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Abstract

Deep learning methods show a high performance in different problems.
However, when the target domain has a distribution shift from the source
domain, a significant reduction in the performance of the models occurs.
Learning models applied to medical imaging analysis are limited by char-
acteristics of the medical datasets, which are typically small, low rep-
resentative and not completely annotated, resulting in problems of do-
main shift. Typically, these problems are addressed by strategies for do-
main generalization or adaptation. The literature shows the need to create
learning models with stronger generalization capability to deal with two
problems: lack of generalization (P1) for cohort populations and (P2) for
distinct imaging modalities. This paper gives a perspective on how to ad-
dress these two problems, mainly centred on the importance of strategies
to force the learning of domain invariant feature representations.

1 Introduction

Deep learning has surpassed human performance in different tasks while
learning directly from data, depending on the high quality and quantity
of the training data [6]. The assumption that the source/reference domain
(used during training) presents the same data distribution as the target do-
main (used for testing and deployment) is the base of the application of
learning methods [3]. However, domain shifts are a prevalent problem
in different applications, i.e., a target domain out-of-distribution causes a
decrease in the performance of the models and affects a large-scale de-
ployment [3, 10]. A large distribution shift to the target domain occurs
when the source domain does not capture the data distribution complex-
ity due to data scarcity or low sample variability [10]. This is tackled
by techniques of domain generalization (DG), under the assumption that
the target domain is not accessed during train, and domain adaptation
(DA), where the target data (sparsely labelled or unlabelled) is available
for model adaptation [7].

In medical image analysis, the problems of domain shift are partic-
ularly prevalent due to the low variability of small, imbalanced and not
thoroughly annotated datasets [3, 6]. Patient privacy, institutional poli-
cies and costs limit data acquisition [3]. The annotating process is ex-
pensive, time-consuming, and demands the expertise of healthcare pro-
fessionals [3]. Small datasets also are more prone to a lack of demo-
graphic representation [3] and do not capture heterogeneity in lesions and
anatomical structures phenotype [8]. Different hospitals and healthcare
professionals follow distinct acquisition and annotation protocols and use
equipment with various specifications from multiple vendors, resulting in
heterogeneous datasets [3].

In summary, the prevalence of data scarcity and domain shift prob-
lems deeply impacts the clinical deployment of learning models. In health-
care, the quality of diagnostic decisions can be a matter of life and death,
which demands a high accuracy of computer-aided diagnosis systems and
a trust that the system is capable of processing new patient cases with high
performance. For all these reasons, addressing domain shift problems is
a critical step towards the safe and robust deployment of learning models
capable of generalizing well to unseen domains and being applied to the
clinical environment [3, 7, 10].

2 Literature Review

The most common strategy to increase the training set variability is data
augmentation [7] by applying image transformations [9]. An alternative

is to generate new synthetic data using Generative Adversarial Networks
(GANs) [7] or a Mixup strategy [5]. For the cases where the target domain
is identified, GANs can translate images from the target to the source
domain [3]. The translation can be between identical and distinct imaging
modalities [2].

For a generalization between domains, representation learning is used
to force learning models to learn feature representations invariant to do-
main changes [7], using adversarial learning [5]. It is also possible to train
models to adapt their parameters according to the domain of the image to
process [7]. Finally, some methods use domain knowledge incorpora-
tion for enforcing invariance: one example is symmetry-based regulariza-
tion [1]. Features without domain bias can also be learned using pre-train
models using self-supervised learning [10]. This learning strategy uses
unlabelled data with free labels learned from distinct pretext tasks [2]
or using contrastive learning [7, 10]. In contrastive learning, the model
learns transformation-invariant representations using pairs of original and
transform images [4]. Some works suggest the benefit of pre-train the
models using large image datasets like ImageNet [1].

The data scarcity and domain shift problems are identified and ad-
dressed in the literature with solutions based on DA and DG, for problems
in-and-out of the medical domain. However, the solutions are case-based
and fail to work with different sources of domain shift. In addition, it
is not possible to find an objective analysis of which methods are more
suitable for dealing with a specific cause of domain shift.

3 Prospective on Learning Models Generalization

The literature analysis shows the need to explore different methods to sur-
pass the consequences of low data variability during training and the con-
sequent domain shift when learning models process new data in medical
imaging analysis problems. In the future, two problems of out-of-domain
generalization should be addressed: (1) lack of generalization between
cohort populations with different demographics and various anatomic/
pathological phenotypes, usually represented in datasets acquired and an-
notated using distinct protocols; and (2) lack of generalization for images
of different medical modalities but from the same anatomical structure
and pathological manifestation. Figure 1 shows a graphical representa-
tion of the causes and consequences of the lack of generalization for each
specific problem.

3.1 Generalization for cohort populations

Deep learning can be applied in several medical image analysis problems
of classification, detection and segmentation, reaching high performance.
However, the application of the model in clinical settings is limited by
the decrease in performance of the models when applied to new data.
This is a direct result of different datasets representing cohort populations
with images acquired and annotated using distinct protocols. The learning
models must be invariant to domain changes in the datasets.

The construction of models with generalization capability should start
with a characterization of the sources of domain shift, such as changes in
the acquisition and annotation protocol and the changes in the population
represented, namely the analysis of demographic and clinical factors that
can impact the anatomical structure and the pathological manifestation.
Understanding how an alteration of these factors can impact the image
will allow the creation of data augmentation techniques or even the use of
generative models to create new samples capable of increasing the diver-
sity of the training set.



Figure 1: Graphical representation of the problems of (1) lack of gener-
alization between cohort populations; and (2) lack of generalization for
images of different medical modalities.

In addition to increasing the training set variability to be represen-
tative of different cohort populations, the construction of the learning
models must ensure the learning of domain-invariant features, using ad-
versarial learning or regularization methods that penalize the learning of
domain-specific features. However, the application of these methods de-
mands annotated data from distinct domains, which is challenging and not
always possible.

3.2 Generalization for distinct imaging modalities

Constructing a learning model capable of diagnosing the same patholog-
ical manifestation using different image modalities offers a versatile ap-
proach for clinical deployment. This optimizes clinical workflows and
can potentially reduce patient exposure to radiation and healthcare costs.
In addition, these models enable optimal data utilization and resilience
to data availability challenges, such as the temporarily unavailable of a
specific imaging modality.

One of the possible strategies to adopt is to include a pre-processing
step in which a generative model is used to generate synthetic images
in one modality based on information from another modality. This can
allow the training of the main model in just one imaging modality. An
alternative is to use just one model trained to learn domain-invariant fea-
tures present in the different imaging modalities. The training can be done
using adversarial learning and regularization methods.

4 Conclusion

In summary, the problem of domain shift impacts the performance of
learning models when applied to new data domains. This is a problem
that especially impacts the field of medical image analysis due to the
characteristics of the medical image datasets, which are usually small,
imbalanced and not completely annotated. The problem of domain shift
is addressed in the literature with strategies of DA and DG for applications
in-and-out of the medical image analysis domain.

In the future, to address the problems of lack of generalization for
cohort populations and distinct imaging modalities should be use strate-
gies based on implementing methods that force models to learn domain-
invariant features during train. The strategies must account for the domain
knowledge obtained in the study of the problem at hand, mainly the char-
acterization of the domain-shift problem. One of the main challenges that
the application of these methods could encounter is the need for annotated
data from distinct domains.
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