Hand-drawn draft to code - towards an Al application to industrial automation

Inacio Fonseca!
inacio@isec.pt

Claudio Fonseca'
221220051 @isec.pt
Fernando Lopes'-2
flopes@isec.pt,flopes@co.it.pt

' Polytechnic Institute of Coimbra, Coimbra Institute of
Engineering,
Coimbra, PT

2Instituto de Telecomunicagées,
Coimbra, PT

Abstract

The field of industrial automation is undergoing a rapid transformation,
driven by the integration of artificial intelligence (AI). Among the most
innovative applications of Al in this field is its remarkable ability to
convert hand-drawn images of application drafts into functional code.
Drafts can be from new or old projects, paper or digitally acquired. This
groundbreaking advancement serves as a bridge between design and
execution, enabling more flexible and efficient programming. In this pa-
per, we will delve into the potential and impact of this Al-driven process
on industrial automation.

1 Introduction

The field of automation can be likened to languages that enable communi-
cation and control within industrial processes. A SCADA system (Super-
visory Control and Data Acquisition) functions as a conductor, harmonis-
ing these languages to ensure efficient and coordinated operations, while
also providing a visual interface for monitoring and analysing the results.

Different programming languages can be utilised in industrial au-
tomation, depending on the specific requirements and systems involved.
For instance, PLC (Programmable Logic Controller) languages such as
Ladder, ST (Structured Text), FBD (Function Block Diagram) and SFC
(Sequential Function Chart), are commonly used. Robotics languages, on
the other hand, are typically script-based, such as Rapid from ABB. Ad-
ditionally, process control languages and motion control languages may
also come into play. Humanoid industrial robots are also emerging, with
the Apptronik Apollol serving as a notable example in this field [1].

The SCADA system serves as the interface for monitoring and con-
trolling industrial processes, facilitating efficient and coordinated opera-
tions by utilising visual representation and industrial protocols to ensure
seamless information flow.

Converting hand-drawn images of drafts into usable code has tradi-
tionally been a labour-intensive and error-prone human task. Engineers
often face difficulties in translating intricate designs into executable in-
structions, resulting in inefficiencies and project delays. However, the
convergence of Al and industrial automation offers a revolutionary solu-
tion. By harnessing advanced machine learning algorithms, Al systems
can now comprehend hand-drawn images, extract relevant information,
and generate precise and functional code. This groundbreaking advance-
ment bridges the gap between design and execution, enabling more effi-
cient and accurate programming in the field of industrial automation.

In the future, this research will explore the potential of leveraging
Al LLMs (Large Language Models) in code generation, with a particu-
lar focus on mapping hand-drawn images and image-based drawings into
an intermediate representation and then converting it into a web-based
SCADA system or PLC system code.

This paper presents an initial investigation and associated findings
related to image block detection using the YOLO (You Only Look Once)
object detection algorithm [2].

2 Impacts on industrial automation and the
conversion process

Al-driven code conversion from hand-drawn drafts boosts industrial au-
tomation with improved speed, accuracy, and collaboration. It speeds up
development cycles, minimizing human errors and resulting in precise,
consistent code. Al allows engineers to focus on high-level design and
strategy, promoting collaboration and innovation in the process.

Al-driven hand-image-to-code conversion has numerous potential ben-
efits, but some challenges must be overcome: (1) Image Context: Al
needs to recognize the context behind hand-drawn images; image recogni-
tion technology must be improved. (2) Ambiguity Handling: Hand-drawn
drafts may contain ambiguities which can be a challenge for Al to gen-
erate correct code; robust algorithms to manage these situations must be
created. (3) Domain Adaptation: Each industry has its own terminology
and needs; Al must be able to adapt to multiple domains.

Al can evaluate hand-drawn images of drafts using the following
steps: image recognition, semantic understanding, code generation and
code validation. Image recognition converts the visual content to a digital
format, allowing Al to analyze it. Semantic understanding leverages ma-
chine learning and natural language processing to interpret the underlying
purpose of the design. Code generation creates code segments that match
the functionality. Validation ensures the accuracy and proper functioning
of Al-generated code through simulation and testing.

3 Identification of hand-drawn items with YOLO

Figure 1 illustrates hand-drawn items that must be accurately detected
and classified for SCADA visual design. Al-based YOLO was used for
labeled item detection. Similar studies on diagram detection have been
documented in [3].

e

Figure 1: Two examples of hand-drawn images for the training dataset.

YOLO is a state-of-the-art, CNN-based, real-time object detection
system. Joseph Redmon and co-authors developed YOLOv1 [2],
YOLOV2 [4] and YOLOV3 [5]. Alexey Bochkovskiy and co-authors de-
veloped YOLOvV4 [6] and YOLOV7 [7]. YOLOVS [8] and YOLOVS8 [9]
were developed by Ultralytics and YOLOv6 [10, 11] was developed
by Neituan. The official releases are YOLOv1,v2,v3,v4 and v7 while
YOLOVS,v6 and v8 are unofficial (released by private companies).

