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Abstract

We propose two bilinear models to detect Gastric Intestinal Metaplasia
(GIM) in narrow-band images that combine the embeddings of a pre-
trained Deep Neural Network (DNN) with the outcome of a local texture
descriptor based on fractal geometry. Our methods improve the DNN per-
formance by a significant margin over several metrics (e.g., area under the
curve (AUC) 0.815 vs. 0.738) in a dataset comprised of EGD narrow-band
images.

1 Introduction

Gastric cancer (GC) is the fifth most common type of cancer worldwide
and is also the cause of the third highest number of cancer-related deaths.
An early diagnosis of this cancer is crucial since it could potentially lead
to a 40% reduction in mortality rates. Gastric Intestinal Metaplasia (GIM)
is a critical precursor of GC that can be characterized during Esopha-
gogastroduodenoscopy (EGD) by finding aberrant tissue in the gastric
mucosa using Narrow-band Imaging (NBI) modality. Nevertheless, GIM
detection is challenging since it relies on fine-grained details which re-
sults in low inter-observer concordance among clinicians. Thus, our goal
was to find an automated tool uninfluenced by subjective factors, such as
the Deep Neural Networks (DNN) that already obtained promising results
in Upper Gastrointestinal (UGI) endoscopy-related problems. However,
DNNs are dependent on high-quality data for training, which is not al-
ways available since it is expensive to collect. To address this problem,
the importance of texture in GIM detection was considered. Thus, we
propose two different approaches that consist of combining through a bi-
linear model a local texture description based on fractal geometry with the
outcome of a DNN. The concept that the fusion of fractal descriptors and
deep learning models might lead to a robust GIM detector was prompted
by the valuable role of fractal dimension in identifying texture patterns in
natural images [5] and by the discriminative features previously acquired
in a closely related visual context specifically, in the characterization of
polyps during colonoscopy [2].

2 Fractal Bilinear Deep Neural Network Models

2.1 Bilinear models

Following the definition in [4], a bilinear model consists in a quadruple
B = ( fa, fb,P,C), where fa : RH×W×C → Rk×A and fb : RH×W×C →
Rk×B are feature extracting functions, P is a pooling function and C is
a classification function. The outcome of a feature extracting function
is a feature vector which is obtained using an image and a given loca-
tion. The core concept of this model is merging the results generated
by these two feature functions using an outer product at every location
within the image. The outer product is computed using fa(x)T fb(x),
where x ∈RH×W×C and (·)T stands for the transpose operator. The pool-
ing function is applied to aggregate the results, and for our experiences,
the sum-pooling was considered. Since, it does not consider the location
of the features, this function is orderless which is an important attribute

for texture and fine-grained classification [4]. Finally, the classification
function is applied to obtain the output of the bilinear model.

2.2 Multi-Fractal Spectrum

Since we are working with a finite resolution we can only compute an
estimation of the fractal dimension. A usual way to compute this is as-
suming that the number of δ -covers M that span a fractal point set F vary
proportionally to the power of δ , as δ → 0:

M(F,δ )≈ kδ
−β =⇒ logM(F,δ ) ≈ logk−β logδ , (1)

where k,β ∈ R. Consequently, the empirical estimation of the fractal
dimension β will be:

β = lim
δ→0

logM(F,δ )
− logδ

. (2)

Regarding this, the computation of the fractal dimension can be done by
determining the slope of the plot of logM(F,δ ) versus logδ , for an ap-
propriate finite range of δ . Based on this dimension Yong Xu et al. [5]
proposed the Multi-Fractal Spectrum (MFS) in order to obtain a more
accurate and complete descriptor of F.

Consider an image I defined over Ω ⊆ R2 and let µ be a measure
over Ω so that µ(x,r) = krβ̂ (I,x) for x ∈ Ω, where β̂ (I,x) ∈R is a density
function and k ∈ R. Then, the local density function or Hölder exponent
is determined as:

β̂ (I,x) = lim
r→0

µ
(
B(I(x),r)

)
logr

, (3)

where B(I(x),r) denotes a closed disk of length r around coordinate x in
I. Then, we partition Ω and obtained the following sets:

F
β̄
=
{

x ∈ Ω : β̂ (I,x) = β̄

}
. (4)

The MFS is obtained by computing the fractal dimension using (2),
for each categorization:

MFS(I) =

{
lim
δ→0

logM(F
β̄
,δ )

− logδ
: β̄ ∈ R

}
. (5)

In practice, we establish an appropriate range N and perform the compu-
tation of (5) by employing a uniform division of [0,N] into m discrete bins
that are evenly spaced. The definition used was the one proposed in [5]
since it was demonstrated that it is invariant under the bi-Lipschitz map,
which includes transformations very common in these images. Regarding
the function µ , we also used the ones present in [5]:

• µ1
(
B(I(x),r)

)
=

∫
B(I(x),r) Gr ∗I(x)dx, where Gr is a Gaussian blur

filter with variance r, and ‘∗’ is the convolution operator

• µ2
(
B(I(x),r)

)
=

∫
B(I(x),r) ∑

4
i=1 gi(Gr ∗ I(x)

)
dx., where g1,g2,g3,

and g4 are the differential operator for vertical, horizontal, diago-
nal, and anti-diagonal directions

• µ3
(
B(I(x),r)

)
=

∫
B(I(x),r) |∇2(Gr ∗ I(x)

)
|dx.

