
Enhancing Glioma Detection through Multimodal Classifiers:
Integrating MRI and WSI

Tomé Albuquerque 1,2

tome.m.albuquerque@inesctec.pt

1 INESC TEC
Porto, Portugal

Beatriz Coutinho 2, João Rodrigo 2, Miguel Almeida 2

{up201906333,up201705110,up201907088}@edu.fe.up.pt

2 Faculty of Engineering of the University of Porto
Porto, Portugal

Benedikt Wiestler3,4

b.wiestler@tum.de

3 Department of Neuroradiology, MRI, TUM
Munich, Germany

Claire Delbridge5,6

c.delbridge@tum.de

4 TranslaTUM, TU Munich
Munich, Germany

Maria João M. Vasconcelos7

maria.vasconcelos@fraunhofer.pt

5 Department of Neuropathology, MRI, TUM
Munich, Germany

Peter Schüffler6

peter.schueffler@tum.de

6 Institute of General and Surgical Pathology, TUM
Munich, Germany

Jaime S. Cardoso1,2

jaime.cardoso@inesctec.pt

7 Fraunhofer Portugal AICOS
Porto, Portugal

Abstract

Adult-type diffuse gliomas represent the predominant malignant neoplasms
within the central nervous system. The advent of targeted therapeutic op-
tions has amplified the allure of molecular biomarkers, directly impacting
on selection of appropriate interventions. Nevertheless, the manual as-
sessment process within pathological laboratories is burdened by time in-
tensiveness and error susceptibility. In order to surmount this constraint,
multimodal fusion models have been explored. These models aim to iden-
tify the two pivotal molecular biomarkers (IDH1 mutation and 1p/19q
codeletion) within gliomas by harnessing the synergy of MRI and digital
pathology examinations.

1 Introduction

Within the realm of glioma molecular markers, the mutation status of
IDH1 and the codeletion of 1p/19q serve as crucial elements for precise
diagnosis. The automation of biomarker detection holds the potential to
spare patients from unnecessary examinations and alleviate the burden
on both patients and medical institutions. Furthermore, leveraging pre-
dictions generated from the fusion of diverse medical data sources can
significantly aid in the decision-making process for treatment strategies.
This study introduces a novel multimodal learning framework designed
to classify biomarkers. Our approach integrates brain Magnetic Reso-
nance Imaging (MRI) and whole slide images (WSI) from hematoxylin
and eosin staining (H&E) slides. Since the update of the WHO proto-
col, intensive research has been conducted on biomarker classification and
glioma grading. In recent years, several researchers tried to detect IDH1
and 1p/19q biomarkers from MRI or WSI [1, 3]. Nevertheless, most of
the works only make a binary classification between IDH1-mutant and
IDH1-wildtype or 1p/19q codeleted and non-codeleted.

This research is structured into two distinct phases. First, we utilize
two separate Convolutional Neural Network (CNN) models, each pre-
trained on MRI and WSI scans. These CNN models function as feature
encoders, supplying inputs to seven distinct machine learning (ML) clas-
sification algorithms. We then compare and analyze the results of these
methods. In the second phase, we develop an end-to-end model based on
a CNN architecture. This model processes MRI scans and extracts rele-
vant patterns and features. In the final linear layers of this CNN model,
we incorporate features extracted from WSI data to enhance the model
training process. By integrating multimodal data and exploring the best
aggregation strategies, including an end-to-end CNN approach, our study
aims to advance the classification of critical glioma biomarkers, thereby
enhancing diagnostic precision and decision-making in the field of glioma
research.

2 Proposed Methodology

As mentioned in the previous section, this study includes two distinct
phases: using conventional ML classifiers with pre-trained CNN encoders
for both modalities (Figure 1 (a)) and multimodal deep learning (DL)
models using an end-to-end training strategy (Figure 1 (b)).

(a) Phase I - Multimodal aggregation ML models.

(b) Phase II - End-to-end CNN model
Figure 1: Representation of different proposed methods: (a) Phase I -
Aggregation ML models; (b) Phase II - End-to-end CNN model.

All models underwent training using a comprehensive approach that
included both MRI and WSI modalities. For the MRI branch, segmented
ROI blocks of size 96×96×96 pixels (px) were extracted from the origi-
nal MRI exams, which were of size 255×255×255 px. These ROI blocks
were used to train both the encoder and the end-to-end models. Two dif-
ferent MRI exam types, T1ce and FLAIR, were tested both individually
and in combination to determine the optimal method. DenseNet121 was
employed as the backbone for biomarker classification. In the case of the
WSI encoder, a weakly supervised DL model based on multiple instance
learning (MIL) was utilized. This model relied solely on the reported
diagnosis as the label per slide. The embedder/encoder was trained for bi-
nary classification (presence vs. absence of biomarkers) using ResNet34.
The top 10 tiles per slide were selected during training based on their out-
put scores. The first phase of the study involved employing seven distinct
machine learning algorithms: CatBoost, Xgboost, K-Nearest-Neighbor
(KNN), Logistic Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), and Multilayer Perceptron (MLP). Feature vectors gen-
erated by the pre-trained models were concatenated into a unified feature



vector, which was then used as input for subsequent aggregation mod-
els to arrive at a final consensus prediction. During the second phase,
the WSI encoder remained unchanged or "fixed," maintaining its previ-
ously learned features. In contrast, the MRI encoder was fine-tuned in an
end-to-end manner. This fine-tuning involved training the MRI encoder
using concatenated features derived from the WSI data, allowing for the
integration of information from both modalities.

