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Abstract

Recent research indicates a connection between epicardial adipose tissue
(EAT) and Coronary Artery Disease (CAD). EAT is a type of fat situated
within the pericardium, a thin membrane sac that covers the heart. Hence,
its segmentation and quantification could prove valuable for investigating
its potential as a CAD risk stratification tool. However, manually seg-
menting these structures proves to be a demanding and time-consuming
task, making it unsuitable for clinical settings. This has driven the de-
velopment of automated segmentation methods. This study introduces an
automated method for segmenting EAT in CT scans. A U-Net framework
is thus used to segment the pericardium, which then allows to segment the
EAT through thresholding. The quantification metrics resulted in a bias of
0.98 ± 15.351 cm³ and a Pearson Correlation Coefficient (PCC) of 0.924.
In terms of segmentation metrics, the values for DSC, recall, and preci-
sion were 0.749 ± 0.051, 0.766 ± 0.069, and 0.748 ± 0.085, respectively.
The results indicate that satisfactory performance can be attained on an
external dataset encompassing diverse anatomical variations, using solely
public datasets for training. However, incorporating more data will en-
hance the robustness of this approach, particularly in outlier cases. Future
approaches should prioritize refining the integration of 3D information to
achieve a more precise segmentation, mainly on the lower pericardium.

1 Introduction

Coronary Artery Disease (CAD) is the most prevalent type of heart con-
dition and a leading global cause of death [3]. It occurs when deposits of
calcium, fatty lipids, and inflammatory cells narrow and harden the coro-
nary arteries, reducing blood flow to the heart muscle. This deprivation
of oxygen and blood can result in symptoms like chest pain (angina) and
even a myocardial infarction.

Recent studies suggest that changes in epicardial adipose tissue (EAT)
might have a significant role in the development of CAD, introducing a
valuable factor for evaluating cardiovascular risk [6]. The standard prac-
tice for assessing EAT involves initially segmenting the pericardium, a
thin double-layered membrane sac that envelops the heart, followed by
the application of a Hounsfield Units (HU) threshold that isolates adi-
pose tissue. Nevertheless, accurately identifying the pericardium is ex-
tremely challenging, resulting in significant segmentation discrepancies
among experts. This task remains laborious and unsuited for clinical ap-
plication, emerging the need to enhance the repeatability [2].

Over the past years, numerous research investigations have explored
the use of machine and deep learning algorithms to automatically seg-
ment the pericardium and EAT in CT scans. In 2016, Rodrigues et al. [4]
explored a method for segmenting the EAT. Their approach combined fea-
ture extraction, intersubjective atlas-based registration, and classification.
They yielded a remarkable Dice similarity score (DSC) of 97.9% for EAT
segmentation. However, it’s worth noting the performance of atlas-based
techniques heavily relies on registration accuracy [2].

Zhang et al. [7] introduced an approach utilizing the U-Net frame-
work, employing dual U-Nets on CT scans. The initial U-Net identifies

the pericardium, while the second focuses on locating and segmenting
EAT within the pericardium. The proposed method achieves a mean DSC
of 91.19%.

While numerous studies display encouraging outcomes, the efficacy
of these tools in large populations remains unproven. Furthermore, most
studies use data from a single cohort with similar properties, not providing
good generalization for the model. The work presented in this report is
a study towards the automatic segmentation of the EAT in CT imaging.
A state of the art architecture is trained for this purpose using publicly
available data. Furthermore, a generalization analysis of the considered
segmentation solution is performed using a private external dataset.

2 Methods

2.1 Datasets

Three datasets were used in this study: Cardiac Fat, OSIC and Centro
Hospital de Vila Nova de Gaia e Espinho (CHVNGE). Three examples
of the CT slice and the corresponding manual segmentation for each one
of the datasets are shown in Figure 1. The Cardiac Fat dataset1 was ac-
quired in Rio de Janeiro and released publicly by Rodrigues et al. [4].
The dataset includes 20 CT scans with 878 slices belonging to 20 patients
as DICOM images (512×512 pixels). The original ground truth was ob-
tained via manual segmentation by a physician and a computer scientist
who labeled the EAT and pericardium. The OSIC dataset2 was created
from the OSIC Pulmonary Fibrosis Competition hosted on Kaggle. This
dataset consists of 85 CT scans with 12,133 slices whose scans were con-
ducted using six distinct scanners. The manual pericardial segmentation
were performed by an experienced radiologist. Finally, the CHVNGE
dataset is a subset of 190 patients randomly selected from the EPIC-
HEART (The influence of EPICardial adipose tissue in HEART diseases)
Study (ClinicalTrials.gov: NCT03280433), collected at the CHVNGE in
Vila Nova de Gaia, Portugal. The dataset includes 190 CT scans with
8661 slices as DICOM images (512×512 pixels). The pericardial seg-
mentation was obtained via manual segmentation by a medicine student.

