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Abstract

Segmentation of skeletal muscles in Magnetic Resonance Images (MRI)
is essential for the study of muscle physiology and the diagnosis of mus-
cular pathologies. However, manual segmentation of large MRI volumes
is a time-consuming task. The state-of-the-art on algorithms for muscle
segmentation in MRI is still not very extensive and, more recently, uses
mostly learning-based solutions, which require large amounts of data.
This work proposes an automated segmentation method for Dixon scans
of the thigh based on pixel-wise classification of local texture features us-
ing AdaBoost. The descriptor includes features from the Histogram of
Oriented Gradients (HOG), Haar Wavelet filtering, and statistical mea-
sures from both the original MRI and the Laplacian of Gaussian (LoG)
filtering. An atlas-based approach is then applied to the resulting muscle
tissue segmentation to provide individual muscle labeling.

1 Introduction

Muscle segmentation in medical imaging enables quantitative measure-
ments of muscle tissue and fat infiltration, which are crucial to most
physiological and/or pathological evaluations. An automated framework
would increase the ability to deal with large whole-body Magnetic Reso-
nance Image (MRI) datasets, as manual segmentation of muscles is still
a common approach in radiology services. However, achieving a robust
automated method for muscle segmentation in MRI is a challenging task.

Earlier automated methods for the segmentation of individual mus-
cles of muscle regions in MRI of the thigh include a graph-based approach
using the Random Walks algorithm [4], a probabilistic model using Gabor
Features [3], and atlas-based methods [9]. More recently, deep learning-
based approaches have been proposed [2, 6, 8, 12], which rely on U-Net
models and typically require large amounts of training data.

In this paper, we present a fully automated method for the segmenta-
tion of skeletal muscle in Dixon MRI scans of the human thigh that relies
on supervised pixel-wise classification using texture-based features. An
atlas is then used to assign muscle labels to the classifier result. A more
thorough description of the used methods may be found in [10].

2 Materials and Methods

The used dataset included 10 out-of-phase 3pt Dixon MRI volumes, ac-
quired with a 3T Siemens scanner, with spatial resolution of 1 x 1 x Smm,
TR = 10ms, TE| = 2.75ms, TE; = 3.95ms, TE3 = 5.15ms, and RF flip
angle = 3. Each volume contained 80 scans of the right thigh (Fig. 1(a)),
with an image size of 256x256 pixels. To avoid including slices with too
little muscle tissue, slices near the knee and the ankle were discarded a
priori, resulting in a subset of 40 MRI slices. From this initial selec-
tion, five consecutive slices were randomly selected from each volume to
simultaneously enable the proposed muscle atlas construction approach
and address the memory limitations of the experimental setup.

2.1 Feature extraction and classification

The texture descriptor (Fig. 1) included the Histogram of Oriented Gra-
dients (HOG) [5], computed using the Dalal-Triggs variant with 16x16
blocks and 9 orientations (36-bin histogram), as well as statistical mea-
sures from the original grayscale MRI and a filtered counterpart, using
a 5x5 Laplacian of Gaussian (LoG) filter, with ¢ = 1.5 [1]. The mean,
variance, skewness, and kurtosis were computed within non-overlapping
16x16 patches of those two images. The descriptor also included the co-
efficients from the LH, HL, and HH sub-bands from 3 levels of decompo-
sition using Haar wavelets [13], as well as from the first LL sub-band.
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Figure 1: Out-of-phase Dixon MRI scan (a). Image preprocessing results
for texture feature extraction (b) to (g). Muscle ground truth (h)

Image pixels were classified using an AdaBoost classifier [7, 11] for
500 iterations. The ground truth was obtained from the manual segmen-
tation of thigh muscles by a radiologist. For each image, every individual
muscle region was eroded with a 2-pixel radius disk (Fig. 1(h)) to avoid
including undesired inter-muscular texture patterns into the positive train-
ing dataset. For the final label mask used to train the AdaBoost classifier,
the majority label inside each 16x16 patch was considered. In the case of
a tie, which is more likely to occur in regions near non-muscle tissue, a
negative label was chosen to further reduce the inclusion of non-muscle
texture into the positive training set. Algorithm validation was performed
in a leave-one-out cross-validation, and the training data to classify slices
from each volume was obtained from the remaining 9 MRI volumes.

