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Abstract

Deep Learning (DL) is the go-to solution in many Computer Vision (CV)
tasks, including Haematoxylin and Eosin (H&E)-stained Whole Slide Im-
age (WSI) analysis. However, DL models usually generalize poorly to
out-of-distribution (o.o.d.) samples. In computational pathology (CPath),
this is a known limitation, in spite of the several strategies that have been
proposed to attenuate this challenge and improve generalization. In this
work, we propose data augmentation to learn more robust representations
of H&E-stained WSIs for colorectal dysplasia grading and demonstrate
that data augmentations tailored to CPath could be useful to generalize
DL models to novel environments.

1 Introduction

Deep Learning (DL) algorithms are the dominant paradigm in computa-
tional Pathology (CPath), however, a known limitation of DL methods is
that they are prone to learn spurious correlations, which translates to DL
models with high performance on independent and identically distributed
(i.i.d.) data, but that often fail to generalize to out-of-distribution (o.o.d.)
samples [5]. Learning stable representations is thus a central objective in
DL. In this work, we consider pathology-tailored data augmentations, pri-
marily techniques focused on increasing robustness to known factors of
variation in Whole Slide Images (WSIs) and evaluate if augmenting the
data helps DL models generalize.

2 Related Work

Due to the gigapixel size of WSIS, these are usually split into smaller
patches for processing. But as the target label of the WSI is determined
from specific tissue Regions of Interest (ROIs), this means not all tiles
share the same label as the WSI, ultimately making WSI analysis a Mul-
tiple Instance Learning (MIL) paradigm. The most common approaches
for learning instance representations in CPath comprise: 1) pretraining
on the ImageNet dataset; 2) Self-supervised representation learning; and
3) Fine-tuning pretrained models on a small amount of annotated tiles.
For instance, Ciga et al. [1] resort to SimCLR and demonstrate that
self-supervised domain-specific pretraining on large-scale datasets allows
learning effective representations of WSI data. Other methods consider
attention mechanisms and demonstrate models pretrained on ImageNet
are good feature extractors, meaning only the bag feature aggregation
would need to be optimized [4, 8]. Neto et al. [5], on the contrary,
demonstrate supervised fine-tuning on a small set of annotated tiles ben-
efits downstream MIL. However, despite the outstanding success in i.i.d.
data, the proposed methods were shown to not generalize to o.o.d. sam-
ples. In this work, we consider the supervised pretraining strategy of [5]
but adopt a data augmentation policy tailored to pathology to increase
robustness.

3 Methods

We consider a ResNet-34, and Quadratic Weighted Kappa (QWK) Loss
[5] for grading Haematoxylin and Eosin (H&E)-stained WSIs of Colorec-
tal Cancer (CRC) into Non-Neoplastic, Low-grade Dysplasia (LG), and
High-grade Dysplasia (HG). We train our models on samples from the
CRC dataset [5]. More specifically, we resort to the set of 967 WSIs
annotated at the tile (instance) level. Previous work has adopted a suc-
cessful weakly supervised approach [5], but they have also demonstrated
the benefits of supervised pretraining of the MIL paradigm. We thus fo-
cus on the pretraining stage and analyse if we can increase generalization

to novel environments. We restrict the experiments in this paper to the
annotated data. We split the 967 annotated WSIs into training (567), val-
idation (200), and testing (200) splits. We further extract a training set
with 100 WSIs and another with 250 from the 567 training split. Besides,
we evaluate the models in slide-level classification on the public test set
of the CRC dataset [5]. To evaluate model performance in o.o.d. data, we
also included the PAIP [6] and TCGA [2, 3] CRC datasets.

Data augmentation is a central part of this work. To prevent cor-
rupting the semantics of the data, while simulating distribution shifts, we
adopt a data augmentation policy previously validated in CPath [10], as
described in Table 1. Aside from geometric transformations, we also con-
sider colour augmentations to account for H&E-stain variability. For in-
stance, we consider Haematoxylin-Eosin-DAB (HED) colour augmenta-
tion, which is based on a colour deconvolution technique, using a prede-
termined stain matrix [7]. As the staining protocol demands the applica-
tion of each stain independently, randomly and independently perturbing
the individual stain components increases model robustness to variability
in stain concentration.

Transform Hyperparameters
Hue Shift shift limits = [−0.125,0.125]

Contrast Shift shift limits = [−0.2,0.2]
Saturation Shift shift limits = [−0.125,0.125]

HED Jitter α = 0.1β = 0.0075
Flips (Horizontal/Vertical) -

Rotation limits = [−90◦,90◦]
Gaussian Blur max kernel size = 15, σ limits = [0.1,2]

Gaussian Noise µ = 0,σ = [0,0.1]

Table 1: Data Augmentation tailored to CPath, as proposed in [10].

