
  

 

Abstract 
We propose a multimodal model for the binary classification (normal/abnormal) 
of synchronous heart sounds and electrocardiogram (ECG). The preliminary 

results shows that there is an improvement in using both signals for classification 

instead of heart sounds or ECG alone (e.g., F1-score of 0.86 vs 0.79 and 0.84 
respectively), which is useful for the detection of heart abnormalities in low-

income countries, with the help of a multimodal stethoscope. 

1 Introduction 

Cardiovascular diseases (CVD) are the leading cause of dead, 
accounting for 32% of all deaths worldwide in 2019. More than 75% of 
global deaths caused by CVDs are from countries with lower- and 
middle-income levels, since primary healthcare programs, services and 
dedicated equipment are not readily available [1]. Methods like 
Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 
echocardiography offer high-resolution images and thorough analysis of 
both the heart’s physiological function and its structure [2]. Nonetheless, 
their usage is limited due to their considerable expense, the need for 
sophisticated equipment and specialized staff. As a result, these 
techniques are not commonly employed as initial screening approaches. 
On the other hand, observing the heart’s sounds, or phonocardiogram 
(PCG), through cardiac auscultation and analysing the 
electrocardiogram (ECG) remains the prevalent approaches for initial 
screening. Simultaneously recording and analysing both PCG and ECG 
signals during routine auscultations provides a rapid assessment of the 
heart’s condition. This approach enhances screening accuracy by 
leveraging the complementary information offered by these two signals 
[3]. 

Sophisticated signal processing and machine learning methods have 
effectively been applied to automatically identify diseases using both 
signals. Nonetheless, most studies still prioritize harnessing the PCG and 
ECG separately [4]. Commonly, the PCG is utilized for initial 
stethoscope-assisted examinations, while the ECG is reserved for more 
intricate diagnostic evaluations [5]. This work’s objective is to 
successfully use deep learning approaches to classify simultaneously 

recorded ECG and PCG in normal/abnormal, with further algorithm 
application in a multimodal stethoscope to overcome the drawbacks 
mentioned before, reducing costs and the need of specialized staffs 
(easier to train/explain the signal than the images).  

2 Methodology 

The primary focus of this study revolves around the simultaneous 
analysis of PCG and ECG signals, comparing the preliminary models of 
ECG and PCG alone with the joint multimodal architecture that arises 
from the combination of both preliminary models. As of now, the 
datasets publicly available for both signal joint analyses continue to be 
extremely scarce. In 2016 Physionet released one of them, a dataset 
centred on CVDs, in which the training set “A” encompasses both 
synchronously ECG and PCG [6]. The dataset comprises a total of 405 
signals, all with sample frequency of 2000 Hz, consisting of 113 normal 
signals (approximately 28%) and 292 abnormal signals (approximately 
72%), thus the dataset is extremely unbalanced. Figure 1 shows a data 
example from this dataset. 

2.1  Preprocessing 

Before feeding the networks with ECG an PCG signals, preprocessing 
was required. Each PCG signal was first divided into non-overlapping 2 
seconds segments. Afterwards, since the dominant frequency range of 
the PCG signal is concentrated below 300 Hz, a Buterworth bandpass 
filter of order 4 was implemented, with a high pass filter with a cutoff 
frequency of 25 Hz and a low pass filter with a cutoff frequency of 400 
Hz, followed by a spike elimination procedure to remove undesired 
noise [7]. Spectral features of PCG were extracted using static, delta and 
delta-delta Mel-frequency cepstral coefficients (MFCCs). This cepstral 
transformation enables the recognition of cyclic patterns in the audio 
and the differentiation of signal components convoluted in the frequency 
domain [8]. A window length and a hop length of 128 and 64 
milliseconds, respectively, was employed.  

 Regarding the ECG signal, 15 ECGs from the dataset have missing 
data points, so linear interpolation was applied to solve this issue. 
Subsequently, a Butterworth bandpass filter of order 4 was employed, 
with a low pass filter et at a cutoff frequency of 20 Hz since the relevant 
information within the ECG signal is predominantly concentrated at 
frequencies below 20 Hz [9]. Following that, the signal was down 
sampled to 500 Hz and then normalized between 0 and 1 to improve 
neural network training efficiency. Lastly, the signal was partitioned 
into non-overlapping 2 seconds segments.  

