
  

 

Abstract 
The European Union (EU) has established, through the Common Agricultural 

Policy (CAP), a system of aid and subsidies for farmers cultivating vineyards. 

Eligible areas must be monitored and registered in Geographic Information 
Systems. The agencies providing this support must verify that the parcels are 

engaged in agricultural activity through on-site checks or the analysis of aerial or 
satellite images. Abandonment situations lead to the cancellation of aid payments. 

In the Douro Demarcated Region of Portugal, inspections are conducted 

according to methods defined by the EU. However, due to the vast size of the 

region, the time required for analysis and the specialized human resources needed 

for these inspections are significant. In this study, a dataset was created to train 
convolutional neural networks (CNNs), and pre-trained VGG models were fine-

tuned to classify vineyards as abandoned or non-abandoned. The model achieved 

an accuracy of 95.1% on the test dataset, while the top-performing model 
achieved an impressive overall accuracy and F1 score of 99% for both classes. 

1 Introduction 
The European Union (EU) has implemented a system of aid and 
subsidies for farmers engaged in vineyard cultivation through the 
Common Agricultural Policy (CAP). To qualify for these benefits, 
vineyard areas need to undergo control and registration processes, which 
rely on cartographic and cadastral information managed in Geographic 
Information Systems (GIS) [1]. The agencies responsible for disbursing 
agricultural support must ensure that agricultural activity is present in 
the parcels through on-site checks or analysis of ortho-rectified aerial or 
satellite images. Aid payments may be cancelled in cases of 
abandonment. In the Douro Demarcated Region (DDR), the Port and 
Douro Wines Institute (IVDP) is the government agency tasked with 
overseeing not only the production quotas for individual farmers but 
also the updating of cadastral information. This is crucial to prevent 
situations in which farmers falsely declare wine production on parcels 
where vineyards have been abandoned and are no longer in operation. 

Currently, field inspections only cover a small percentage (5%) of 
farmers with crop declarations [2]. As a result, the EU has mandated that 
member states use automatic methods, such as machine learning 
techniques, using satellite data from Sentinel-1 and Sentinel-2, for 
analyzing cultivated areas [2]. In the DDR, inspections are conducted 
using the same methods defined by the EU. However, due to the vast 
size of the region, approximately 250,000 hectares, with vineyard 
cultivation occupying 43,843 hectares, the process requires significant 
analysis time and specialized human resources. Manual detection of 
abandonment situations is expensive in the DDR, which is a 
mountainous viticulture region, and analyzing vineyard images is 
particularly challenging due to steep slopes compared to other regions. 

Deep Learning (DL) algorithms have been employed in various tasks, 
including the identification and classification of crop status [3], as well 
as land abandonment detection. Convolutional Neural Networks 
(CNNs), a type of DL method, have shown outstanding performance in 
detecting patterns, making them widely used in image classification 
problems. 

In the context of abandonment detection, noteworthy studies include [4]. 
The first study utilized a combination of CNNs, very high-resolution 
aerial imagery, and Sentinel-2 data to classify crops, resulting in a 93% 
accuracy in crop classification and an 88% accuracy in detecting 
permanent crop abandonment. In the second study, the authors 
employed LSTM and Bi-LSTM networks along with five spectral 
indices to detect abandoned parcels, achieving an overall accuracy of 
94.6%, outperforming other Machine Learning models. 

In this research, we propose a methodology for classifying abandoned 
and non-abandoned vineyard parcels in the Douro Demarcated Region 
using DL models on high-resolution aerial imagery. Specifically, we 
used a private set of aerial images obtained from photogrammetric 

flights conducted over six different years, which offer superior spatial 
resolution compared to satellite images.  

