An Analysis of Data-Centric Artificial Intelligence in Computer Vision Applications

Daniel Canedo
danielduartecanedo@ua.pt
Petia Georgieva
petia@ua.pt

Anténio Neves

an@ua.pt

IEETA/DETI
Universidade de Aveiro
Aveiro, 3810-193, Portugal

Abstract

Deep learning is witnessing rapid advancements, majorly impacting
the computer vision field. However, as the complexity of these algorithms
increases, their demand for data grows exponentially. As a result, there is
an increasing emphasis on data-centric artificial intelligence in deep learn-
ing. In computer vision, data is primarily comprised of images and videos,
forming datasets that are crucial inputs for deep learning algorithms dur-
ing the learning process. However, these datasets can often be limited in
size, biased, inadequate, and lacking proper labeling, particularly in the
domain of computer vision where data collection, storage, labeling, and
processing require substantial infrastructure and human resources. Con-
sequently, researching how to tackle data collection, data quality, data
generation, and data processing is of utmost importance in this field. This
work explores an application of data-centric artificial intelligence in three
distinct domains within computer vision: facial expression recognition,
dirt detection in the context of intelligent robotics, and archaeological site
detection. Given the distinct nature of the data involved with these ap-
plications, the objective of this work is to provide an analysis on how to
conduct data management depending on the computer vision application.

1 Introduction

With the fast advancement of computational specifications, there has
been a corresponding development of larger and more efficient deep learn-
ing algorithms. Nevertheless, it is important to note that as these algo-
rithms increase in size, their demand for data also escalates. For instance,
in the study conducted by Alwosheel et al. (2018) [1], the authors rec-
ommend a ratio of fifty training samples for each adjustable parameter
in the network, and nowadays artificial intelligence (AI) networks can
encompass millions of adjustable parameters. Consequently, deep learn-
ing is shifting towards data-centric Al approaches recently. This type of
approach focuses its time and effort on meticulously preparing the most
optimal data to be fed by deep learning algorithms. This shift is aligned
with the ongoing trend of streamlining the interaction with AI [2].

Currently, a significant portion of researchers engage with deep learn-
ing at a higher level, as the requirement for writing extensive and complex
code to train and deploy an Al model continues to diminish. As the bar-
rier of entry continues to decrease, even individuals with limited expe-
rience can readily engage with this technology. The primary challenges
that they may encounter lie in data preparation and hyperparameter fine-
tuning. This work addresses those challenges for three distinct computer
vision applications: facial expression recognition (FER), dirt detection,
and archaeological site detection.

2 Facial Expression Recognition

For this computer vision application, the impact of data pre-processing
algorithms on deep learning for FER was studied [3, 4]. A simple Con-
volutional Neural Network (CNN) was proposed to conduct this study.
Figure 1 illustrates this CNN.
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Figure 1: Proposed CNN architecture for FER.

Several pre-processing algorithms were applied in an incremental or-
der to the Cohn-Kanade Dataset (CK+) [5], starting from face rotation
correction, followed by face cropping, intensity normalization, histogram
equalization, and ending with image smoothing. Each pre-processing step
created a dataset, which was then used to train the CNN to observe the im-
pact each pre-processing step has on the learning process. In the end, the
attention maps from the last layer were obtained for the testing set using
the CNN trained with raw images and the CNN trained with fully pre-
processed images. The latter learned facial features better, as can be seen
in Figure 2, which was reflected in a better prediction accuracy: 93.90%
versus 71.22%.

Figure 2: Average attention maps. The first row represents the CNN
trained with raw images and the second row represents the CNN trained
with pre-processed images. From left to right: neutral, anger, disgust,
fear, happiness, sadness, and surprise.

3 Dirt Detection

For this computer vision application, a vision system for a floor-
cleaning robot was developed [6, 7], enabling it to optimize their nav-
igation and analyzing the surrounding floor, leading to a reduction on
power, water and chemical products’ consumption. The main contribu-
tions of this work are in the data collection, generation, and annotation.
A self-calibration algorithm was implemented to stabilize image inten-
sity acquired by the digital cameras and improve the robustness of the
vision system. A dataset was artificially generated, and publicly available
datasets were annotated [8] with three classes: solid dirt, liquid dirt, and
scuff marks. Data augmentation was performed with two goals in mind:
increase the data and balance the classes. Finally, everything was com-
bined into a dataset that was used to train a YOLOvV5 model, which is
an object detection algorithm, for dirt detection. Figure 3 illustrates this
process.
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Figure 3: Vision system pipeline of the floor-cleaning robot.

When operating, the robot parameters, such as water, detergent, and
speed, are adjusted based on the dirty area outputted by the vision system.
Figure 4 illustrates this process.
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Figure 4: Vision system pipeline of the floor-cleaning robot.
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Figure 7: Inference and post-processing validation pipeline.

and understanding that scuff marks are a relevant type of dirt despite being
overlooked in the literature, were crucial data-centric practices to achieve
better performance on dirt detection.

4 Archaeological Site Detection

In this computer vision application, the goal was to uncover unknown
burial mounds in Alto-Minho [9] in the context of the Odyssey project.
The Comunidade Intermunicipal do Alto Minho (CIM Alto Minho) pro-
vided us with the airborne Light Detection and Ranging (LiDAR) data
from 2018 (2 points per m?) covering this region (2220 km?). A visualiza-
tion technique was applied to the 1-meter LiDAR-derived Digital Terrain
Models (DTMs), namely the Local Relief Model (LRM). Software capa-
ble of dealing with such high-resolution images was developed, automati-
cally dividing them into smaller images around annotated burial mounds,
creating a conventional object detection dataset. Figure 5 illustrates this

process.

Figure 8: Validated inferences. On the first row, the LRM images. On the
second row, the corresponding Google Satellite images.

5 Conclusion

With the recent increase in accessibility and usability of Al the task
of managing data to train and deploy Al models becomes one of the focal
points to improve model efficiency. In this work, three distinct computer
vision applications are addressed with data-centric Al. Each computer vi-
sion has its own challenges regarding data quality and availability. Diag-
nosing and tackling those challenges to reach high quality datasets has a
substantial impact on Al performance, as illustrated in this work.
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Figure 5: Data pre-processing pipeline.

The dataset was augmented with a copy-paste object embedding tech-

nique, relying on the Land-Use and Occupation Charter (LBR) of Portu-
gal, 2018, to paste burial mounds onto probable regions. Figure 6 illus-
trates this process.
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A YOLOVS model was trained using the final dataset, and subse-

quently, used to infer new burial mounds in Alto-Minho. A post-processing
validation step was applied to the inferences, using the LBR to discard in-
ferences in less probable regions, and using the raw LiDAR data to train a
Local Outlier Factor (LOF) model which objective is to discard inferences
that have a different 3D morphology than the known burial mounds. Fig-
ure 7 illustrates the inference and post-processing validation process. The
results underwent digital validation conducted by four archaeologists, re-
vealing a precision of 72.53%. Figure 8 visually depicts several newly
discovered burial mounds in the Alto-Minho region.
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