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Abstract

Using medical images from the rectus femoris muscle acquired through
ultrasound and elastography, the present work analyses the classification
of sarcopenia using modern deep learning architectures and conventional
machine learning models. The dataset consists of 180 medical images
collected from 30 people with ages ranging from 20 to 75.

The study explores a variety of models, including deep learning mod-
els like DenseNet 121, VGG16, VGG19, ResNet50, and Inception V3,
as well as traditional models like logistic regression and neural networks.
The performance of the neural network model is in line with deep learn-
ing models. The Neural Network achieved the best performance with
an F1 score of 99.81%. This study demonstrates improved performance
when just using ultrasound images as the dataset and a traditional machine
learning model for classification, providing insights into diagnostic tools
for early intervention and enhanced care of an aging global population,
shedding light on their potential to classify sarcopenia properly.
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1 Introduction

Sarcopenia’s impact on muscle health, particularly in an aging popula-
tion, has boost research into detection and intervention strategies. Med-
ical imaging methods like ultrasonography and elastography offer non-
invasive insights into muscle characteristics [2] [1].

Models based on deep learning and machine learning techniques are
able to identify patterns and specific characteristics of sarcopenia from
large amounts of data, which can lead to more accurate classifications.
Automating the classification process can be faster and more efficient than
the manual process, saving time and resources [3].

This work explores the potential for classifying sarcopenia using ma-
chine learning and deep learning models. The dataset, comprising 180
images from the rectus femoris muscle of 30 participants aged 20 to 75,
went thorough preprocessing. Traditional machine learning models and
advanced deep learning architectures, including VGG16 and others, are
evaluated. By comparing these approaches, the research seeks to illumi-
nate effective pathways for early sarcopenia diagnosis and intervention,
ultimately contributing to improved healthcare for an aging population.

2 Methodology

The methodology used in this study applies a methodical approach to data
preparation, preprocessing, and data augmentation. It also makes use of
conventional classification approaches and deep learning Convolutional
Neural Networks (CNNs). The following is a summary of the methodol-
ogy’s essential phases.

2.1 Data Preparation

The rectus femoris muscle images from the dataset, were acquired by
ultrasonography and elastography. Thirty volunteers, ranging in age from
20 to 75, provided the data points needed to create a sample that was
representative of each age group. A region of interest (ROI) used as input
to the models was extracted from the acquired images, as shown in Figure
1.
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Figure 1: Comparison between the images obtained by the ultrasound
scanner and the region of interest extracted from the previous image (not
in real sizes).

2.2 Preprocessing and Data Augmentation

Recognizing the critical role of data volume in traditional machine learn-
ing, it was employed the sliding window technique to increase the dataset
size. This approach effectively expanded the machine learning input by
segmenting the images, thereby augmenting the number of samples avail-
able for analysis.

In contrast, the approach to augmenting the input data for deep learn-
ing models was done by introducing variations to the input images: Hori-
zontal flips were applied to introduce mirror images, Gaussian noise was
added to simulate real-world variability, and rotations were executed at
six distinct angles (-90, -45, -15, 15, 45 and 90 degrees).

2.3 Traditional Classification

The conventional classification techniques included feature extraction,
normalization, and selection. In order to compare how well different clas-
sifiers performed in identifying sarcopenia from the acquired images, the
classifiers’ performance was analyzed.

Throughout the optimization process, several functionalities and ap-
proaches were systematically explored. At several stages of optimization,
these functions, which are essential to the classification process, were as-
sessed and compared. They had a crucial role in determining the classi-
fiers’ learning behavior and discriminating abilities, which affected their
ability to distinguish between images with and without sarcopenia. This
thorough analysis allowed the understanding how several factors affected
the performance of the classifiers and ultimately helped to correctly iden-
tify sarcopenia in the images.

2.4 Deep Learning

Transfer learning was used in the pre-trained models like DenseNet 121,
VGG16, VGG19, ResNet50, and Inception V3. To increase feature rele-
vance, attention-related mechanisms were included.

This research included a wide range of features and properties es-
sential to model optimization. A thorough investigation and comparison
of variables including batch size, loss functions, optimization techniques,
and learning rate schedulers was conducted. The model’s learning dy-
namics and convergence were considerably impacted by the selection of
these components. This research intended to identify the ideal configura-



tion that would enable the accurate diagnosis of sarcopenia in the images
by methodically evaluating and contrasting these elements.

3 Results and Discussion

3.1 Datasets

We used datasets: A, B, and C. The dataset A has 89 principal Regions of
Interest (ROIs) from ultrasound scans; 46 of these ROIs were from elderly
adults with sarcopenia and 43 from young, healthy people.

The dataset B was 91 primary ROIs from elastography including 42
from young, healthy individuals and 49 from elderly persons with sar-
copenia.

