
A study on the role of feature selection for malware detection on Android applications

Catarina Palma(1)

A45241@alunos.isel.pt

(1) ISEL, Instituto Superior de Engenharia de Lisboa
Instituto Politécnico de Lisboa
Lisboa, PORTUGAL

Artur Ferreira(1)(2)

artur.ferreira@isel.pt

(2) Instituto de Telecomunicações
Lisboa, PORTUGAL

Mário Figueiredo(2)(3)

mario.figueiredo@tecnico.ulisboa.pt

(3) IST, Instituto Superior Técnico
Universidade de Lisboa
Lisboa, PORTUGAL

Abstract

The presence of malicious software (malware) in Android applications
(apps) has harmful or irreparable consequences to the user and/or the
device. Despite the protections provided by app stores, malware keeps
growing in both sophistication and diffusion. This paper explores the use
of machine learning (ML) and feature selection (FS) approaches to detect
malware in Android applications using public domain datasets. We resort
to the relevance-redundancy FS (RRFS) filter method using the unsuper-
vised mean-median (MM) and the supervised Fisher ratio (FR) relevance
measures. Our approach is able to reduce the dimensionality of the data,
achieve high accuracy and recall values, and identify the most decisive
features to classify an app as malware.

1 Introduction

The use of smartphones has grown exponentially in the past decade. This
growth has been accompanied by the popularisation of Android, an open-
source operating system (OS), being one of the most popular mobile OS,
with 70% of mobile phones using Android [8]. In the third quarter of
2022, the Google Play Store had approximately 3.5 million apps avail-
able [1]. Popular apps possess thousands or millions of users and deal
with substantial user-sensitive data, making them lucrative targets for ma-
licious attacks against Android mobile devices, which have been increas-
ing. For instance, in 2020, Kaspersky detected 5.7 million malware An-
droid packages, about three times more than in 2019 (2.1 million) [3].

Some software and apps focus on security, and major app stores have
security and detection mechanisms to mitigate malicious apps. Despite
their partial success, malware keeps growing in both sophistication and
diffusion, occasionally bypassing them. Thus, the need to detect mali-
cious applications is a major issue which can be tackled by ML tech-
niques.

This paper explores the use of ML techniques for malware detection
in Android applications, focusing on FS, using public domain datasets.
The RRFS filter is applied with two different relevance measures, namely
the unsupervised MM and the supervised FR techniques. The goal is to
reduce dimensionality and identify the most decisive features to classify
an app as malicious while achieving a good performance of the ML model
in malware detection for Android applications.

The remainder of this paper is organised as follows. Section 2 pro-
vides an overview of the related work. The proposed approach is de-
scribed in Section 3. The experimental evaluation is reported in Section 4.
Finally, Section 5 ends the paper with concluding remarks.

2 Related Work

The detection of malware in Android applications can follow these ap-
proaches: static, dynamic, and hybrid. In static analysis, the application
is analysed without being executed. Dynamic analysis occurs during the
app’s regular operation and is usually performed in monitored or sand-
box environments to analyse its behaviour. Finally, the hybrid analysis
combines the previous two types of approach [8]. Wu et al. [9] surveyed
ML-based Android malware detection papers from 2016 to November
2020 and concluded that static analysis is the most popular, followed by
dynamic and hybrid analysis. Kouliaridis and Kambourakis [7] reached
the same conclusion.

These different malware detection approaches are essential to build
datasets for malware detection in Android applications, such as Drebin,
CICAndMal2017, MalGenome, and VirusShare [9]. The Drebin dataset
was first published in 2014 and contains malware apps from 179 fami-
lies. The CICAndMal2017 dataset was released in 2018 [2], with samples
from 42 malware families. Unlike the Drebin dataset, CICAndMal2017
has numerical and categorical features and static and dynamic features
obtained via static and dynamic analysis, respectively. Alkahtani and
Aldhyani [3] performed experiments with both the Drebin and CICAnd-
Mal2017 datasets and concluded that the support vector machine (SVM)
classifier achieved the best results.

Keyvanpour et al. [6] conducted experiments with the Drebin dataset.
The authors applied three FS strategies (effective, high weight, and ef-
fective group FS) and concluded that effective FS led to the best results.
The authors proposed embedding FS with random forest (RF), which out-
performed other models. FS has been shown to improve the performance
of the RF classifier. Islam et al. [5] utilised the CCCS-CIC-AndMal2020
dataset, with 12 major malware categories, 53439 instances, and 141 fea-
tures. To perform FS, the authors applied recursive feature elimination
(RFE), discarding 60.2% of the features and achieving 95% accuracy. Wu
et al. [9] found that the most popular classifier for malware detection was
SVM, followed by RF. Kouliaridis and Kambourakis [7] also analysed
several studies, concluding that RF is the most used classifier in the litera-
ture, followed by SVM. Thus, the SVM and RF classifiers are considered
in this paper.