3 Experimental Details

3.1 Dataset

In this work, a public dataset from The Cancer Genome Atlas (TCGA). 1

was used. It includes 3D MRI images (255× 255× 255 px) from four
modalities: T1, T1ce, T2, and FLAIR with segmentation blocks (96×
96×96 px), digital pathology slides with hematoxylin and eosin staining
(H&E), and clinical data (age and gender) from 187 patients. Figure 2
shows three examples of both exams for three different patients. The
dataset consists of three classes (without any biomarker; with IDH1 mu-
tation; and with IDH1 mutation and 1p19q codeletion).

Figure 2: Examples of MRI and WSI exams for three different patients.

3.2 Data pre-processing

The dataset was partitioned into five distinct folds to preserve the class ra-
tios using stratified cross-validation. The results are the average and stan-
dard deviation of these five folds. For the Pathology deep learning embed-
ded, it was necessary to extract tiles with 512×512 px and 2048×2048
px dimensions from all WSI. Only tiles with more than 60% of tissue were
used. Normalization was also performed to scale the pixel values to 0-1.
Each pathology image is subjected to a series of random transformations
during training, including HEDJitter, random elastic transformations, ran-
dom color affine, random Gaussian blur, and random image rotations. MR
images were preprocessed using the publicly available BraTS Toolkit [2].
For tumor segmentation, the SIMPLE fusion approach implemented in
BraTS Toolkit was applied. MR images were subjected to random image
rotations and intensity changes during training.

3.3 Training

A grid search was also performed for the seven ML models of phase I to
find the best combination of hyperparameters. For the WSI deep learning
encoder, a grid search was first performed to find the best combination
of hyperparameters. The best parameters found for the fine-tuned model
were an image size of 552× 552px, a batch size of 384, and 50 training
epochs. ADAM was used in both modalities as the optimizer and started
with a learning rate of 10−4 for all models. Cross-entropy (CE) was used
as loss function.

4 Results and Discussion

The methods proposed in this study underwent training using a dataset
consisting of 149 digital pathology WSI and MRI scans encompassing
FLAIR and T1ce modalities. Subsequently, validation was conducted on
38 WSI and MRI examinations, with the T1ce modality yielding the most
promising results. The following tables are based on the T1ce MRI ex-
ams. Table 1 illustrates the performance of phase I, employing seven dis-
tinct ML algorithms. The best-performing results are highlighted in bold.
The MLP emerged as the top-performing algorithm, achieving an accu-
racy of 78.09%, an MAE of 0.28, and an F1 score of 77.46. In contrast,

1https://www.cancerimagingarchive.net/

CatBoost demonstrated remarkable competitiveness, boasting an AUC of
0.90, surpassing the MLP by 0.30 in this regard.

Table 1: Evaluation metrics for biomarkers detection using seven different
models for decision aggregation.

Model ACC (%) MAE F1(%) AUC
CatBoost 77.01±5.67 0.29±0.14 73.77±2.72 0.90±0.05
Xgboost 75.40±6.61 0.33±0.10 72.83±8.56 0.87±0.06

KNN 70.64±8.50 0.34±0.11 66.16±10.03 0.85±0.03
LR 75.39±7.49 0.31±0.10 74.13±7.44 0.86±0.04
RF 77.01±4.99 0.29±0.08 73.43±6.37 0.88±0.05

SVM 73.79±6.77 0.31±0.09 72.47±7.33 0.86±0.03
MLP 78.09±5.13 0.28±0.08 77.46±4.80 0.87±0.03

Taking a deeper dive and evaluating the performance of the end-to-
end MRI model, which integrates WSI features, we can observe the re-
sults presented in Table 2. These results have exceeded the performance
metrics of most of the previous ML models that relied on pre-trained en-
coders. This suggests that integrating multimodal features into the train-
ing process of the models may have a beneficial effect on the detection of
glioma biomarkers.

Table 2: Evaluation metrics for biomarkers detection using an end-to-end
CNN model.

Model ACC (%) MAE F1(%) AUC
End-to-end 81.28±3.94 0.24±0.06 80.84±3.52 0.87±0.04

5 Conclusions and Future Work

In summary, when comparing the MLP to the other six machine learn-
ing methods, MLP demonstrated superior efficiency in the classification
of glioma biomarkers. The end-to-end model yielded promising results
across various metrics, underscoring its potential for identifying biolog-
ically significant biomarker features and effectively categorizing distinct
glioma subtypes by integrating multimodal features in deep learning sys-
tems. As we look ahead to future research, there is an opportunity to
extend and test the capabilities of the end-to-end model to include WSI
exams and validate these methods using external datasets.
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