
  

 

Abstract 
 
Thyroid nodules, despite appearing as a discrete lesion, constitute a prevailing 
pathological occurrence within the global population. The timely detection and 
diagnosis can help preventing the pathology from growing, minimising more 
severe effects on the human body. In this study, supervised machine learning and 
deep learning techniques were implemented to analyse ultrasound and 
elastography medical images increasing and improving the effectiveness of 
thyroid nodule detection. The results achieved using deep learning were superior 
to those achieved using machine learning. Specifically, for machine learning it 
was obtained a F1-Score of 97.20%, for the ultrasound images and a F1-Score of 
75.40% using elastography images. Deep learning methodologies reached a F1-
Score of 98.85% for ultrasound images and 89.15% for elastography images. 
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1 Introduction 
Ultrasound and elastography are two important medical imaging tools 
widely used in the assessment of thyroid nodules (figure 1). Ultrasound 
is a medical imaging technique that uses sound waves to produce images 
of the thyroid and its nodules with good resolution, providing important 
information such as size, shape, structure, and the presence of fluids [1]. 
Elastography is a more recent medical imaging technique based on 
highly developed software that makes it possible to determine and assess 
changes in the structural properties of tissues and, consequently, their 
stiffness, which is crucial in differentiating thyroid nodules [2]. 
Ultrasound and elastography are safe, non-invasive medical imaging 
techniques and their use in the study of thyroid nodules is essential for 
making an accurate and effective diagnosis [3]. 

2 Methods 

2.1 Datasets 

 In total, 207 images were used, where 145 were collected directly by 
a health professional (76 ultrasound images and 69 elastography images 
with and without nodules) and 62 ultrasound images were retrieved from 
a public dataset, DDTI (Digital Database of Thyroid Ultrasound 
Images), which contains ultrasound images accompanied by a diagnosis 
made by radiologists and confirmed by biopsies when necessary, [4].  

2.2 Classification and Feature Selection 

 After acquiring thyroid images of patients with and without 
pathology, the images are submitted to two classification models. In the 
case of machine learning, a sliding window is applied to the images to 
increase its number of images to make up for the shortage of images. 
This technique allows an image to be scrolled through a window with 
previously chosen dimensions from a starting point to the end of the 
image. It is also possible to define the step size, i.e., the number of 
pixels to move between each window.  Then, the images are normalized 
and around 600 different features are extracted, which undergo a 
normalization process immediately before the best ones are chosen by 

the algorithm. The data achieved was processed by different classifiers 
such Support Vector Machine (SVM), Random Forest (RF), Decision 
Tree (DT) and K-nearest neighbors (KNN) to produce a variety of 
results to be compared. Cross-validation and classifier optimization 
mechanisms were also applied. The final aim is an implementation of 
classifiers to provide statistical results regarding the classification of 
thyroid images (with or without a nodule). 
 Regarding deep learning, to overcome the small dataset, the images 
were pre-processed, subjected to a data augmentation process and pre-
trained on ImageNet (transfer learning). The classification model was 
implemented using a Convolutional Neural Network (CNN). The 
VGG16 is the neural network used in this study. This CNN has an 
architecture with 13 convolutional layers, 3 fully connected layers and 5 
pooling layers. The first two types of layers mentioned above are 
associated with activation functions (ReLU), however the last layer is a 
SoftMax activation layer. 
 The metrics used to evaluate the results obtained by both above 
approaches were precision, accuracy, F1-Score and AUC (Area Under 
the ROC Curve). 
 

3 Results and Discussion 
 
A fixed number of features (20) was used to evaluate the performance of 
the different classifiers. Figure 2 illustrates the influence of step size and 
window size on the performance of the different metrics for the different 
classifiers. 

