Dashboard for the Visual Analysis of Reinforcement Learning Environments

Tiago Aradjo
tiagodavi70@ua.pt
Jodo Alves
jpga@ua.pt

Paulo Dias
paulo.dias@ua.pt

Beatriz Sousa Santos
bss.@ua.pt

IEETA - DETI
University of Aveiro
Aveiro, PT

Abstract

Modern reinforcement learning is a field its with many dynamic and fruit-
ful integration with various engineering and scientific disciplines. How-
ever, it comes with an inherent challenge—the understanding of its mod-
els, which makes it challenging for humans to trust the decisions made
by these algorithms. In response to this challenge, we propose the devel-
opment of an interactive dashboard designed to ease the analysis of re-
inforcement learning environments. This dashboard offers a comprehen-
sive set of features to visualize critical elements of reinforcement learning
experiments, encompassing agent behavior, reward dynamics, and explo-
ration of time-based features.

1 Introduction

Reinforcement learning (RL) is a technique that enables machines to learn
and make decisions in complex environments through direct experience
with the environment. One of the most exciting aspects of modern rein-
forcement learning is the substantive and fruitful interactions with other
engineering and scientific disciplines [6]. However, one of the inherent
challenges of reinforcement learning is the lack of interpretability of its
models, making it difficult for humans to understand and trust the deci-
sions made by these algorithms.

A human can help address some of the challenges associated with
RL model development, such as the risk of bias or errors in the data or
the model, as well as the difficulty of interpreting complex models. A
constant human supervision is needed in many applications and using in-
terpretable methods one can easily automatize this analysis [1, 9]. We
propose an interactive dashboard! designed to ease the analysis of RL
environments. It offers a rich set of features for visualizing important as-
pects of RL experiments, including agent behavior, reward dynamics, and
state-space exploration.

In this context, visualization techniques can help to present expla-
nations of models and predictions in a more understandable, explainable
and interpretable way, especially for those who are not experienced in the
field of RL. Even for those who are experienced, it can help with many
human aspects of usage of these methods, like fairness, transparency and
accountability. Using aspects of human vision, one can tamper with mod-
els and uncover how they work. In recent years, explainable RL has been
gaining relevance as a research field offering unique opportunities [2, 10].
As the field evolves, major research firms like DeepMind and OpenAl are
already exploring it, applying it to better understand the behaviour of their
in-house developed models [3, 7].

2 Reinforcement Learning

Reinforcement learning (RL) is a distinct type of machine learning that
emphasizes identifying the optimal course of action in diverse circum-
stances to attain the maximum possible reward. Unlike other learning
techniques, the learner isn’t provided with explicit instructions on which
actions to take. Instead, they must explore and deduce the actions that
lead to more significant rewards. In general, the actions taken may affect
both immediate and future rewards. The three main elements of RL are
the environment, a policy and a reward signal.

In the field of RL, the environment refers to the external system that
an agent interacts with in order to improve its decision-making abilities.

"https://github.com/tiagodavi70/lunarlander

It is crucial to understand the environment as it provides the necessary
context for the agent to take actions, receive feedback, and learn how to
maximize its cumulative rewards over time. Typically, the environment is
formalized as a Markov Decision Process (MDP), which consists of state
and action spaces. The state space comprises all possible states that the
environment can be in, and these states contain all relevant information
about the environment’s current situation. The action space, on the other
hand, is the set of all possible actions that the agent can take. A policy
serves as a guide for a learning agent’s actions in any given situation. It
outlines the appropriate course of action based on the agent’s perception
of the environment. As the policy governs the behavior of a reinforcement
learning agent, it is a critical component of its functioning.

Reinforcement learning relies on a reward signal to guide the agent to-
wards its objective. This signal takes the form of a single number, known
as the reward, which the environment sends to the agent at each time step.
The agent’s ultimate aim is to maximize its cumulative reward over time.
This signal serves as the agent’s compass, distinguishing positive from
negative events. The reward signal is pivotal in refining the policy; if the
policy results in a low reward, the agent may opt for an alternate action in
analogous situations in the future.

