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Abstract 

Coronary Artery Disease (CAD) is a prevalent and life-threatening condition, 

necessitating accurate diagnosis due to its substantial impact on morbidity and 

mortality. This study explores the potential of an autoencoder architecture for 

cardiac CT image reconstruction, a critical aspect of CAD diagnosis and 

treatment planning.  

A dataset of 20 patients' CT scans was utilized, partitioned into training, 

validation, and test sets. The model, combining U-Net and autoencoder 

principles, demonstrated effective learning during training. However, some 

challenges in generalization were observed, with higher errors in unseen data, 

possibly due to overfitting. Future work should focus on enhancing the 

model's adaptability to new data. This research lays the groundwork for 

advancing cardiac CT image reconstruction, promising improved cardiac 

disease diagnosis. 

 

Introduction 

Coronary Artery Disease (CAD) is a prevalent global health concern, 

marked by narrowed arteries and restricted blood flow to the heart. Its 

diagnosis is pivotal due to its impact on morbidity and mortality [1]. 

Combining initial CT scans with high-resolution computed tomography 

coronary angiography (CTCA) exams has emerged as a promising 

approach [2]. This dual-exam strategy provides comprehensive insights 

into coronary health, improving accuracy and guiding interventions. 

Effective CAD diagnosis hinges on accurate CT image reconstruction. 

Recent advancements in deep learning, particularly Convolutional Neural 

Networks (CNNs) and autoencoder architectures like U-Net and 

CycleGAN, offer potential to enhance image quality [3-6]. In this 

research, the focus is on testing the effectiveness of an autoencoder 

architecture specifically in the reconstruction of cardiac CT images, a 

critical component of CAD diagnosis and treatment planning. 

 

Methods 

Dataset 

This study utilized a dataset comprising CT images of patients who 

underwent CAD screening. The original DICOM data was provided by 

the Centro Hospitalar de Vila Nova de Gaia e Espinho, which was then 

pre-processed and converted into PNG images. The dataset includes 20 

CT scans from 20 different patients, with each scan being composed of 

between 40 to 50 images. 

The dataset was partitioned into three distinct subsets: a 60% training set, 

a 20% validation set, and a remaining 20% for testing. This division 

facilitated comprehensive model training, rigorous validation, and the 

ultimate assessment of model performance. 

 

Image Reconstruction Model 

The proposed model architecture is a U-Net framework, aiming to 

produce an output slice that corresponds to the reconstruction of the input 

slice. The model leverages an encoder-decoder design (Figure 1), wherein 

the encoder captures low-level image features, and the decoder performs 

detailed image reconstruction [7]. Notably, skip connections facilitate the 

direct transfer of low-level information, enhancing reconstruction 

accuracy. 

 
Figure 1- U-Net architecture for CT image reconstruction (adapted from [7]). 

Incorporating autoencoder principles, the model's encoder employs 

convolution and max-pooling layers to detect image patterns and create a 

compact latent representation [6]. This latent representation is then 

processed by the decoder, employing transposed convolution layers and 

skip connections inspired by U-Net. Additional convolution blocks, 

optionally with Batch Normalization, enhance network performance. 

The decoder culminates in a convolution layer with linear activation, 

generating the reconstructed output as a continuous representation of the 

input image. This model, with 124,361,025 trainable parameters, is 

trained for image reconstruction. 

The input images, with dimensions of 256x256 and a batch size of 12, 

underwent a single preprocessing step involving normalization, which 

rescaled pixel values from the range of 0 to 255 to 0 to 1, relative to the 

Hounsfield Unit (HU) values in the original DICOM images. This 

normalization is a common step in data preprocessing for Deep Learning 

tasks as it facilitates algorithm convergence.  

The training process incorporated the Mean Squared Error (MSE) loss 

function and the adaptive moment estimation (ADAM) optimizer. MSE 

quantifies the squared discrepancy between model predictions and ground 

truth, averaged across the entire dataset. 
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where 𝑦𝑖   is the original image, 𝑦�̂�  is the model prediction, the 

reconstructed output image, and N the number of samples.  

