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Abstract

The detection of network flows carrying malicious data has been left to
a set of techniques and tools based on machine learning (ML), with the
disadvantage of requiring vast computational resources and sometimes
low generalisation capacity when faced with new types of attack, known
as a zero-day attack.

This paper describes the application of a model based on three sta-
tistical natural laws, Benford’s, Stigler’s and Zipf’s Laws, as a model for
detecting malicious flows extracted from network traffic, as well as the
results obtained from a dataset with 40000 network flows, where 20000
are classified as malicious flows and the remaining as benign flows. To
classify network flows as malicious or benign, three statistical tests of
different natures were used: parametric (Pearson and Komolgorov cor-
relation and p-value calculation) and non-parametric (Cramer-Von Mises
p-value calculation), applied to the results of the frequency of occurrence
of the first digit with the empirical frequency of each natural law.

Although the results obtained with the model based on the laws of
Benford, Stigler and Zipf do not surpass the results obtained by the ma-
jority of models based on machine learning, as initial results, we empha-
sise that they are satisfactory, with a maximum F1 of 69.40% having been
obtained.
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1 Introduction
Illegitimate access to critical and confidential data motivates cybercrim-
inals to exploit security flaws in a computer network’s systems, whose
illicit activity generates an unusual type of behaviour on the network,
resulting in a series of attacks, including ransomware and phishing [2].
Performing a statistical analysis of network flows consists of analysing
the metadata, making it possible to identify the machine(s) that have been
compromised in a cyber-attack, highlighting this approach’s portability
and ease of handling data.

This work describes applying a set of statistical natural laws, namely
Benford’s, Stigler’s and Zipf’s Laws, as a model for analysing and de-
tecting malicious flows in a computer network. The operation proposed
by the present model is based on extracting the first digit from the char-
acteristics existing in the public dataset CIC-IDS2017 1, consisting of
network flows obtained through the network traffic flow generator and
analyser (CICFlowMeter). The dataset used in the experiments consists
of 40000 network flows containing several types of attacks, namely, Brute
Force (FTP and SSH), DoS, Web Attacks, Infiltration, Botnet and DDoS,
obtained on different days of the week. Out of 40000 network flows,
20000 are benign flows, and 20000 are malicious flows, getting a bal-
anced dataset.

To assess the robustness of the model, Pearson’s and Komolgorov’s
coefficient correlations and the Cramer-Von Misses (CVM) goodness-of-
fit test were calculated, which allowed the classification of network flows
into malicious or benign.

2 Fundamentals of natural laws
Natural laws are usually identified as axioms and justified by mathemati-
cal rules and manipulations [3]. It is in this context that Benford’s, Zipf’s,
and Stigler’s Laws emerge, defined empirically as natural laws, and which

1University of New Brunswick. Intrusion detection evaluation dataset, 2017.

allow us to conclude the existence of manipulations in data sets by the fre-
quency with which each digit occurs (Benford’s and Stigler’s Law), or by
the frequency of occurrence of words in texts (Zipf’s Law).

Benford’s law states that the frequency of occurrence of the digit 1 is
30.10%, of the digit 2 is 17.6% and so on, and the law can be extended
to two or more digits. Theorem 1 mathematically defines the general
Benford’s Law [1, 4], and from this, the frequencies of occurrence of any
digit can be calculated.

Theorem 1 (Benford’s law) Be k ∈ Z, d1 ∈ {1,2,3, ...,9} and
d j ∈ {0,1,2, ...,9}, j = 2, ...,k.

P(Dk = dk) = log

(
1+

1

∑
k
i=1 di ×10k−i

)
(1)

In 1945, Stigler proposed an alternative to the distribution of digits
identified by Benford, in which he argued that the digits with the largest
entry in the statistical table have the highest probability of starting with
d = 1,2, ...,9 and that the remaining entries in the table are obtained ran-
domly from the uniform distribution of the smallest digits. Equation 2
allows us to determine the average frequency with which the first digits
occur. Let d ∈ {1,2,3, ...,9},

P(d) =
d ln((d)− (d +1) ln(d +1)+

(
1+ 10

9 ln(10)
)

9
(2)

In 1940, George Zipf defined the law on the frequency of occurrence
of words in linguistic terms, where he established that the frequency of
occurrence of any word is inversely proportional to its position in the fre-
quency table. Later, Zipf’s Law was extended to the occurrence of digits,
where a weight was assigned to each digit according to its frequency of
occurrence, i.e. if digit 1 occurs more frequently, it has a lower weight
than the digit that occurs more frequently, bringing Zipf’s Law closer to
Benford’s Law. The frequency of each digit is given by Equation 3.