2.2  Models 

For the scope of this work, 3 neural networks where considered: a 2D-
CNN for PCG, a 1D-CNN for ECG, and a hybrid neural network, 
encompassing both the two previously mentioned architectures. In what 
concerns the model for PCG, it consists of two 2D convolution layers, 
each of them followed by a max pooling layer (dimension reduction) 
and a dropout layer to avoid overfitting. There is also a batch 
normalization after the first convolution layer. It ends with a dense 
layer, another batch normalization layer, and the output layer.  Other 
network’ characteristics are described in Table 1. 

The ECG model is comprised of three 1D convolution layers, all of 
them succeeded by a batch normalization layer and a max pooling layer. 
Two dense layers and the output layer wraps up the model’ layout. 
Table 2 outlines other network’ characteristics. Moreover, the hybrid 
neural network takes as input both the ECG and PCG segment. Each of 
them is processed by a neural network as the ones described before (2D-
CNN for PCG and a 1D-CNN for ECG). Then the output from the 
convolution layers (after the flatten layer before the final dense layers) 
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Figure 1: Comparison between synchronous normal ECG and PCG 
signals with synchronous abnormal ECG and PCG signals. Data taken 
from Physionet/CinC Challenge 2016 training set “A”. 



 

of each network are concatenated in a single feature vector which is then 
followed by two dense layers and an output layer. The parameters are 
the same as the networks described above, such as the use of ReLU as 
the activation function. 

 

Table 1: PCG network parameters. 

Convolution kernel 1 5X5, stride 1X1 

Convolution kernel 2 3X3 stride 1X1 

Max pooling kernel 2X2 stride 1X1 

Optimizer Adam 

Learning rate 1X10-3 

Batch size 32 

Max number of epochs 300 

Loss function Binary Cross entropy 

Activation function ReLU 

 

Table 2: ECG network parameters. 

Convolution kernel 6 

Max pooling kernel 1 3, stride 2 

Max pooling kernel 2 2, stride 2 

Optimizer Adam 

Learning rate 1X10-3 

Batch size 32 

Max number of epochs 300 

Loss function Binary Cross Entropy 

Activation function ReLU 

2.3  Training and evaluation 

The models’ performance assessment involved employing a 5-fold cross 
validation approach. The validation set was created by randomly 
splitting the training data within each fold into 20% for validation and 
80% for training. The data partitioning was structured in order to 
prevent recordings from the same patient from being present in two 
distinct folds. Additionally, stratification was applied to ensure an even 
distribution of classes across the various folds. Considering the class 
imbalance on this dataset, it was incorporated a weight adjustment into 
the loss function to increase the model’s focus on the underrepresented 
class (normal), applying the following formula:   

Weight Positives/Negatives = (1 ÷ ∑Positives/Negatives) × (∑Total instances ÷ 2) 

Since each patient is represented by a set of 2 seconds instances, the 
strategy involved training the model on individual segments and then 
obtaining a patient level label by averaging. 

For the evaluation, the accuracy, sensitivity, specificity, precision 
and F1-score were computed for each fold and then averaged for all 
folds for each of the three proposed models. 

3 Results and Discussion 

In what concerns the obtained results (Figure 2), it is observed that the 
multimodal model (ECG + PCG) has overall better results, showcasing a 
better accuracy and F1-score (overall mean of 0.86 for the multimodal 
network vs 0.79 for the PCG network and 0.84 for ECG network). This 
indicates that the proposed model has a better balance between the false 
positives and the false negatives, which is important in the medical field. 
It is interesting to note that the ECG model has the best sensitivity (true 
positive rate), which means that it is better at correctly identifying 
individuals who have the anomaly (e.g., a cardiac abnormality) as 
positive cases. On the other hand, the PCG model has the best 
specificity score (true negative rates), implying a superior performance 
at correctly identifying individuals who do not have the medical 
condition or anomaly. In other words, it is less likely to classify 
individuals without the condition as positive cases, reducing the chances 
of false alarms or unnecessary interventions. In addiction the PCG 
model does also have a slightly better precision.  

Regarding the intra variability of each model, it is perceived that the 
PCG model has more outliers and variability when compared to the 
other 2 models. This could mean that the model performance is less 
stable, suggesting that there are cases that the model struggles to handle.  

One solution to this problem could be investigating the cases where the 
model struggles or fail to perform and see if the same cases are correctly 
classified in the other two models.  

4 Conclusions 

This work shows that the ECG + PCG model deals better with the 
binary classification task, improving on using ECG or PCG alone for 
initial heart condition’ screening.  

Future work could pass by improving the model’s performance, 
using explainable AI techniques (XAI) to see why the models fail to 
classify some instances.  
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Figure 2: Boxplots illustrating the metrics calculated for each of the five 
folds during cross-validation, across the three distinct models. 


