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Abstract

Coronary Artery Disease is one of the leading causes of death worldwide.
Computed Tomography and Coronary Computed Tomography Angiog-
raphy are the gold standard techniques for Coronary Artery Disease di-
agnosis. Some recent studies have found a connection between Coronary
Artery Disease occurrence and the accumulation of visceral adipose tissue
in the ventral cavity. By performing ventral cavity segmentations in Com-
puted Tomography scans, it is possible to quantify and analyze important
textural characteristics of visceral fat. However the manual delineation
of this structures is a time consuming process subject to variability. An
automated process would achieve a faster and more precise solution. This
paper explores the use of a U-Net architecture to perform ventral cavity
segmentations. Experiments with different input image sizes and types
of loss functions were employed. The model with the best performance
achieved a 0.974 Dice Score Coefficient which is a competitive result
when compared to the state of the art methods.

1 Introduction

Coronary artery disease (CAD) is the most common type of heart disease
and the third leading cause of death worldwide with 17.8 million deaths
annually [2]. Computed Tomography (CT), as well as, Coronary Com-
puted Tomography Angiography (CCTA) are the main techniques used
for CAD diagnosis in medical imaging.

Recent studies have indicated that the accumulation of visceral adi-
pose tissue (VAT), rather than subcutaneous adipose tissue (SAT), in the
abdominal region, is associated with increased cardiometabolic risk [3].
VAT could thus be studied as an alternative biomarker for CAD. By an-
alyzing VAT and SAT with CT, it is possible to obtain not only a quan-
tification of this adipose tissue but also gather important characteristics
such as density as well as textural characteristics (radiomics) that can in-
dicate metabolic changes of the tissue noninvasively, thus providing more
robust clinical information. Manually outlining these tissues is a time-
consuming task, subject to inconsistency. An automated approach would
accomplish a quicker and more accurate segmentation. The use of deep
neural network architectures emerge as an obvious solution to this prob-
lem as they can obtain automatic VAT/SAT segmentations with high per-
formance that consume less time. In addition, they are able to extract
important features that can generate predictions about CAD risk, provid-
ing a trustworthy second opinion to help clinical professionals in CAD
diagnosis. The majority state of the art approaches for ventral cavity seg-
mentation use either Deep Learning architectures such as the work of and
Weston et al. [6] or Threshold-based methods as seen in the work of
Nemoto et al. [4].

The objective of this study was the development and validation of an
automated deep learning approach for the ventral cavity segmentation in
CT scans and validation of its clinical applicability.

2 Methods

2.1 Dataset

The dataset used was the CHVNGE dataset, which is composed of 886
patients randomly selected from inpatients at the Centro Hospitalar de
Vila Nova de Gaia (CHVNGE) in Vila Nova de Gaia, Portugal. Ethical
Committee approval was obtained prior to data collection and all data was
anonymized prior to analysis for the purposes of this study. The dataset
includes 886 2D abdominal CT scans (512×512 pixels) acquired on a
Siemens Somatom Sensation 64 with a slice thickness of 3 mm. The VAT
segmentations were obtained via manual annotation by a medical student
using the 3DSlicer software.

2.2 Ventral Cavity Segmentation

In this study, a U-Net model [5] was trained to perform the ventral cav-
ity segmentation. The 886 images and segmentation references were split
into 5 folds to perform cross validation. In each fold rotation, 3 folds
were used for training, 1 for validation and 1 for testing. Each training
iteration was ran by 400 epochs with a 0.00001 learning rate. When train-
ing the model, an early stop criteria was imposed to reduce computational
resources. Model weights were updated with the ADAM optimizer [1].

Model training was accompanied by experiments that analyzed the
influence of different parameters on its performance, such as:

• Image Sizes: 512×512, 256×256 and 256×256 cropped;

• Loss Function: Binary Cross Entropy (BCE) and Dice.

Different image sizes were used to study their dependence in the
U-Net model performance. The 256×256 cropped image is obtained
through the following steps. Initially, a body mask is created by applying
a Hounsfield Unit (HU) threshold, retaining pixel values above 300. This
threshold removes image artifacts located under the body. The patient’s
body is thereby isolated and a bounding box surrounding it is computed.
Cropping is performed by resizing the longer side of the bounding box
to 256 pixels while maintaining the original aspect ratio. Zero padding is
performed in order to complete the 256×256 image.

