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Abstract

Regularization techniques enhance deep learning models’ generalization
and robustness. We evaluate Patch Mix for Transformers. Patch Mix
involves random patch replacing within the input sequence with similar
patches of a Transformer during training. This encourages the model to
learn more robust representations independent of patch locations, avoid-
ing co-adaptation, improving generalization, and mitigating overfitting.
Evaluating Patch Mix on benchmark datasets, we compare it with Dropout.
Results show Patch Mix effectively reduces overfitting, focusing on mean-
ingful patch interactions rather than specific locations.

Regularization, Transformers, Dropout

1 INTRODUCTION

Deep learning models, particularly Transformer architectures, have suc-
ceeded remarkably across various domains, including natural Natural Lan-
guage Processing (NLP), computer vision, and speech recognition. How-
ever, these models often suffer from overfitting, memorizing training data
and struggling to generalize to unseen examples. To address this chal-
lenge, regularization techniques [2, 3, 4] are employed to improve the
models’ generalization capabilities and robustness. This study introduces
a regularization variation technique called Patch Mix for Transformers,
by randomly shuffling and replacing patches within the input sequence
during training Fig. 1.

Figure 1: Patch Mix Mix main architecture

While Dropout [1] has proven effective in many cases, it operates at
the element level and does not explicitly consider the spatial dependencies
present in the input data. To evaluate the effectiveness of Patch Mix, we
conduct a comparative analysis with other regularization techniques.

2 LITERATURE REVIEW

Convolutional Neural Networks (CNN)s, and Transformers have performed
exceptionally in various domains. However, these models often suffer
from overfitting. Among the most common regularization techniques,
Dropout and batch normalization [2] is the primary ready-to-use Swiss
knife employed in any neural network. The embedding level can also be
regularized using DropDim [7], forcing the self-attention to encode mean-
ingful features with a certain number of embedding dimensions erased.
Similarly, patch erasing [5] is an effective regularizer, extremely useful
in data with very sparse representation. A widely used regularization
technique known as Label Smoothing [6]. Inspired by Dropout, Cutout
serves as an additional regularization technique. Mixup can be defined as

a genre of data augmentation with random samples to combine multiple
inputs into a new Mix input.

The main problem of the Transformer and Vision Transformers (VIT)
counterpart is the higher degree of overfitting when trained in medium
datasets. The choice of the regularization technique depends on the spe-
cific characteristics of the model, the dataset, and the task at hand.

3 METHODOLOGY and BACKGROUND

The Patch Mix is a regularization and data argumentation technique that
mixes patches between images during training. To effectively evaluate the
performance of PatchMix, benchmarks medical datasets such as Medical
MNIST 0 containing 6 classes of images among 58954 samples, and ISIC
2019 0 with 25,331 dermoscopic images among 8 classes.

3.1 Vision Transformers (ViT)

VIT is a deep learning architecture that applies the transformer model,
originally designed for natural language processing, to the domain of
computer vision. It has achieved state-of-the-art performance on vari-
ous image classification tasks. VIT represents an image as a sequence
of patches and employs a self-attention mechanism to capture global and
local relationships between these patches.

Mathematical Formulation

Let’s define an image X of size H×W ×C, where H represents the height,
W denotes the width, and C corresponds to the number of channels. To
convert the image into a sequence of patches, we reshape it into a tensor
P of shape

(
H
p

)
×
(

W
p

)
× (p× p×C), where p is the patch size. Each

patch is a vector of length d, representing its content.

Q = P ·WQ

K = P ·WK

V = P ·WV

(1)

The input patches P are then linearly projected into query Q, key K,
and value V embeddings through weight matrices WQ, WK , and WV ,
respectively:

A = so f tmax
(

QK̇T
√

d

)
(2)

The self-attention mechanism is then applied to Q, K, and V to cap-
ture the relationships between patches. It computes the attention weights
A by applying the softmax function to the scaled dot-product between Q
and K:

A = so f tmax
(

Q ·KT
√

d

)
(3)

The attention weights A are then used to compute the output O of the
self-attention layer:

O = A ·V (4)

Multiple self-attention layers, feed-forward neural networks, and layer
normalisation are stacked to form the Vision Transformer model. VIT

0https://challenge.isic-archive.com/landing/2019/https://challenge.isic-
archive.com/landing/2019/

0https://www.kaggle.com/datasets/andrewmvd/medical-mnisthttps://www.kaggle.com/datasets/andrewmvd/medical-
mnist