An episode refers to a finite sequence of time steps during which the
RL agent engages with the environment. Each episode offers a distinct
illustration of how the agent interacts with the environment, starting from
an initial state and progressing through a series of state-action-reward
transitions until a stopping condition is met. Episodes are particularly
valuable in RL settings where there is a definitive sense of accomplish-
ment or closure in the task or environment. By adopting an episodic
structure, agents can refine their decision-making approaches over mul-
tiple interactions with the environment, leading to enhanced performance
in cumulative rewards or task completion.

2.1 Environment

Our work leveraged the Lunar Lander % environment to develop the pro-
posed platform. This environment presents a classic rocket trajectory op-
timization problem where the objective is to land the lander safely on the
ground. The observation space comprises an 8-dimensional vector con-
sisting of the lander’s coordinates in the x and y axes, its linear velocities
in the x and y axes, its angle, its angular velocity, and two booleans indi-
cating if each leg is in contact with the ground. The action space involves
four discreet actions: no action, firing the left orientation engine, firing
the main engine, and firing the right orientation engine. While the start-
ing position of the lander remains constant, we apply a random initial
force to its center of mass.

3 Information Visualization

Visual representations offer users the ability to uncover insights and make
informed decisions. They facilitate the creation of presentations that high-
light patterns, whether they involve trends, groups, intervals, or outliers,
as well as individual data items. Employing computational support to
visualize and interact with abstract data enhances human cognition, em-
powering users to acquire knowledge about the data and its interconnect-
edness [8].

Unlike static media, computer systems offer a distinct advantage in
dynamic visualization. Visualization software continually constructs vi-

’https://gymnasium. farama.org/environments/box2d/lunar_
lander/
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Figure 1: Dashboard for analysis of RL models on the Lunar Lander environment. The dashboard features at the top an agent visualization during an
episode with actions marked in red, an list paired with a joystick like view, to highlight an action of the agent in a timestep, a player that manipulates
the animation of time based visualization and the angular velocity view of the episode. At the bottom it features total rewards of the model and a

single episode rewards view of the agent.

sualizations that evolve as the analysis progresses through user interac-
tions. These interactions, driven by user actions, trigger changes in the
visual displays [4]. Researchers [4, 5] have identified several crucial in-
teraction tasks in this context, including configuring visualization designs,
defining visual encodings, classifying visual elements, locating specific
values, recovering values like maximum and minimum, and uncovering
correlations between different data items.

3.1 Dashboard

Our proposed solution for the problem of RL interpretability is a dash-
board for the Lunar Lander environment models. This visual idiom allows
insights through episode and actions analysis, and it is shown in Figure
1. The dashboard features a set of visualizations covering many impor-
tant aspects of RL problems: time manipulation, interaction and brushing.
Nonetheless, most features presented in this work can easily be transposed
to other 2D scenarios. In RL interpretability, it is crucial to have episode
and timestep analysis of the model, showing how the experience is gained
during training. The dashboard features time analysis with a player, that
enables users to see parts of the episode animated in two views: the agent
view and the velocity view.

Interaction in visualization refers to the ability of users to engage
with visual representations actively. Through user-driven actions such as
clicking, hovering, or dragging, interactive visualizations offer dynamic
exploration and manipulation of data. This enables the user to build a
chart unique for their insights. It also presents for the user how the selec-
tion of a episode impacts the visualization of the agent, from a overview
perspective of all episodes to a specific one.

Brushing is an interactive technique used in visualization to highlight
and select data points or regions. By "brushing" over the visual elements,
users can visually emphasize certain parts of the data, which can then trig-
ger updates in linked views or provide context for further analysis. This
is imperative for analysis of RL models, as the volume of data generated
through training or execution of the model can be massive. The dashboard
allows brushing of episode based information and allows manipulation of
timesteps.

4 Results, Discussion & and Future Work

The main takeway of this work is the usage of simple visualization meth-
ods to interpret RL models results. For example, in this version of the
dashboard is already possible to see a pattern of stability: the model learns

to be stable with rewards near its objective (200), excluding risky moves
that could reward more (> 300) but also fail catastrophically (< 100).

Future works include conducting user studies involving experts from
the fields of RL and Visualization Information fields to evaluate the tool
usability and effectiveness. We also will add other temporal visualization
methods to illustrate decision evolution over time and include interactive
techniques to compare different models, or the same model in different
training stages.
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