The first loss function applied was a Binary Cross Entropy loss func-
tion. The unreduced loss can be described as:

BCELoss =−y log(x)− (1− y) log(1− x), (1)

where x and y represent the predictions and targets, respectively.
The other loss function used in this study is a Dice loss that measures

the dissimilarity between predicted and target ground truth segmentation
masks by quantifying the overlap between the two masks. The Dice Loss
is computed as 1 minus the DSC (Dice Score Coefficient) which inversely
measures the similarity between both masks. The equation describing the
Dice Loss is as follows:

DiceLoss = 1−
2∑ j(x j × y j)

∑ j x j +∑ j y j
(2)



Figure 1: Best (two leftmost) and worst (two rightmost) examples regarding the DSC and HD. The green and red contours represent the ground truth
and predicted segmentations, respectively.

Data augmentation techniques were also employed in the training and
validation sets in order to create data variation to enhance the model’s
ability to generalize and perform well on new and unseen data. These
techniques consisted of image resizing, rotations up to 35 degrees, hor-
izontal flip transformations with a probability of 0.5, vertical flip trans-
formations with a probability of 0.1 and a [0,255] image normalization.
All of these transformations were applied to the training and validating
sets, besides the rotation and flip transformations which were only ap-
plied to the training sets. Several evaluation metrics were used to study
this methods’ performance such as the DSC, Hausdorff Distance (HD)
and the Mean Absolute Distance (MAD).

3 Results and Discussion

Table 1 shows the DSC, HD and MAD results for each of the trained
models.

Table 1: Evaluation metrics results for each trained model.

Input Size
Loss

Function
Evaluation Metrics

DSC HD MAD

512
BCE 0.950±0.023 77.89±83.34 2.88±2.10
DICE 0.372±0.171 141.07±12.96 27.89±2.21

256
BCE 0.960±0.003 8.84±1.39 1.47±0.10
DICE 0.902±0.115 33.85±25.85 5.04±5.86

256-Crop
BCE 0.968±0.003 7.60±1.10 1.24±0.11
DICE 0.966±0.005 9.30±1.88 1.33±0.13

The U-Net model was capable of performing accurate ventral cavity
segmentations. One clear trend that can be seen is the fact that one specific
set of parameters provide the best results. The model that was trained
with 256×256 cropped images and a BCE loss function achieved a DSC
of 0.968±0.003 and HD and MAD values of 7.60±1.10 and 1.24±0.11,
respectively. These are competitive results when compared with the state
of the art results [6][4].

Regarding image size, there is evidence that a smaller image size pro-
vide better results when comparing the 512×512 and 256×256 images.
Between both 256×256 image sizes (cropped or not), the cropped ver-
sion leads to a better performance. The U-Net architecture is designed
to capture both local and global contextual information. If the image is
too large, the network might not be able to capture the necessary global
context effectively due to a limited receptive field. This can be one of the
reasons why smaller image sizes show a better performance. The cropped
version of images provide the same smaller size with bigger resolution,
since it zooms in on the body of the patient. This results in images with
finer details and a bigger focus on regions of interest that can be the reason
for providing better performances.

When comparing the results between the different loss functions, one
can conclude that the BCE loss function is better suited for this set of data
as it achieved a better performance (higher DSC and lower HD/MAD) for
each different image size.

In Figure 1, it is possible to see the best and worst results in terms
of DSC and HD, by overlapping the original input image with the ground
truth and prediction mask contours. This examples were taken from the
predictions generated by the model that achieved the best results.

Looking at the worst example for DSC, it is easy to comprehend that
this CT scan came as such a bad result, since it is an abnormal image.
The black hole shown in the figure is something unusual in this type of
images, and as such, when it enters the model, which is not used to seeing
these types of structures, it will generate a prediction that is subject to
errors and will be very different from the ground truth.

4 Conclusion

In this study, an investigation into automated ventral cavity segmentation
in CT scans, using a U-Net approach, is presented. The employed ex-
periments explore the effects of varying the input image sizes and loss
function in the segmentation process, which resulted in a good perfor-
mance when compared to the state of the art methods. This method has
an advantage as it uses CT scans performed with low doses of X-rays,
which prevent the contact of patients with contrast agents.

Future work could be later performed in order to continue and evolve
this study, such as the employment of post processing techniques like
noise removal and filling operations in the predicted masks. These pre-
dictions could then be used to perform segmentations on the ventral cavity
components, such as VAT. These segmentations can then be used for the
quantification of VAT and the extraction of important radiomics features
for CAD prediction.
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