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Abstract
The human microbiome has garnered significant interest due to emerging
evidence of its association with various diseases, notably cancer. Tech-
nological breakthroughs in DNA sequencing have played a pivotal role in
enabling extensive research on the microbiome. However, to fully com-
prehend the intricate relationship between microbiome composition and
cancer, the use of sophisticated data-analytical tools has become imper-
ative. This study aimed to develop a machine learning-based approach
to distinguish cancer types based on tissue-specific microbial informa-
tion, using Random Forest algorithms and samples from The Cancer Mi-
crobiome Atlas database. Promising performances were achieved for
head and neck, stomach, and colon cancer classification, with colon can-
cer accuracy exceeding 90% across the studies. However, distinguishing
esophageal and rectum cancers from the remaining proved challenging.
The findings suggest that anatomically adjacent cancers are more complex
to identify due to microbial similarities. Despite limitations, employing
machine learning for microbiome data analysis could lead to innovative
strategies for improving cancer detection, prevention, and reducing dis-
ease burden.

1 Introduction
Cancer stands as a prominent global cause of death, claiming almost 10
million lives in 2020, with over 19 million new cases diagnosed the same
year [5]. To alleviate this burden, effective strategies for prevention, early
detection, and treatment are imperative.

The human microbiome comprises the entire population of microbes
colonizing the human body, such as bacteria, viruses, and fungi. Pertur-
bations in an individual’s microbiome composition, known as dysbiosis,
have been associated with numerous diseases, including cancer [2]. Re-
cent comprehensive analyses of the microbiome in tumors and adjacent
normal tissues across various human cancers have revealed the presence
of microbes within tumors, establishing distinct microbial signatures in
different tumor types [4].

This study utilized cancer microbial data from The Cancer Micro-
biome Atlas (TCMA) [1], containing curated and decontaminated tissue
microbial profiles from head and neck squamous cell carcinoma (HNSC),
esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), colon
adenocarcinoma (COAD), and rectum adenocarcinoma (READ) patients.
The primary aim was to develop a supervised machine learning (ML)
model capable of distinguishing between cancer types based on their spe-
cific microbial information. To achieve this, one-vs-all and multi-class
classification studies were conducted in ascending order of cancer site
specificity, thus exploring the microbiome as valuable predictive infor-
mation for cancer identification. This paper provides a concise overview
of a previously published article developed by the authors [3].

2 Material and Methods
2.1 Data Description & Pre-processing

The data for this study was accessed at TCMA (https://tcma.pratt.
duke.edu), providing a total of 620 samples with the option to select the

taxonomic level of microbial information from phylum to genus. In this
research, microbial data at the genus level was chosen, comprising 221
different genera.

Out of the 620 samples, 512 (82.58%) were primary tumor (PT) sam-
ples, and the remaining 108 (17.42%) were solid tissue normal (STN)
samples. Since the focus was on distinguishing cancer types based on the
tumor tissue microbial information, the 108 STN samples were excluded
from the study. The distribution of cancer types across the dataset was as
follows: HNSC (155 samples), STAD (127 samples), COAD (125 sam-
ples), ESCA (60 samples), and READ (45 samples). Additionally, some
genera initially present in the dataset were not found in any samples and
were thus excluded from the analysis, leaving 131 genera as features for
the ML models. The data from the TCMA database was already nor-
malized, considering the proportion of each genus in relation to the total
amount of bacteria in the sample, eliminating the need for further normal-
ization steps.

2.2 Experiment Design

The Random Forest (RF) models underwent training and testing using
separate, stratified sampling splits of 85% and 15% of the dataset, re-
spectively. Hyper-parameter tuning was conducted through grid search
optimization with stratified 5-fold cross-validation on the training split,
with the goal of maximizing the RF model’s balanced accuracy on the
validation set.

Four levels of granularity analysis were conducted to assess the pre-
dictive power of the microbial data based on the anatomical location of
the different cancer types. Initially, a one-vs-all approach was imple-
mented to evaluate the RF model’s performance in discriminating each
cancer specifically. Subsequently, a second study aggregated the five can-
cer types from the TCMA database (HNSC, STAD, COAD, ESCA, and
READ) into three major classes based on anatomical proximity: HNSC,
STAD / ESCA, and colorectal cancer (CRC). This allowed an evaluation
of the microbial data’s ability to classify cancer in distinct anatomical ar-
eas, paving the way for higher specificity in cancer site classification. In
the third study, STAD and ESCA were separated back into their original
classes, while CRC remained a combination of COAD and READ. Fi-
nally, in the fourth and most fine-grained study, CRC was split into COAD
and READ, resulting in the five initial classes provided by TCMA.