F (r) =
C
rα

(3)

where F (r) represents the frequency of occurrence of each digit, C is a
normalizing constant, r is the frequency rank of the digit, and α ≈ 1 .

3 Model architecture
Figure 1 represents the general architecture of the model based on the in-
dividual application of the natural laws of Benford, Stigler and Zipf to
identify malicious network flows. Since a public dataset was used, the
process began with converting the files from .csv format to .xlsx for-
mat, as the procedure for obtaining the network flows had already been
carried out previously. After converting the files, a set of network flows
was extracted from each .xlsx file, representing benign and malicious
flows, for a total of 40000 flows. A script built in Matlab was then ap-
plied to extract the first digit from the new data set. The main idea was to
use the three natural laws independently of the first digit extracted from
the characteristics of each flow and see if the model could identify which
flows were considered malicious. Later, the total frequency of occurrence
of all the digits was calculated based on all the network flows and the
frequency of each digit for each network flow. This procedure aimed to
check whether, on the one hand, there was a strong correlation between



Figure 1: General architecture of the model based on the natural laws of
Benford, Stigler and Zipf.

the total frequencies obtained and the empirical frequencies of each natu-
ral law and, on the other hand, to analyse flow by flow whether this cor-
relation remained strong and whether it could serve as a decision-making
factor in identifying malicious flows.

The decision was made by applying statistical inference, namely the
Pearson, Komolgorov and Cramer-Von Mises tests, where the correlations
and p-values between the frequencies of occurrence of each flow and the
empirical frequencies were calculated. This procedure enabled the gener-
ation of a set of labels for each flow analysed, allowing these new labels
to be compared with the original labels and thus classifying each network
flow as malicious or benign.

Given the number of zeros in the dataset, not using them could result
in losing important information and the model being misclassified as be-
nign or malicious flows. It is common for attackers to use the zero digit to
represent the absence of a value, allowing them to exploit vulnerabilities
in computer systems and carry out DDoS attacks or other types of attacks.
It should be noted that the empirical frequencies of natural laws start at
the 1 digit and end at the 9 digit. As an initial solution, it was assumed that
the digits of Benford’s and Stigler’s Laws did not end in the digit nine but
in the digit ten. Thus, when counting the digits in the dataset, the script
produced in MatLab assumes that there are ten occurrences, i.e. 1...10,
where 1 represents the number of zeros and 10 represents the number of
9s in the dataset.

4 Results of the proposed model
Observing Table 1, the best result was obtained by applying Zipf’s Law
using Pearson’s test, with a maximum F1 score of 68.98% and a recall of
92.05% for a significance level of 0.01. This result aligns with the ap-
plication of Benford’s and Stigler’s Laws when using the same Pearson
test with the same significance level of 0.01. By analysing Table 1, we
can identify a pattern in the results, where regardless of the Natural Law
used, the best results were obtained when a confidence level of 0.01 was
used, then 0.05 and finally 0.1. Another important conclusion is the inef-
fectiveness of the Cramer-Von Mises test, with a high false negative rate,
making the model ineffective in detecting malicious flows.

The number of true positives is high when ten digits are used, re-
flecting the zero digit’s importance in this research. There is a high false
positive rate, justified by the frequency of occurrences in the first four
digits. These frequencies influence the results of the flow classifications,
resulting in a correct classification if the frequencies are slightly higher
than or identical to the empirical frequencies of the natural laws and an

incorrect classification if the frequencies of the first digits are too high or
too low concerning the empirical frequencies.

Several solutions can be used to minimise the number of false posi-
tives and increase the model’s efficiency, such as using distance functions
or creating an ensemble between classifiers.