With 137 principal ROIs, Dataset C consists of ultrasonography and
elastography data, where 85 of these come from young, healthy people in
their 20s, and 95 from older people with sarcopenia.

The sliding window technique became a key technique for dataset
analysis in the area of machine learning. The most effective combinations
were found by a methodical investigation of various window widths and
step sizes. The dataset A performed better with a 38 point window and 3
point step size. While dataset B showed improved outcomes with a 35-
point window and a 3-point step size. On the other hand, the combined
dataset C showed the best results with a window size of 38 and a step size
of 3. The datasets are presented in Table 1 (see ML rows).

Several data augmentation techniques were employed in the effort
to fully use the potential of the models. These techniques aimed to in-
crease the input’s diversity in order to produce input that was more like
real-world scenarios and so increase the model’s adaptability. The details
about these datasets are in Table 1 (see DL rows).

Table 1: Datasets used for both machine learning (ML) and deep learning
(DL) models.

Datasets Number of images Ratio (unhealthy:healthy)

ML
A 12 509 45:55
B 8 612 42:58
C 19 460 43:57

DL
A 22 784 52:48
B 23 296 54:46
C 46 080 53:47

3.2 Results

In the current work, it is present a comparison of five classic classifiers
and five Deep Learning Models. The computing requirements of test-
ing different models has an impact on the choice of classifier in the deep
learning context. In order to optimize, a base set of functions was initially
created. Then, in each step, different functions were compared, and the
one that produced the highest performance was chosen, modifying the ba-
sic set of functions. In machine learning, the hyperparameters were first
optimized using Bayes search, and then the functions for feature normal-
ization, feature selection, and feature quantity were compared. Following
deep learning model tuning, a number of features and properties were
assessed. A thorough evaluation and comparison of batch size, loss func-
tions, optimization methods, and learning rate schedulers was conducted.
The usage of attention processes was also evaluated. The final perfor-
mance of each classifier is present in Table 2.

Table 2: Classifier’s final performance using datasets A, B and C.
F1_score (%)

Model A B C
Neural Network 99.81 99.59 99.20
Nu Support Vector 94.03 93.32 92.84
Logistic Regression 96.84 96.16 92.90
Stochastic Gradient Descent Classifier 97.85 96.79 95.01
Support Vector Machine 99.04 98.34 96.81
DenseNet 121 96.94 97.63 97.63
VGG 16 99.02 98.55 99.12
VGG 19 99.33 99.12 98.71
ResNet 50 95.36 94.32 93.22
Inception V3 93.50 89.13 88.35

A number of reasons may have contributed to machine learning clas-
sifiers’ superior performance. Notably, given that classical machine learn-
ing is more effective with smaller, simpler datasets, the dataset’s size and
complexity may have been better suited for it.

It’s possible that hyperparameter adjustment also had an impact. The
machine learning models were subjected to refined hyperparameter opti-
mization, resulting in configurations that take advantage of the features
in the dataset. Due to the high computational power required by the deep
learning models, the hyperparameter tuning was not as rigorous as the one
made for the machine learning classifiers.

While typical machine learning classifiers performed more effectively
when it came to categorizing cases of sarcopenia, an interesting finding
regarding the effectiveness of deep learning models was made. Some
deep learning models, including VGG16 and VGG19, showed high per-
formance without requiring intensive optimization efforts. These models
repeatedly demonstrated their promise as reliable classifiers across a vari-
ety of datasets by achieving an F1 score of 99%. They did have the capac-
ity to reach comparable results more quickly, highlighting the importance
of their inbuilt feature extraction abilities. It is also worth mentioning that
the models ResNet 50 and Inception V3 reached a better performance
without the attention mechanism. This finding could be related to their
architecture that facilitates the propagation of features through different
layers, thus not needing an attention mechanism.

Finally, both machine learning and deep learning models had com-
parable performance across all datasets. Overall, dataset A resulted in
the best performances and dataset C in the lowest. In most models, the
decrease in performance isn’t relevant, but in models like Inception V3
is noticeable. This could be due to difficulties in defining elastography
images, leading to suboptimal performance in datasets containing elas-
tography images.

4 Conclusions and Future Work

In this research, it was possible to define sarcopenia in both ultrasound
and elastography images with an average F1 score above 90% and in some
models reaching 99%. These results show the model’s ability to enhance
the diagnostic of sarcopenia, facilitating more effective healthcare inter-
ventions in the context of an aging population.

The short dataset employed is the primary factor accounting for the
higher performance of traditional machine learning classifiers. The dataset
utilized may have produced models with lower performance than antici-
pated because the deep learning models require a very large dataset in
order to efficiently train them.

To elect the best method for classifying sarcopenia, future studies
may incorporate more thorough deep learning model exploration, includ-
ing various architectures and configurations. Additionally, increasing the
focus on hyperparameter optimization and domain-specific modifications
has the potential to improve classification.
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