2 Methods and materials 
We curated a novel dataset to train Convolutional Neural Networks 
(CNNs) for classifying abandoned and non-abandoned vineyards in the 
DDR. This dataset, to the best of our knowledge, is unique in its use of 
high-resolution aerial imagery for abandoned vineyard detection. The 
dataset was created using ArcGIS Pro software, where a mosaic dataset 
of the entire target region was generated. The Extract by Mask 
geoprocessing tool was then utilized to extract a total of 7,779 images, 
representing productive (7,300) and abandoned (479) vineyards, using 
GIS polygons as masks. Data labeling was done based on cadastral and 
GIS information, and subsequently verified manually. Given the 
imbalanced nature of the dataset and the context of the problem, several 
experiments were conducted to address potential overfitting. This 
included oversampling of the least represented class through random left 
and right rotations, horizontal flips, as well as the inclusion of Dropout 
and L2 regularization techniques. A pipeline was defined using the 
Augmentor library to generate new samples, involving left and right 
rotations of up to fifteen degrees with a 50% probability, and horizontal 
flips with the same probability. As a result, 7,279 new images of 
abandoned vineyard parcels were obtained. 

All images in the dataset were resized to 224x224 pixels and then 
shuffled. The dataset was divided into training, validation, and test sets 
in the proportion of 80-10-10, respectively. The balanced dataset 
consisted of 11,663 images for training, 1,458 images for validation, and 
1,458 images for testing. The architectures for computer vision, were 
explored for the purpose of classifying the two classes of images. Initial 
experiments were conducted as a baseline to investigate the behaviour of 
the neural networks when using a completely new dataset. The 
experimental configurations for all the models are summarized in Table 
1.  

 

Exp. Model Epochs 

E1 Convnet 50 

E2 Convnet + Oversampling 50 

E3 Convnet + Oversampling + Regularizer 100 

E4 VGG16 + Oversampling + Regularizer 100 

E5 VGG19 + Oversampling + Regularizer 100 

 
Table 1. – Experiments configurations. 

The CNN model utilized in Experiment 1 consists of eleven sequential 
layers. The initial layers are Conv2D layers with 32 filters, a kernel size 
of 3x3, and a ReLU activation function. Each Conv2D layer is followed 
by a MaxPooling2D layer with a pool size of 2x2. After the third 
MaxPooling2D layer, there is a 25% Dropout layer. This is followed by 
a Flatten layer, a Dense layer with 128 neurons and a ReLU activation 
function, and a 50% Dropout layer. The final output layer is a Dense 
layer with two neurons and a softmax activation function. It's worth 
noting that this model was trained on an unbalanced dataset, while the 
remaining were trained on a balanced version of the dataset. 

Experiments 2 and 3 were configured with the same architecture as 
Experiment 1, but the Experiment 3 model uses kernel regularization in 
one of the dense layers with a weight of 0.01. In Experiments 4 and 5, 
pre-trained Visual Geometry Group networks, VGG16 and VGG19 
respectively, were employed. All VGG layers were frozen to prevent 
weight adjustment. These models include two additional dense layers 
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stacked on top of the VGG network. The first dense layer has 128 
neurons, uses a ReLU activation function, and has an L2 regularizer of 
0.01. The second layer is an output layer with two neurons, preceded by 
a 50% dropout layer, and uses the softmax activation function for 
predicting classification into two categories. All models were compiled 
with the categorical cross-entropy loss function and used the Adaptive 
Moment Estimation (Adam) optimizer. The performance of the models 
was assessed using various methods. Firstly, the training and validation 
accuracy and loss were plotted and analysed. Additionally, the confusion 
matrix and classification report of the model's predictions were 
evaluated to assess precision, recall, overall accuracy, and F1-score. 

In conclusion, the Grad-CAM technique was employed to visually 
evaluate the results of the predictions and identify the regions of the 
images that the model focused on. This was done to verify that the 
model effectively learned the distinguishing characteristics between 
abandoned and non-abandoned plots 

3 Experiments and Results 
The outcomes of the trained models are summarized in Table 2. Despite 
the requirement for ample data by CNN models, the baseline model 
achieved an overall accuracy of 95.4% and an F1-score of 56.1%. The 
lower F1-score can be attributed to the imbalanced distribution of data in 
the test set, with significantly fewer images in the abandoned class (47) 
compared to the non-abandoned class (730). Among the experimental 
models, E5 demonstrated the best performance, with an overall accuracy 
and F1-score of 98.6%, precision of 99.6%, and recall of 97.7%. 
 