Finally, the MFS is the combination of µ1, µ2, and µ3.



Figure 1: Boxplots with the metrics computed for each fold obtained in
5-fold cross-validation for the three different models.

2.3 Proposed approaches

For the two proposed models B1 and B2 the pooling function and the
classification function were the same. The pooling function considered
was the sum-pooling, while the classification function was defined as a
Multi-Layer Perceptron (MLP) composed by two consecutive dense lay-
ers with rectified linear unit activation function followed by their respec-
tive dropout probabilities and an output layer which is a single neuron
with a sigmoid activation function. In the two approaches the images
were divided into patches to capture more local information.

The main difference between the two bilinear models B1 and B2 is
the feature functions. On one hand, for B1, fa is the output of the global
average pooling of a pre-trained VGG-16 and fb the maximum response
over µ1, µ2, and µ3. On the other hand, for B2, fa is the embeddings of
the VGG-16 and fb the response over µ1, µ2, and µ3 for all the patches.
Thus, while B1 ensures that if there’s a patch with a significant response,
it signifies a segment of the image containing GIM, B2 preserves patch
location information before computing the outer product allowing a clear
spatial representation of pairwise interactions.

3 Experiments

3.1 Materials

For our experiences a dataset collected at the Gastroenterology depart-
ment of Instituto Português de Oncologia, Porto (IPO-Porto) was used.
Initially, the dataset was filtered concerning incorrect diagnosis of GIM,
low resolution, and frames captured in WLI, and the final dataset was
composed by a total of 125 high-quality NBI images, 65 classified as nor-
mal (- class) and 60 as GIM (+ class). Furthermore, a pre-processing
procedure was applied to remove excessive black borders and delete the
system status information. The dimension of the images was increased
to 1078 × 1351 × 3 using bilinear interpolation and then each image was
divided into 7 × 7 non-overlapping grayscale patches with the shape of
154 × 193 × 1, to be compatible with the shape of the embeddings of the
VGG-16.

3.2 Experimental method

Besides the purposed approaches, following a previous work [3] we se-
lect a VGG-16 pre-trained in the ImageNet dataset was implemented as a
baseline. In the three experiments, stratified 5-fold cross-validation was
conducted, and for each cross-validation iteration, we generated the fol-
lowing partitions: 100 (48+,52−) samples for the train set, 12 (6+,6−)
samples for the validation set and the 13 (6+,7−) remaining ones for
the test set. In order to increase the amount of data we decided to use a
simple data augmentation procedure on the training set that consisted in
a random horizontal and vertical flips, and adding Principal Component
Gaussian noise to the color channels [1]. The augmented training set re-
sulted on a total average of 1214 samples (582+,632−). To estimate the
MFS we set r,δ ∈ {1,2,3,4,5,6,7,8} and we defined m = 26 (number of
bins to partition the interval [0,N]). All the MFS vectors obtained were
normalized using the standardization method (µ = 0 and σ = 1).

For evaluating the results 6 evaluation metrics were chosen: accu-
racy, Positive Predictive Value (PPV), Negative Predictive Value (NPV),

Figure 2: A, B, and C are images misclassified by the VGG-16, but cor-
rectly classified by B1 and B2; D; E, and F are the opposite. The true label
is in the right top corner of the image.

Sensitivity, Specificity, and Area Under the Curve (AUC) (Fig.1).

4 Discussion

Concerning the results presented in Fig.1 we verified that there is a clear
difference between the proposed approaches and the baseline. For all
the metrics the proposed approaches exceed the baseline, except for the
Specificity. Regarding B1 and B2 there is not a clear difference in perfor-
mance since the values throughout each fold are very similar. In Fig.1 we
also observed that the inter-fold variability is very significant because the
interquartile range is large, except for the Specificity obtained with B1.

For a better understanding of the performance of the proposed ap-
proaches, we asses which images the baseline failed and our approaches
not and the oppposite (Fig.2). As we noticed the baseline tends to fail in
easy positive images (see image A and B in Fig.2) and it seems not able
to capture the right texture pattern since it classified incorrectly images B
and C from Fig.2. Concerning the proposed approaches we verified that
they tend to misclassify normal images corrupted by the presence of noise
(see image D and F in Fig. 2) and images in which a texture pattern is not
clear (see image E in Fig. 2).

The work presented has essentially three limitations. Firstly, the choice
of the patches and the level of overlap were chosen regarding the dimen-
sion of the embeddings of the VGG-16 in order to compute the outer prod-
uct. Secondly, the images were labelled only for one expert. Finally, the
dataset had no details about the patients which prevented us from doing a
per-patient analysis.

5 Conclusions

We presented a novel DNN that incorporates explicit fractal descriptors
to identify GIM within endoscopic imaging data. Regarding the higher
metrics obtained, we conclude that our approaches represent a robust GIM
detector even for a scarce dataset.
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