Training spanned 105 epochs with a learning rate of 0.0001. The number 

of steps per epoch was determined by dividing the training image count 

by the batch size. It was implemented an early stopping method, which 

monitored validation loss and halted training if it ceased to improve over 

20 consecutive epochs. An adaptive learning rate schedule was also 

employed, progressively reducing the learning rate throughout training to 

enhance convergence and model performance. Specifically, the learning 

rate was set at 0.0001 for epochs under 20, reduced to 0.00001 between 

epochs 15 and 40, and held at 0.000001 for the remaining epochs. 

Ultimately, the model with the best performance during training was 

automatically saved, allowing the model to cease training at the optimal 

point, thereby conserving time and computational resources.  

 

Results and Discussion 

Concerning the training process itself, the loss curves shown in Figure 2 

were obtained for the training and validation sets. The training loss starts 

at a high value, decreasing rapidly as the model adjusts to the data, while 

the validation loss begins at lower values and decreases, stabilizing at a 

slightly higher level. This indicates that the model is effectively learning 

the patterns in the training dataset and generalizing well to different data. 



The convergence of the loss curves suggests a high level of optimization 

achieved by the model. 

 
Figure 2- Loss curve on training and validation datasets, on a logarithmic y-axis scale. 

During the testing phase, the model was evaluated on unseen data, and 

MSE results were calculated for the training, validation, and test sets. 

These MSE values are detailed in Table 1.  

Table 1- Results of the mean values of MSE, with the highest standard deviations 

for each subset. 

                      Metric 

Dataset 

           MSE 

Training Set 0,0004 ± 0,229  

Validation Set 0,0007 ± 0,241 

Test Set 0,0098 ± 0,463 

 

The MSE values for the training set remained consistent and relatively 

low, indicative of accurate image reconstruction. Similarly, the validation 

set exhibited slightly higher but still comparable MSE values, signifying 

a robust generalization capability. Conversely, the test set displayed 

higher MSE values, suggesting some limitations in the model's capacity 

to generalize to entirely new and unseen data. This disparity may be 

attributed to potential overfitting, where the model excels in memorizing 

training data but struggles to extend its performance to diverse, 

unobserved samples. 

During the testing phase, the Structural Similarity Index (SSIM) was 

employed to assess the quality of the model's reconstructions [8]. The 

SSIM metric is valuable in evaluating the performance of image 

reconstruction models because it considers not only pixel-level 

differences but also the perceptual quality of the reconstructed image, 

considering factors such as brightness, contrast, and structural similarity 

between images, providing a more comprehensive measure of the 

perceptual quality of the reconstructions. The average SSIM value 

obtained was high ( 0,968 ± 0,002 ), indicating a high structural 

similarity between the reconstructed and original images.  

Figures 3 and 4 present some visual examples of the model's predictions, 

contrasting input test images with their reconstructed counterparts.  

 
Figure 3-Visual example of the reconstructed image with a good model prediction result, 

compared to the input image of the test set. 

 
Figure 4- Visual example of the reconstructed image with a poor model prediction result, 

compared to the input image of the test set. 

Figure 3 demonstrates a successful reconstruction, where the model 

accurately identifies and reproduces the primary features of the original 

image. The obtained image closely resembles the input test image, serving 

as a compelling instance of the model's ability to capture the fundamental 

characteristics of cardiac tissue. 

Conversely, Figure 4 shows the opposite scenario, with deficiencies in the 

model's reconstruction. Although the contours and overall aspects of the 

image are preserved, there are discrepancies and imperfections 

throughout, such as missing details, in this case, vessels and bronchi. This 

highlights the model's limitation in fully capturing the intricacies and 

finer details of cardiac tissue in such instances. It's noteworthy that in this 

example, the original image features a transition region between different 

tissues with a blurred appearance, posing a challenge for the precise 

extraction of essential characteristics. 

 

Conclusions 

In summary, this study successfully applied an autoencoder architecture 

to cardiac CT image reconstruction, achieving promising results in 

preserving essential image features with low losses and high structural 

similarity, critical for CAD diagnosis. However, the study revealed 

certain limitations, particularly the model's challenges in generalizing to 

new data, leading to higher errors in such cases. Future efforts should 

concentrate on enhancing the model's adaptability to novel data through 

robustness improvements and data augmentation techniques. This 

research serves as a foundational step in advancing cardiac CT image 

reconstruction techniques, offering the potential to significantly enhance 

the diagnosis and treatment planning for individuals with cardiac 

conditions. 
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