Figure 1: Datasets overview. EAT (red) and Pericardial (yellow) labels,
overlapped with DICOM images. The EAT label was obtained by apply-
ing the fat HU range inside the pericardium label.

1http://visual.ic.uff.br/en/cardio/ctfat/index.php
2https://www.kaggle.com/sandorkonya/ct-lung-heart-trachea-segmentation



2.2 EAT Segmentation

First, an automatic method was developed to accurately segment the peri-
cardium. Before training the network, the CT slices were clipped to [-
1000, 1000] HU and then normalized to a range between 0 and 1. The
input images were resized to 256×256 and data augmentation techniques
such as rotations, zoom, flips and shifts were employed. Besides that,
calcifications were artificially generated using a Gaussian distribution to
make the model robust to the presence of extensive calcifications and
medical devices.

A U-Net was then trained for pericardial segmentation [5], provided
with three consecutive axial slices: the one to be segmented (k), as well as
the previous (k - 1) and next (k + 1). The Cardiac Fat and OSIC datasets
were randomly divided as follows: 60% of the CT scans for training, 20%
for validation, and the remaining 20% for testing. The model was trained
with the Dice loss function and using the adaptive moment estimation
(Adam) optimizer.

A post-processing technique was utilized in three key steps to en-
hance the quality of the 3D image segmentation. Initially, only the largest
connected component in the 3D space was retained, discarding discon-
nected parts. To ensure continuity, a 3D approach was implemented, in-
corporating pixels from adjacent slices when present in both upper and
lower slices. Lastly, a 2D convex hull operation was applied to individual
slices, addressing holes and refining the segmentation’s appearance.

Once the pericardium was accurately segmented, the fat HU range
[-150,-50] was applied within the pericardium to isolate the EAT.

All the external validation was conducted using the 190 patients from
the CHVNGE dataset. Evaluation of EAT segmentation performance was
done on the external CHVNGE dataset using the DSC [1], precision and
recall. Subsequently, the quantification of EAT volume was performed.
The assessment of agreement between the readers was conducted using
the Pearson Correlation Coefficient (PCC) and the bias.

3 Results and Discussion

Following the validation process on the CHVNGE dataset, the quantifi-
cation metrics yielded a bias of 0.98 ± 15.351 cm3 and a PCC of 0.924.
As for the segmentation metrics, the values for DSC, recall, and precision
were 0.749 ± 0.051, 0.766 ± 0.069, and 0.748 ± 0.085, respectively.
These results demonstrate favorable agreement between manual quantifi-
cation and the automated approach, characterized by a high PCC and a
minimal bias. Among the segmentation metrics, recall achieved the high-
est value, implying that the model’s strongest capability lies in accurately
segmenting EAT. However, the lower precision value of approximately
0.02 in comparison to the recall suggests occasional instances where the
model misidentifies other fats as EAT.

Figure 2: Examples of EAT segmentation from the manual (top row) and
automatic (bottom row) approach.

Figure 2 showcases three examples of EAT segmentation from dif-
ferent patients. In the first scenario, there is general agreement among
segmentations, although a slightly larger EAT volume was identified by
the human reader. The second instance illustrates the accuracy of the
automatic model to deal with huge calcifications, presenting an almost
perfect EAT segmentation. Additionally, the minimal impact of zoom

and rotation on the model in these two cases underscores the efficacy of
data augmentation methods. The third example exposes a deficiency in
the automated approach, inaccurately segmenting EAT due to anatomical
variations, being this a reason for the lower precision values. These varia-
tions are primarily observed in the lower slices where other organs might
be present, and they occasionally appear in higher regions than usual due
to certain medical conditions. This can lead the model to misidentify
them as the pericardium. Therefore, this instance emphasizes the need
for broader training data, encompassing diverse anatomical variations that
conventional augmentation techniques cannot simulate.

4 Conclusions

In conclusion, upon assessing the model’s performance in 190 patients
from the CHVNGE dataset, it was observed that the automated approach
achieved satisfactory outcomes. A good correlation was observed be-
tween the manual and automatic EAT volume quantification and the seg-
mentation metrics exhibited promising outcomes. The incorporation of
artificial calcifications and augmentation techniques during the model’s
training demonstrated their effectiveness. However, there is a need for
additional data variability in training to enhance the performance in pa-
tients with significant anatomical variability. Considering the difficulty
and computational demands of training a 3D network, a possible future
direction could involve incorporating more slices beyond the usual three
axial slices or providing the model with coronal, axial, and sagittal views.
It’s worth highlighting that the main contribution of this work is to ex-
plore the potential of using publicly available data exclusively for training
the model. The model’s performance is evaluated on an external private
dataset containing numerous patients with diverse anatomical variations.
Consequently, the observed performance values are lower compared to
those reported in the literature.
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