Table 1: Performance of regularization methods
Dataset Medical MNIST ISIC 2019
Patch Size 8 16 32 8 16 32
Technique Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Cross Entropy 0.803 0.862 0.753 0.845 0.668 0.802 0.549 0.785 0.479 0.732 0.363 0.620
Label Smoothing 0.800 0.882 0.666 0.813 0.899 0.943 0.563 0.740 0.486 0.684 0.369 0.589
Cutout 0.810 0.875 0.762 0.763 0.671 0.793 0.540 0.781 0.472 0.731 0.361 0.617
Mixup 0.810 0.813 0.762 0.855 0.671 0.782 0.605 0.821 0.539 0.771 0.419 0.675
CutMix 0.810 0.893 0.762 0.843 0.6071 0.765 0.622 0.834 0.549 0.788 0.413 0.671
Dropdim 0.810 0.882 0.662 0.842 0.6071 0.765 0.560 0.801 0.512 0.752 0.381 0.597
PatchMix 0.850 0.902 0.801 0.884 0.691 0.763 0.622 0.842 0.561 0.784 0.422 0.683

allows leveraging the transformer model’s self-attention mechanism, by
treating images as sequences of patches and capturing their relationships
through self-attention.

3.2 PatchMix

PatchMix combines a pair of images to train VIT to predict the mixing
ratio and the corresponding image categories of two adversarial sets.

Two image pairs xa,xb ∈ [0,1]C×H×W with their corresponding num-
ber of channels C, height H, and width W ,l are used with their correspond-
ing labels ya and yb respectively. Given an patch size P, both images xa,xb
are divided into equal patches of size Ia, Ib, where Ia = [x1

a,x
2
a, . . . ,x

N
a and

Ib = [x1
b,x

2
b, . . . ,x

N
b , where xi correspond to the ordered i patch of the im-

age pairs xa or xb. The number of patches, N is computed as N = H
P × W

P ,
conditioned to the partition factor P being integer multiple of H and W .

The mixed image xs combines sample patches from Ia and Ib, with
a sample ratio expressed by λ . The λ ratio corresponds to a sample of
the Bates distribution, as λ ≈ Beta(α,α), with α defining the Bates dis-
tribution. The λ value is converted to a discrete one λ

′
= [λ ×N]. The

selection of parches from both Ia and Ib is performed by a set of binary se-
lection masks Mi = [M1,M2, . . . ,MN ]∈ {0,1}N , with Mi = 1 corresponds
to the first image patch. The final image patch xs with patch combination
is then given in Equ. 5 as

xs(xa,xb,λ
′
) = Ia ∗M+ Ib ∗ (1−M) (5)

Resulting in a final xs image series with combinations with patches
both from Ia and Ib, sampled according to λ . To train the VIT, cross-
entropy is employed with a modified loss to predict labels ya and yb, ex-
pressed in Equ. 6

ζs(xa,ya;xb,yb;λ ) = λζce( f (xs;θt ,ya)

+(1−λ )ζce( f (xs,θt),yb) (6)

with ζce the cross-entropy loss, f (xs,θt) the prediction ŷ for image x
with the given parameters θt . In summary, PatchReplace can be described
as in Algo. 3.2.

PatchReplace Vision Transformer
Require: [xa,ya], [xb,yb]

return ŷaand ŷb
Ensure: y = xn

W,H = min(size(xa,xb))
N = H

P × W
P

λ ≈ Beta(α,α)
xs(xa,xb,λ

′
) = Ia ∗M+ Ib ∗ (1−M)

Require: A transformer encoder-decoder architecture
Ensure: A class label for xa,xb

* Split xa and xb into N patches of size P
* Perform patch Replace with token accordingly
* Encode the patches into a sequence vector
* Pass the vectors through the transformer encoder
* Decode the output of the transformer encoder
* Classify the patch on the transformer decoder ŷa, ŷb

The VIT algorithm first splits the input image into a sequence of
patches. The set of patches gets replaced by another target image. The
size of the patches is specified by the patch size P. The number of patches
equals the total number of pixels in the image divided by the patch size
and encoded into a sequence of vectors. The final step is to classify the
image patches Ia or Ib into the respective classes ŷa, ŷb based on the output
of the decoder and mix ratio.

4 EXPERIMENTS and RESULTS

To evaluate the performance of PatchMix, we deploy the method into the
mentioned datasets. The VIT transformer is fine-tuned with a rigid set
for comparison purposes, employing 8 encoder blocks with 512 hidden
dimensions and a 0.1 dropout rate. Images are normalized into the exact
dimensions for easy patch split. The same model architecture is compared
against other state-of-the-art regularization techniques such as Cross en-
tropy, Cutout, Mixup, DropDim, CutMix and Label smoothing. Results
are summarized in Table 1.

5 CONCLUSIONS

The best results were obtained using a patch size of 8. We tested patch
sizes of 8,16, and 32. Smaller patch sizes lead to many image patches,
providing a more extensive training sequence. However, this also in-
creases the computational requirements quadratically O(n2). In this study,
we investigated the effectiveness of Patch Mix variation, a novel regular-
ization technique for Transformers, compared to the widely used Dropout
method and other regularization techniques. Our findings demonstrate
that Patch Mix surpasses Dropout and different ways to improve the gen-
eralization and robustness of deep learning models, namely Vision Trans-
formers.
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