 
Figure 2 – Performance metric values by window size and step size 

for the different classifiers 
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Figure 1 - Image of a thyroid nodule: a) Ultrasound; b) Elastography 
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 It is observed that SVM classifier shows a better classification result 
overall, although in the AUC metric has a slight increase in performance 
on the part of the RF classifier. Therefore, the SVM classifier was used 
to acquire the subsequent results due to its good overall performance 
compared to the others.  
 The SVM was further tested to produce the maximum performance. 
The best values were achieved using a window of 25 x 25 (pixels) for a 
step size of 9. In the case of feature normalization, the StandardScaler 
and MinMaxScaler functions were studied and compared. The 
comparison included the incorporation of SelectKBest and Recursive 
Feature Elimination methods for feature selection, where the pair 
StandardScaler and Recursive Feature Elimination produced the best 
overall performance for the different metrics. 
 The performance of the classification model is closely linked to the 
number of features selected. Figure 3 shows the results of the classifier's 
performance in relation to variations in the number of features. In this 
case, only the F1-Score will be presented as a metric, to have a more 
detailed analysis of the ideal number of features. 

 
 

 It is noticed a sudden increase in SVM performance as the number 
of selected features is 10. Then there is a less drastic rise with 
subsequent stabilization of performance. The SVM classifier performs 
best when the number of features is near 40. Finally, once all the 
variables had been explored and defined, the performance of the SVM 
was compared (figure 4) for the two groups of images (ultrasound and 
elastography). 

 
 

 The images acquired through ultrasound produce a much better 
performance than the elastography. We also implemented a Deep 
Learning technique. After pre-processing the images, different 
parameters and configurations were tested to produce the best 
classification performance. In this context, a high number of epochs was 
selected to calculate an initial batch size. The analysis showed that a 
batch size of 16 yielded the best results. Using this established batch 
size, the ideal number of epochs needed was investigated, as shown in 
figure 5.  

 

 Examining the graph (figure 5), it becomes evident that the AUC 
metric always gives results that are too good, so it was promptly 
discarded. The performance of the accuracy metric increases, reaching 
its maximum at 10 epochs. The accuracy and F1-Score curves show a 
very similar behaviour, only varying in the order of tenths, with 
maximum performance peaks at 4, 6 and 8. Given the limitations of 
computational resources, 4 epochs were used in the following steps. As 
with machine learning, the metric used in the next tests was the F1-
Score. A comparison between various optimisers was carried out. The 
results showed that the Adaptive Moment Estimation (Adam) optimiser 
performed better. Finally, the use of VGG16 in classifying thyroid 
nodules demonstrated superior performances, when complemented with 
a Multi-Head Attention method (figure 6).  
 
 

 
 
 
 
 
 
 
 
 
4 Conclusion 
This work presents a comparative study of different classifiers as 
machine learning and deep learning, applied to the classification of 
ultrasound and elastography images of thyroid. The primary objective 
was to assess the performance of classification within this pathological 
context. The algorithms capacity to discriminate between images 
showing nodules and those devoid of such features was analysed. It was 
observed that machine learning exhibited a higher proficiency in 
classifying ultrasound-acquired images (97.20%) in contrast to those 
obtained through elastography (75.40%), with Support Vector Machine 
(SVM) emerging as the most suitable classifier. On the other hand, the 
use of deep learning, employing a Convolutional Neural Network 
(CNN) architecture, achieved a F1-Score of 98.85% for ultrasound 
images and 89.15% for elastography images. Machine Learning and 
Deep Learning stand as two pivotal techniques making easy the 
resolution of difficult problems characterized by substantial complexity 
and extensive data volume. The traditional classifier, while less intricate, 
needs limited data but requires manual programming for feature 
extraction. In contrast, Deep Learning operates on the premise of 
automated feature extraction processes. This distinction in feature 
acquisition processes potentially underlies the observed performance 
discrepancies in relation to elastography images. It is possible that the 
essential features required for accurate classification of elastography 
images using SVM might not be effectively extracted through the actual 
mechanism. To improve the results for elastography images a larger 
database should be used. 
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Figure 3 – SVM performance over the number of features 

Figure 4 – SVM performance for ultrasound and elastography images 

Figure 5 – VGG16 performance for different number of epochs 

Figure 6 – VGG16 performance comparison  


