors undergo inspections via
machines equipped with detection photocells, that send a trigger signal
to the camera sensor [8]. Although minor positional variations in objects
may occur, overall light conditions remain stable. After image acquisi-
tion comes the subsequent stage of image processing. Following that, the
final phase involves a verdict decision, which often translates into prod-
uct rejection, accomplished by changing the item’s trajectory towards a
dedicated conveyor circuit for potential reintegration. This particular ap-
plication is characterized by its demand for speed, given its real-time in-
spection capabilities. While precision is paramount to prevent wastage of
production resources, achieving high recall is critical to guarantee product
quality and integrity throughout the manufacturing process. In this work,
we evaluate the applicability of deep vision in this context by implement-
ing a Convolutional Neural Network (CNN) to detect casting defects in
images of submersible pump impellers, as exemplified in Figure 1.

Figure 1: Examples of Defective Pump Impellers



3.1 Dataset
We used a publicly available dataset from Kaggle, provided by
Ravirajsinh Dabhi with Pilot Technocast colaboration [9]. This dataset
comprises 7348 grayscale images with dimensions of 300x300 pixels,
which have already undergone data augmentation. Additionally, there is
an original dataset consisting of 1300 grayscale images with a resolution
of 512x512 pixels and no augmentation. Although the dataset comprises
various types of defects, the critical aspect for quality control lies in iden-
tifying the absence of them, making this problem a binary classification
with just two classes: ’Defective’ and ’OK.’

Being required to split the dataset in three, for training, validation,
and testing, each split containing unique images, it is important to perform
data augmentation only after splitting. Furthermore, data augmentation is
typically applied exclusively to the training dataset. After the first exper-
iments to be described in the next section, where we used the augmented
300x300 dataset, we opted to use the original 512x512 dataset and split
it into proportions of 80%, 10%, and 10% for training, validation, and
testing, respectively. Furthermore, we applied data augmentation on the
original dataset before training by incorporating random operations such
as horizontal and vertical flips, rotations, zooming (limited to 10%), and
adjustments in brightness and contrast (limited to 15%).

3.2 Architecture
We began our experiments with a custom model comprising five convolu-
tional layers and five dense layers with the 300x300 dataset. In fewer than
ten epochs, it achieved an impressive 98% accuracy on all three dataset
splits, similar to previous works [5, 6]. However, this raised doubts about
dataset integrity, reinforced by the fact that augmentation and split oper-
ations were not clear in the dataset characterisation. GradCam revealed
that the model was not assigning significant decision weight to pixels with
actual defects. Instead, it seemed to encode each image randomly, achiev-
ing high scores due to dataset integrity issues. Subsequently, we decided
to experiment with the 512x512 dataset, yielding poor results. We then at-
tempted to integrate a pretrained ResNet50 model, fine-tuned only in the
last dense layers. However, we encountered challenges during training,
with the model failing to converge. Ultimately, we decided to proceed
with a custom model featuring a normalization layer scaling to the range
[-1, 1], six Conv2D layers, where the first half had 32 filters and the sec-
ond half had 64. The first layer utilized a 5x5 kernel and a stride of 3,
while the subsequent layers used a 3x3 kernel and a stride of 2. After
flattening, we included three dense layers with sizes of 64, 128, and 256,
respectively, followed by the final sigmoid dense layer. The motivation
for widening the layers in the dense block was to reduce the complexity.

4 Results and evaluation
In this section, we evaluate our custom model with the original 512x512
dataset. By setting the classification threshold to 0.50, we achieved the
values for the metrics detailed in Table 1. The confusion matrix presented
in Figure 2 (left) shows the distribution of the predictions (TN, FN, FN,
FP) in the split dataset for testing. To provide insights into the trade-off
between correctly identifying true positives and incorrectly classifying
false positives across various classification thresholds, we present the Re-
ceiver Operating Characteristic (ROC) curve in Figure 2 (right), where
our model achieved an Area Under the ROC Curve (AUC-ROC) of 97%.

Table 1: Test inference performance metrics (threshold=0.50)
Class Precision Recall F1-Score # samples
OK 0.89 0.83 0.86 48

Defect 0.91 0.94 0.92 85
Avg / Total 0.90 0.90 0.90 133

Figure 2: Confusion matrix and ROC curve

Grad-CAM (Gradient-weighted Class Activation Mapping) is a tech-
nique used to visualize the regions within an image that most significantly
contributed to the final classification decision. This is achieved by com-
puting the gradients of the decision scores at each pixel in the image
with respect to the final classification outcome. These gradients are then
weighted and aggregated across a specific convolutional layer’s depth. In
Figure 3, we showcase the results obtained using the Grad-CAM across
all six Conv2D layers on two images that were misclassified by our model.

Figure 3: GradCam results of two missclassified examples

In these images, as well as in others, we can observe that the actual
defect is indeed highlighted. However, it is essential to note that the de-
fect may not always be the brightest element within the image. Instead,
our observation suggests that the model’s classification decision is likely
influenced by the features of the central ring, which appears to play a
significant role in the final decision.

5 Conclusions and future work
In this study, we assessed the effectiveness of a custom CNN deep learn-
ing model in classifying parts from images acquired in a real-world auto-
mated inspection line, deciding on their acceptability in terms of quality.
The obtained results are good, but still with potential for improvement.
In particular, the feature extraction could be enhanced by increasing the
quality of the datasets. As part of our future work, we plan to collaborate
with a local industry to gain access to a substantial amount of labeled data.
In addition, we plan to design an unsupervised learning pre-processing
layer to act as a binary mask, bounding the ROI, and making the model
decision focus on the actual features rather than noise.
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