3 Proposed Approach

The approach followed in this study is depicted in Figure 1. The Android
app data is obtained from a dataset (Drebin or CICAndMal2017). Then,
data pre-processing methods and techniques are applied, in which the use
of the RRFS method is included, and data splitting is performed to prepare
and organise the data properly. Three subsets result from the data splitting
phase: the train, test, and validation sets. The SVM and RF classifiers are
used to label the input data pattern as ‘benign’ or ‘malicious’. Thus, we
have a binary classification problem for malware detection.

ML classifiers

Evaluation metrics

Dataset

Predictions

Evaluate

MaliciousBenign

Input data

Analysis

Pre-processing

Data pre-processing

Data splitting

Test set Train set Validation set

Hyperparameter
tuning

Model

?

Figure 1: Block diagram of the proposed approach for malware detection.

4 Experimental Evaluation

4.1 Dataset Characteristics and Evaluation Metrics

The Drebin dataset has n =15036 instances and d =215 features, with no
missing values, and all its features are numerical (most of them are bi-
nary). It has a ratio between class labels of approximately one-third, with
the majority belonging to the ‘benign’ class label. The CICAndMal2017
dataset has n =29999 instances and d =183 features. It contains missing
values (around 200) and both numerical and categorical features. It also
has a ratio between class labels of approximately one-third, with the ma-
jority belonging to the ‘malicious’ class label. We assess the performance
of the ML models with accuracy defined as

Acc =
T N +T P

T N +T P+FN +FP
, (1)

in which a true positive (TP) means to classify a malicious app as mali-
cious correctly, a true negative (TN) is to classify a benign app as benign,
a false positive (FP) is to classify a benign app as malicious. A false neg-
ative (FN) refers to classifying a malicious app as benign. Although we
aim for high accuracy, this can be misleading with imbalanced data. Thus,
we have also assessed the sensitivity or Recall given by

Rec =
T P

T P+FN
. (2)

4.2 Experimental Results

A 70-30 split for training and testing is used. In the data pre-processing
stage, each categorical feature was converted to numeric through label en-
coding, and the mean imputation method was applied to deal with missing
values. Min-Max normalisation was applied to set all feature values in the
0 to 1 range. The relevance-redundancy FS (RRFS) filter approach [4]
was applied, with the unsupervised mean-median (MM) relevance metric
given by

MMi = |Xi −median(Xi)|, (3)

with Xi denoting the sample mean of feature Xi. We also consider the
supervised Fisher ratio (FR) relevance metric

FRi =

∣∣∣X (−1)
i −X (1)

i

∣∣∣√
var(Xi)(−1)+var(Xi)(1)

, (4)

where X (−1)
i , X (1)

i , var(Xi)
(−1), and var(Xi)

(1), are the sample means and
variances of feature Xi, for the patterns of each class. The redundancy
analysis between two features, Xi and X j, is done with the absolute cosine

ACXi,X j = |cos(θXiX j)|=
∣∣∣∣ ⟨Xi,X j⟩
||Xi||||X j||

∣∣∣∣= ∑
n
k=1XikX jk√

∑
n
k=1X2

ik ∑
n
k=1X2

jk

, (5)

where ⟨,⟩ and ||.|| denote the inner product and L2 norm, respectively.
The baseline results of SVM and RF are reported in Table 1. FR yields
better results than MM for both Acc and Rec metrics, which seems to
indicate that the use of the class label provides valuable information for
the FS task. The baseline results and the results obtained after applying
RRFS with FR do not differ much, but mostly, they worsen slightly by
using RRFS with FR. However, these slight drops in Acc and Rec are
arguably compensated by the dimensionality reduction. Table 2 reports
the original number of features, d, and the number of reduced features
denoted as m. In both datasets, the number of features was significantly
reduced with RRFS. The Acc and Rec metrics show slight differences as
with the original number of features. The RRFS approach also allows
insight into the most relevant features of each dataset. We present the

Table 1: Experimental results Acc (%) | Rec (%) with baseline and after
applying RRFS approach with MM and FR for each classifier and dataset.