Table 1: Overall results by individually applying Benford’s,
Stigler’s and Zipfs’ Laws when using ten digits. Legend:
TP - True Positives , TN - True Negatives , FP - False Positives
FN - False Negatives , PR - Precision , RE - Recall , F1 - F1-Score
AC - Accuracy.

Benford’s
Law

Degrees
of significance

TP TN FP FN PR RE F1 AC

Pearson
0.05 20000 2 19998 0 0.500 1 0.6666 0.5000
0.01 19998 610 19930 2 0.5077 0.9999 0.6735 0.5152
0.1 20000 0 20000 0 0.5000 1 0.6666 0.500

Komolgorov
0.05 18642 1106 18894 1358 0.4966 0.9231 0.6480 0.4937
0.01 19992 12 19988 8 0.5001 0.9996 0.6666 0.5001
0.1 16740 1353 18647 3260 0.4731 0.8370 0.6045 0.4523

Cramer-Von
Mises

0.05 3945 11415 8585 16055 0.3148 0.1973 0.2425 0.3840
0.01 1116 17956 2044 18884 0.3532 0.0558 0.0964 0.4768
0.1 6876 7677 12323 13124 0.3581 0.3438 0.3508 0.3638

Stigler’s
Law

Degrees
of significance

TP TN FP FN PR RE F1 AC

Pearson
0.05 20000 466 19534 0 0.5058 1 0.6718 0.5116
0.01 16468 4444 15556 3532 0.5142 0.8234 0.6331 0.5228
0.1 20000 30 19970 0 0.5003 1 0.6669 0.5007

Komolgorov
0.05 15810 1381 18619 4190 0.4592 0.7905 0.5809 0.4298
0.01 18840 527 19473 1160 0.4917 0.9420 0.6462 0.4842
0.1 15759 1761 18239 4241 0.4635 0.7880 0.5837 0.4380

Cramer-Von
Mises

0.05 2688 12637 7363 17312 0.2674 0.1344 0.1789 0.3831
0.01 155 19178 822 19845 0.1586 0.0077 0.0148 0.4833
0.1 5670 8666 11334 14330 0.3335 0.2835 0.3065 0.3584

Zipf’s
law

Degrees
of significance

TP TN FP FN PR RE F1 AC

Pearson
0.05 19916 758 19242 84 0.5086 0.9958 0.6733 0.5169
0.01 18411 5028 14972 1589 0.5515 0.9205 0.6898 0.5860
0.1 20000 54 19946 0 0.5006 1 0.6671 0.5013

Komolgorov
0.05 15810 1381 18619 4190 0.4592 0.7905 0.5809 0.4298
0.01 18840 527 19473 1160 0.4917 0.9420 0.6462 0.4842
0.1 15759 1761 18239 4241 0.4635 0.7880 0.5837 0.4380

Cramer-Von
Mises

0.05 2688 12637 7363 17312 0.2674 0.1344 0.1789 0.3831
0.01 155 19178 822 19845 0.1586 0.0077 0.0148 0.4833
0.1 5670 8666 11334 14330 0.3335 0.2835 0.3065 0.3584

5 Conclusion
This paper describes the application of natural laws to a dataset contain-
ing malicious and benign network flows to detect intrusions in a com-
puter network. By calculating the correlations and p-values between the
frequencies of occurrence of each digit obtained from the network flows
and the empirical frequencies of Benford’s, Stigler’s and Zipf’s laws, the
model-based individually on the natural laws made it possible to classify
the flows obtained on different days with different types of attacks. The
first results from the research suggest the reliability of the Pearson test
as a classifier, followed by the Komolgorov test and finally the Cramer-
Von Mises test, where, according to Table 1, it achieved the worst results.
The less good results obtained using natural laws can be explained by the
few features in the data set, where, despite the high number of network
flows, the number of features extracted is low, settling at almost 80 fea-
tures. In future research, we plan to use 500 or more features. The high
false negative detection rate combined with the model’s speed is a good
indicator that, together with the future resolution of the number of false
positives, will make the model more efficient. By comparing the natural
laws under investigation and observing Table 1, we can conclude that the
model based on the natural laws produces similar results, both in terms of
the classifier and the degrees of significance, so it will be necessary in fu-
ture work to identify new classifiers, allowing us to create a robust model
capable of rigorously and accurately identifying malicious network flows.
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