3.1 Implementation Details

The experiments are implemented in python 3.10.8 with PyTorch 1.13.0
on a Tesla V100 32GB GPU. For data augmentation, we use Albumen-
tations 1.3.0, and scikit-image 0.19.3. We consider Stochastic Gradient
Descent (SGD) with momentum( µ = 0.9), weight decay λ = 3e−4, and
initial learning rate γ = 1e− 4. We run each training loop for 30 epochs
with a batch size of 32. Besides, we reduce γ by a factor of 10−1 when
LQWK did not decrease at least by 10−4 in 10 steps of 500 iterations. We
select for testing the model with the best QWK in the validation set.

4 Results and Discussion

4.1 Instance-level Classification

Considering training and validation results (Table 2), i.e., tile-level su-
pervision, we observe that the models with data augmentation achieve,
in general, similar QWK (validation set) when compared with ResNet-34
without data augmentation. When evaluated on the held-out test split (Ta-
ble 2), the baseline ResNet-34 without data augmentation outperforms the
ResNet-34 with data augmentation for larger training set sizes.

4.2 Whole Slide Image Classification

In these experiments, we consider evaluating results in i.i.d. data and
assess performance on H&E-stained WSI colorectal dysplasia grading.
We resort to a heuristic to predict the slide target, where we define the
bag label as the most frequent label of the top 7 instances with the highest
expected severity, E(Ĉs,n) [5]:



# WSIs (train) data aug qwk loss (train) qwk (val) qwk (test) acc (test)

100
0.1493 0.8235 0.8430 0.8400
0.1017 0.8077 0.8279 0.8070

250
0.1433 0.8431 0.8284 0.8243
0.1478 0.8422 0.8431 0.8319

567
0.1516 0.8385 0.8337 0.8208
0.1314 0.8431 0.8470 0.8422

Table 2: Results of the ResNet-34 (pre-trained on ImageNet) with and
without data augmentation.

# WSIs data aug acc qwk acc (bin)

100
0.5485 0.462 0.8484
0.5563 0.4221 0.8462

250
0.6187 0.5776 0.8618
0.6210 0.5711 0.8640

567
0.6042 0.5404 0.8584
0.6198 0.5912 0.8729

Table 3: Effects of dataset size. The WSI dysplasia grade is given by
majority voting the predictions from the top seven tiles with the highest
expected severity, E(Ĉs,n).

E(Ĉs,n) =
K

∑
i=1

i× p
(

Ĉs,n =C(i)
)

(1)

where Ĉs,n is a random variable on the set of possible class labels

{C(1), ...,C(K)}, and p
(

Ĉs,n =C(i)
)

are the K model predictions.
In Table 3 we assess the effects of dataset size on model performance

when evaluating the WSI classification performance. To compute the bi-
nary accuracy we aggregate the LG and HG classes. In most experiments,
the method with data augmentation achieves the worst performance.

4.3 Out of Distribution Evaluation

As a final study of robustness, we evaluate the whole-slide classifica-
tion performance on the PAIP CRC [6] (Table 4) and TCGA CRC [2, 3]
(Table 5) test sets. We observe that in PAIP CRC [6] all methods per-
form particularly well, especially those trained on the 250 and 567 H&E-
stained WSIs sets. However, in TCGA CRC [2, 3] the performance of the
ResNet-34 method with no data augmentation is unstable with increasing
training set size. While it achieves an accuracy of only 40,09% with the
100 WSIs split, the accuracy increases to 93,10% in the model trained
on the 250 whole-slides and drops to 71,12% in the other training set.
As expected, our findings support other empirical evidence [9, 10] that
pathology-tailored data augmentations increase model robustness.

#WSIs (train) data aug acc acc (bin) sens

100
0.8700 0.8700 0.8700
1.0000 1.0000 1.0000

250
0.9600 1.0000 1.0000
1.0000 1.0000 1.0000

567
0.9600 1.0000 1.0000
0.9900 1.0000 1.0000

Table 4: Out of distribution (o.o.d) evaluation on the PAIP CRC [6]
dataset.

5 Conclusion

In this document, we focus on increasing the robustness of DL models for
WSI analysis. We assess the effects of pathology-tailored data augmen-
tation in representation learning and compare model robustness in o.o.d.
samples. We observe that while the effects of data augmentation are not
evident when generalizing in the i.i.d. setting, the technique leads to more
robust representations as models generalize to o.o.d. data.
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