Classifier Dataset Baseline (%) RRFS (MM) RRFS (FR)
RF Drebin 98.60 | 96.97 95.03 | 90.20 96.85 | 94.95
RF CICAndMal2017 81.22 | 86.50 75.28 | 83.33 81.54 | 86.20

SVM Drebin 98.63 | 97.57 95.28 | 90.91 96.36 | 94.77
SVM CICAndMal2017 71.52 | 82.51 67.27 | 93.61 70.42 | 84.37

Table 2: Number of original features (d) and after RRFS (m).
Dataset d, Original m, RRFS (MM) m, RRFS (FR)
Drebin 215 100 94

CICAndMal2017 183 58 64

four most relevant according to RRFS with FR and MM to classify mal-
ware on each dataset. For the Drebin dataset, RRFS (MM) selects: Lan-
droid.content.Context.registerReceiver, android.telephony.SmsManager,
GET_TASKS, and /system/app. RRFS (FR) selects: transact, SEND_SMS,
Ljava.lang.Class.getCanonicalName, and android.telephony.SmsManager.
On the CICAndMal2017 dataset, RRFS (MM) selects: Network commu-
nication : view network state, Services that cost you money : directly
call phone numbers, Hardware controls : take pictures and videos, and
Your accounts : discover known accounts. RRFS (FR) selects: Category,
Price, Network communication : view network state, and Your personal
information : write Browser’s history and bookmarks. As compared to
Keyvanpour et al. [6], the accuracy results of the RF classifier are similar
to ours, and two features coincide with our five most relevant features by
RRFS (FR): SEND_SMS and android.telephony.SmsManager.

5 Conclusions

Malware in Android apps affects millions of users worldwide and is evolv-
ing, making its detection a relevant problem. ML approaches have been
proposed to detect malware in mobile applications. This paper followed
an ML approach with FS techniques. Experiments were performed with
the RRFS algorithm with two relevance metrics. The supervised measure,
FR, provided better results than the MM unsupervised technique. The use
of RRFS proved to be beneficial in this problem. Namely, it substantially
reduced the number of features in both datasets while keeping similar ac-
curacy and recall metrics. Furthermore, through RRFS, the names of the
most relevant features for malware identification on each dataset were ob-
tained. In future work, we intend to fine-tune the parameters of the RRFS
algorithm and explore other FS techniques.

References

[1] Biggest app stores in the world 2022 | statista. https:
//www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/.
(Accessed on 13/02/2023).

[2] Android Malware 2017 | Datasets | Research | Canadian Insti-
tute for Cybersecurity | UNB. https://www.unb.ca/cic/
datasets/andmal2017.html. (Accessed on 27/02/2023).

[3] Hasan Alkahtani and Theyazn HH Aldhyani. Artificial intelligence
algorithms for malware detection in Android-operated mobile de-
vices. Sensors, 22(6):2268, 2022.

[4] Artur Ferreira and Mário Figueiredo. Efficient feature selection filters
for high-dimensional data. Pattern Recognition Letters, 33(13):1794
– 1804, 2012. ISSN 0167-8655. doi: http://dx.doi.org/10.1016/j.
patrec.2012.05.019.

[5] Rejwana Islam, Moinul Islam Sayed, Sajal Saha, Mohammad Jamal
Hossain, and Md Abdul Masud. Android malware classification using
optimum feature selection and ensemble machine learning. Internet
of Things and Cyber-Physical Systems, 3:100–111, 2023. ISSN 2667-
3452. doi: https://doi.org/10.1016/j.iotcps.2023.03.001.

[6] Mohammad Reza Keyvanpour, Mehrnoush Barani Shirzad, and
Farideh Heydarian. Android malware detection applying feature
selection techniques and machine learning. Multimedia Tools and
Applications, 82(6):9517–9531, 2023. doi: https://doi.org/10.1007/
s11042-022-13767-2.

[7] Vasileios Kouliaridis and Georgios Kambourakis. A comprehensive
survey on machine learning techniques for Android malware detec-
tion. Information, 12(5):185, 2021.

[8] Ali Muzaffar, Hani Ragab Hassen, Michael A Lones, and Hind
Zantout. An in-depth review of machine learning based Android mal-
ware detection. Computers & Security, page 102833, 2022.

[9] Qing Wu, Xueling Zhu, and Bo Liu. A survey of Android malware
static detection technology based on machine learning. Mobile Infor-
mation Systems, 2021.

2