Exp. Acc. Pre. Rec. F1 Score 

E1 0.954 0.489 0.657 0.561 

E2 0.977 0.988 0.966 0.977 

E3 0.979 0.992 0.968 0.980 

E4 0.975 0.996 0.957 0.976 

E5 0.986 0.996 0.977 0.986 

Table 2. – Experiments results 

The results clearly demonstrate that oversampling the dataset had a 
substantial positive impact on the performance, highlighting the 
importance of training CNN models with balanced data. Experiment E2, 
compared to E1, showed significant improvement with an accuracy of 
97.7% in the test set. Notably, precision and F1-score metrics also 
showed substantial improvement, reaching 98.8% and 97.7% 
respectively. Introduction of the L2 regularizer in experiment E3 
resulted in a slight increase in all evaluated metrics. Unexpectedly, the 
use of the pre-trained VGG16 model only improved the precision 
metric, indicating the presence of bias that may require additional 
training as reported in [4], [5]. Further experimentation with different 
settings on stacked layers could potentially enhance performance. 
Experiment E5 achieved the best results across all evaluated metrics, 
matching only by E4 in terms of precision. In terms of model size, the 
experiment E4 model was significantly larger than the E3 model, with a 
magnitude of six times greater. However, this increase in model size did 
not lead to an overall improvement in performance, except for the 
Precision metric. This is because the transfer learning technique was 
employed in experiment E4 to reduce the training time. 

 

 

 

 

 

Fig. 1 - Wrong predictions. Green: ground truth; Red: Grad-CAM. 

In experiment E5, a deeper and more complex network was utilized, 
resulting in 5,309,826 trainable parameters out of a total of 20,614,594. 
This approach resulted in the best performance across all evaluated 
metrics. In contrast, experiment E3 had 2,788,674 trainable parameters, 
almost five times more than experiment E5. This suggests that 

increasing the number of trainable parameters and the complexity of the 
network allowed for the best results in the context of this work. 

The Grad-CAM visualization for the top plot in Fig. 1 reveals that 
resizing reduced the visibility of the row spacing between vines, which 
may have contributed to prediction errors. Additionally, the vineyard 
being relatively young could have also impacted the accuracy due to 
limited vegetation, as seen in the middle plot. It has been suggested in 
previous studies [6] that an additional class for bare soil could be 
considered, as shown in the middle plot, to prevent incorrect predictions. 
Similarly, the inclusion of a separate class for trees, as demonstrated in 
the bottom plot, could potentially improve prediction accuracy. 

4 Conclusions 
This study introduces a new dataset of aerial imagery for abandoned 
vineyard detection, aiming to classify vineyards as abandoned or non-
abandoned using CNN models. To address the challenge of dataset 
imbalance, several experiments were conducted, including 
oversampling, regularization techniques, and the use of pre-trained 
models, which significantly improved performance. Experiment E5 
achieved the best results with 98.6% overall accuracy and F1-score, 
underscoring the importance of balanced data in training CNN models 
for image classification tasks. 

Future work will involve incorporating new images obtained from 
updated geometries registered in the GIS. The models will be retrained, 
and results evaluated. The goal is to create a tool, similar to the one 
presented in [7], to aid governmental agencies in automatic 
abandonment detection, complementing manual verification. To 
enhance prediction accuracy, it is necessary to create classes that 
differentiate between young vineyards, adult vineyards, bare soil, trees, 
and vineyards grown intercropped with trees. Additionally, using data 
from all four spectral bands (RGB and NIR) instead of just RGB, as 
done in this study, may provide additional relevant information about 
the land's condition, potentially improving accuracy. 
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