Table 1: Image dataset composition, with labels frequency and mAP50-95
results in the training phase. V(*)=Validation

Train | Test | V(*) mAP50-95 (YOLO)
Set Set Set Total v8s [v8n | V7
N.° of Images 105 5 10 120
Button 51 7 4 62 0.676 | 0.590 | 0.615
Footer 33 1 3 37 0.808 | 0.667 | 0.813
Header 38 3 8 99 0.751 | 0.759 | 0.628
Image 33 0 4 37 0.933 | 0.904 | 0.933
Motor 12 0 1 13 0.796 | 0.697 | 0.597
Pipe 18 0 2 20 0.895 | 0.746 | 0.945
Text 318 16 37 371 0.760 | 0.731 | 0.796
Total 559 28 59 646 0.803 | 0.728 | 0.761

The work in this paper used YOLOv7, YOLOv8n (nano) and
YOLOvS8s (small) versions. Epochs were set to 500 and patience to 50
(except for YOLOV8s). No other default parameters were changed.

Text 0.”

Img2 Img3

Figure 2: Detection in the test dataset with YOLOv8n.

Img0 Img3

Figure 3: Results with YOLOVS8s (images with differences to v8n).

The images in Figure 1 are two representative examples in the
training set. All images were annotated with 7 labels: "Button", "Footer",
"Header", "Image", "Motor", "Pipe" and "Text". Table 1 details the dataset
and COCO mAP50-95 metric results. All three YOLO versions achieved
a VOC mAP50 score of 0.94 or higher for all labels.

Example visual results on the test dataset are presented in Figure 2 for
YOLOv8n, in Figure 3 for YOLOVSs and in Figure 4 for YOLOvV7. De-
tection was successful due to the consistent annotation across all images
taken with two mobile phones and a scanner (despite varying resolutions).

Times for the three models in the detection phase were as follows.
YOLOv8n: 0.2ms preprocessing, 13.6 ms inference, O ms loss,
106.2 ms postprocessing per image and 193 epochs (patience=50).
YOLOvS8s: 0.2 ms preprocessing, 6.9 ms inference, 0.0 ms loss and
111.2 ms postprocessing per image. It took 298 epochs with a patience
80 or 122 epochs with a patience of 50, but with a reduction in perfor-
mance in the test set. Differences for YOLOv8n can be observed in im-
ages Img0 and Img3 in Figure 3. YOLOv7: 22.1 ms inference, 1.4 ms
NMS per image and 500 epochs. The machine used to run the algorithms
was equipped with a NVIDIA TESLA T4 with 15360 MiB of RAM using
drivers NVIDIA-SMI 525.105.17 and CUDA Version 12.0.

4 Conclusions

The integration of Al to convert hand-drawn drafts into code will be a
transformative process in industrial automation. This concept can in-
crease efficiency, accuracy, and productivity, fostering industrial advance-
ments. Al’s rapid growth means that hand-drawn designs can quickly
become executable code, creating a new level of efficiency and collabora-
tion. By blending human creativity and machine intelligence, industries
can leap into an automated innovative future, dramatically changing the
automation landscape.

Img2 Img3

Figure 4: Detection in the test dataset with YOLOV7.

This paper presented a preliminary investigation and results for a
proof of concept on the ability to detect hand-drawn images and convert
them into symbolic representations. Such representations will be used in
further investigations for the purpose of automation code generation.

Both YOLOv8 and YOLOV7 performances in object detection were
evaluated against a test dataset and were found to be accurate when using
a training set with well defined labels. However, careful considerations
on label annotations and on the image dataset composition are crucial, in
order to ensure a successful implementation. The results of this initial
study suggest a high potential for fast code generation in Web SCADA
systems and PLC programming, an objective that we are pursuing through
our ongoing work. Both algorithms can detect user-drawn inputs in real-
time, such as those acquired from a smartphone video stream.

References

[

—

Apptronik. Why nasa is helping apptronik build a humanoid
robot. CNet, February 2023. https://www.cnet.com/videos/

why-nasa—-is—-helping-apptronik-build-a-humanoid-robot.

[2

—

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. arXiv preprint
arXiv:1506.02640, 2016. https://arxiv.org/abs/1506.02640
[3] Somaieh Amraee, Maryam Chinipardaz, Mohammadali Charoosaei, and
Mohammad Amin Mirzaei. Handwritten logic circuits analysis using the
yolo network and a new boundary tracking algorithm. IEEE Access, 10:
76095-76104, 2022. doi: 10.1109/ACCESS.2022.3192467.

[4] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv
preprint arXiv:1612.08242, 2016. https://arxiv.org/abs/1612.
08242

[5] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018. https://arxiv.org/abs/
1804.02767

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.

Yolov4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020. https://arxiv.org/abs/2004.10934

[7] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
YOLOV7: Trainable bag-of-freebies sets new state-of-the-art for real-time
object detectors. arXiv preprint arXiv:2207.02696, 2022. https://
arxiv.org/abs/2207.02696

Ultralytics Inc. YOLOVS: Ultralytics open-source research into future vision
ai methods. 2021. https://ultralytics.com/

Ultralytics Inc. Introducing yolov8: Faster, simpler, more accurate. 2023.
https://ultralytics.com/

Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang,
Zaidan Ke, Xiaoming Xu, and Xiangxiang Chu. Yolov6 v3.0: A full-scale
reloading. arXiv preprint arXiv:2301.05586, 2023. https://arxiv.
org/abs/2301.05586

Chuyi Li et All. Yolov6: A single-stage object detection framework for
industrial applications. arXiv preprint arXiv:2209.02976, 2022. https:
//arxiv.org/abs/2209.02976,

[8

—_

[9

—

[10]

(1]