The experiment pipeline for the learning model development in each
granularity study consisted of five experiments. In Experiment 1, RF was
implemented and its performance was evaluated after hyper-parameter
tuning. Experiment 2 aimed to improve the baseline RF model’s perfor-
mance by testing dimensionality reduction techniques (SPCA, NMF, and
LDA), in order to simplify the feature space. If significant improvements
were not achieved in Experiment 2, Experiment 3 adopted a feature engi-
neering approach, incorporating components from dimensionality reduc-
tion while retaining the original features. Experiment 4 addressed class
imbalance by testing data augmentation methods such as Random Over-
sampling and SVM-SMOTE alongside dimensionality reduction. Exper-
iment 5 was similar to Experiment 4 but involved feature engineering in-
stead of dimensionality reduction.



3 Results and Discussion
3.1 One-vs-All
Balanced accuracy results (%) for the one-vs-all study are as follows:
HNSC-vs-all (87.38 ± 2.19); STAD-vs-all (92.04 ± 1.02); COAD-vs-
all (96.21 ± 0.42); ESCA-vs-all (72.35 ± 3.11); READ-vs-all (78.86 ±
6.15). Oversampling benefited all five classes. HNSC, STAD, and ESCA
excelled with feature engineering, while COAD and READ performed
best with dimensionality reduction. These results reveal two performance
groups: HNSC, STAD, and COAD achieved 87%-96% balanced accura-
cies, while ESCA and READ scored below 80%. Confusion matrices de-
tail these results (Figure 1). COAD’s microbial composition was the most
discriminative, accurately classifying all samples. Conversely, the ESCA
analysis’s confusion matrix highlights the major factor behind the poor
balanced accuracy, due to a low accuracy of 64% in classifying ESCA
samples. The one-vs-all study demonstrated an overall successful appli-
cation of microbial data to independently classify distinct cancer types
with promising reliability. However, key performance discrepancies exist
among the cancers, possibly due to sample size variations and differing
complexities, requiring adaptable ML implementations and tailored mi-
crobial information per cancer type.
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Figure 1: Normalized confusion matrices of the RF performances in the
one-vs-all study, targeting (a) HNSC, (b) STAD, (c) COAD, (d) ESCA,
and (e) READ cancer cases.

3.2 Multi-class
Balanced accuracy results (%) for the multi-class study are as follows:
three-class test (88.28 ± 1.63); four-class test (74.06 ± 4.53); five-class
test (67.31 ± 3.93). Similar to the previous study, oversampling played
a crucial role in achieving optimal results. Dimensionality reduction ex-
celled in the 3-class test, while feature engineering dominated the 4-class
and 5-class tests. These results show a clear loss in predictive power
from the microbial data with the increase in level of specificity in terms
of cancer site. Consistent with the results from the one-vs-all study, the
confusion matrices show that COAD appeared to be the most easily sepa-
rable among the 3 classes, with the RF maintaining accuracy levels above
90% across all tests (Figure 2). On the other hand, there is a distinct
difficulty when discerning ESCA and COAD cases from the remaining.
Overall, the findings suggest the presence of two distinct cancer groups
based on predictive performance. Microbial data showed to be a promis-
ing biomarker for HNSC, STAD, and COAD, particularly with COAD’s
microbiome standing out as the most discriminative. However, the RF
models struggled to classify ESCA and READ cancer cases accurately, as
READ samples were not properly distinguished from COAD, and ESCA
cases were mostly misclassified as HNSC or STAD.
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Figure 2: Normalized confusion matrices of the RF performances in the
(a) three-class, (b) four-class, and (c) five-class tests.

4 Conclusion
This work aimed to develop an ML approach to discriminate different
cancer types based on their specific microbial information. RF models
were trained to classify HNSC, STAD, COAD, ESCA, and READ can-
cers, aided by dimensionality reduction and oversampling techniques to
improve performance. The study assessed how the predictive power of
microbial data evolved with increased specificity in cancer site. Promis-
ing results were observed for HNSC, STAD, and COAD, especially with
COAD achieving outstanding accuracy scores. However, there was an in-
creased difficulty in the capability of the RF models to differentiate ESCA
from HNSC and STAD, as well as READ from COAD, coinciding with
a reduced number of samples for both cancers in comparison to others.
Despite this limitation, ML analysis of cancer microbiome data shows
the potential to develop novel cancer detection and prevention strategies,
uncover new relationships, and ultimately reduce the disease burden.
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