2.2 Muscle labeling

The same images involved in each cross-validation iteration were used to
construct the respective muscle atlas. These were registered to a common
reference, selected randomly among the training set. First, the bone cen-
troids of both the reference and target MRIs were aligned via translation.
The bone was roughly segmented through histogram thresholding. Then,
considering D, and Dy as the vectors connecting the bone centroid to the
most distal point on the convex hull of the muscle labels, in the reference
and target images, respectively, all target images were rotated by the angle
between D, and D;. Finally, the target images were scaled to match the
convex hull of the reference image.

An individual muscle probability map was obtained by overlapping
the respective binary masks (Figs. 2(a) and (b)). The results were then
truncated at 50% of the peak value (Fig. 2(c)). The AdaBoost segmenta-
tion output was aligned with the atlas for the respective cross-validation
iteration, using the transformations described above. The final result was
obtained by reverting all transformations to the target MRI.



(a) Vastus medialis (b) Vastus intermedius (c) Full muscle atlas

Figure 2: Muscle atlases. In (a) and (b), overlapping maps of two different
muscles are shown. In (c), an example of a full atlas is presented.
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Figure 3: Performance measures per MRI volume.

3 Results and Discussion

The AdaBoost performance in full muscle segmentation was assessed us-
ing recall (TPZ%) and precision rates (%), and the Dice overlap
2|ANB|
[A]+[B]
cle, whereas FN and FP refer to pixels incorrectly classified as non-muscle
and muscle. A and B refer to the segmentation output and ground truth.
Fig. 3 shows the mean and standard deviation of these performance mea-
sures taken over a 10-fold cross-validation, with recall, precision, and dice
overlap coefficients of 0.8150, 0.7454, and 0.7623, respectively. It should
be noted that the AdaBoost algorithm was trained with a downsampled
ground truth mask to address the descriptor resolution, but the final per-
formance was measured considering the original ground truth resolution.

coefficient ( ), where TP refers to pixels correctly classified as mus-

From the total 50 AdaBoost results obtained in cross-validation, the
majority presented a correct identification of the muscle region. Results
with high recall rates tend to also increase the number of false positives
(lower precision). This may be seen in Fig. 4(a), where the inclusion
of non-muscle tissue into the AdaBoost output led to a shrinkage of the
atlas because of the used registration algorithm. In these cases, the atlas
transformation is biased and the labels are slightly offset, even though the
AdaBoost segmentation recall rate is high. Using more features could im-
prove the discriminative properties of the proposed classification scheme.
In other cases (e.g., Fig.4(b)), given the tradeoff between recall and pre-
cision, muscle labels are placed correctly more often, despite the total
segmented muscle area being affected. Fig. 4(c) shows the worst overall
result (from volume 10 in Fig. 3). Muscles with a smaller cross-sectional
area, such as the Sartorius or the Rectus femoris, tend to not appear on the
final segmentation if true positives decay.

The obtained results suggest that the proposed method may perform
well in a variety of different scenarios, particularly in cases with more
inter-muscular tissue or near articulations, where the muscle region of in-
terest is more dispersed. Nonetheless, it should be noted that a suitable
selection of reference MRI for the atlas construction is critical for robust-
ness, given the variations in muscle geometry and relative positioning,
which are quite stable in consecutive slices.

Figure 4: Examples of individual skeletal muscle segmentation results.

4 Conclusions

The results of this research show that texture features may contribute to
a global and automated skeletal muscle segmentation tool, which would
greatly improve the state-of-the-art in analysis and diagnosis based on
muscle MRI. One key advantage of this model is that it requires far less
training data than deep-learning approaches, making it easily adaptable to
different MRI systems and acquisition protocols.
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