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Abstract

Deep learning models have been widely used in past years for a variety of
applications, progressively achieving better results due to an increase in
complexity. More complexity leads to a decrease in interpretability, which
demands explanations regarding model reasoning. These explanations
can be obtained with methods like Grad-CAM that computes the gradi-
ents up to the last convolutional layer to form an importance map relative
to a specific class. This is followed by an upsampling operation which
matches the size of the importance map to the size of the input. However,
this step is based on the assumption that the feature spatial organization
is maintained throughout the model, which may not be the case. We hy-
pothesize that the spatial organization of the features is not kept during the
forward pass for models with large receptive fields, which may render the
importance map devoid of any meaning. This also applies to any Grad-
CAM variant using the same upsampling step. The obtained results show
a significant dispersion of the spatial information, which goes against the
implicit assumption of Grad-CAM, and that explainability maps suffer
from this dispersion. Altogether, this work addresses a key limitation of
Grad-CAM which may go unnoticed for common users, taking one step
further in the pursuit for more reliable explainability methods.

1 Introduction

The advent of Deep Learning (DL) has so far enabled the development
of countless solutions for an ever-growing number of tasks. Nevertheless,
and despite promising performances, the number of DL solutions being
implemented in clinical practice is still very limited due to their lack of
trustworthiness. This problem arises from the black-box nature of increas-
ingly complex models, with a concomitant decrease in interpretability. To
circumvent this issue, several methods have been proposed throughout
the years to explain these models and/or their predictions. In this work
we will focus on Grad-CAM [5], a common method used for computer
vision tasks, with the goal of highlighting areas of an input image con-
tributing to a given prediction. It does so by computing gradients for a
given layer of the model, by averaging them for the multiple channels and
multiplying them by the activations. The resulting values are summed
channel-wise, rectified and scaled and finally upsampled to match the in-
put size and overlap the explanation with the image.

Despite being widely used, in recent years there has been an increased
distrust concerning the performance of this method. Different attempts
have also been performed to improve Grad-CAM, but some key aspects
related to its functioning are almost unexplored, which could help to ex-
plain certain flaws associated with this method. One such aspect is the
upsampling step, which leads to an implicit assumption in the Grad-CAM
method that there is a spatial correspondence between the last feature map
and the input. However, due to the large Receptive Fields (RF) of modern
architectures, the spatial correspondence assumed by Grad-CAM may not
exist since specific features are influenced by very large areas of the in-
put. Previous work has extended this idea to the Effective Receptive Field
(ERF) [3] of a model, the area within the RF more likely to influence a
given feature, stating that there is a misalignment between the ERF and
the implicit RF derived from the upsampling step [6].

In this work, we further investigate this relation between large RFs
and the performance of Grad-CAM. Exploring this association will con-
tribute to a better understanding of this method and whether it can be
improved or if it should be replaced.

2 Materials and Methods

2.1 Dataset

The dataset used throughout this work was the public version of the VinDr-
CXR dataset available on Kaggle [2]. It consists of 15,000 chest x-ray im-
ages representing a set of 14 radiographic findings, with respective bound-
ing boxes indicating pathological locations. Each image in the dataset was
independently annotated by three radiologists, and labels were extracted
based on the majority vote of the participating radiologists. A medical
dataset was selected for these analyses since the performance and accu-
racy of explainability methods acquires an increased importance when
applied to this scenario, since DL-based clinical decision support systems
need to be highly trustworthy.

2.2 Models and training

We used three different architectures from torchvision.models for the con-
ducted experiments, namely EfficientNet-b0, DenseNet121 and ResNet50.
Every architecture contained 14 output neurons (one for each class in the
dataset) and was trained on five different splits, starting with pre-trained
weights on ImageNet. Each split consisted of a train, validation and a test
sets, with the validation set being used to implement an early stopping
strategy with a patience of 10. Every batch of images was submitted to
data augmentation transforms, including rotations, cropping and changes
in brightness, contrast, saturation and hue. The input size was 224 and a
learning rate of 10−3 and a binary cross-entropy loss function were used.
The batch size varied between 32 and 64 depending on memory usage for
each model (64 for EfficientNet-b0 and ResNet50, 32 for DenseNet121).

2.3 Receptive field computation

The RF for each model was computed using an approach based on the
work of Araujo et al. [1]. Through Equation 1, where r, k, s and l stand
for the RF, kernel size, stride and layer index, respectively, it is possible to
iteratively compute the RF. Nevertheless, this formula has its limitations
(for instance, when dealing with skip connections), so the results were
carefully assessed considering the properties of each architecture.

rl−1 = rl ∗ sl + kl − sl (1)

2.4 Explainability metrics

Two distinct metrics were used to evaluate the maps given by Grad-CAM,
the Intersection over Union (IoU) and the Hit Rate (HR), following a sim-
ilar procedure to [4]. However, in this work, the IoU was computed be-
tween the bounding boxes and the maps binarized according to the area
of the bounding boxes. Regarding the HR, this metric is computed by
checking whether the highest value in the explainability map is located
inside the corresponding bounding box.

The explainability maps and metrics were computed not only for the
final layer, but also for intermediate layers. It is worth noting that for
these intermediate layers in which the feature map resolution was higher,
the extracted explainability maps were first downsampled to the size of
the last feature map and only then upsampled to match the input size, thus
discarding the impact of different feature map resolutions on the results.



2.5 Effective receptive field computation

The ERFs were computed using backpropagations from specific feature
maps up to the input, similarly to past approaches [3, 6]. To perform these
backpropagations and compute the ERFs, a gradient signal of 1 at the cen-
ter coordinates across all channels of the feature maps, and 0 otherwise,
was used. Equation 2 describes this process, where Ai jk are the center
coordinates of a given feature map, C is the number of channels of the
input, Ixyc, and N is the number of images in the test set.

ERF =
1
N ∑

n

∣∣∣∣ 1
C ∑

c
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3 Results

3.1 Receptive fields

We first computed the RFs for each model as shown in Table 1. Sur-
prisingly, our results show that the RF for the EfficientNet-b0 model is
infinite. This is caused by squeeze-and-excitation blocks present on the
EfficientNet-b0 architecture, which condense the channel information into
single values that are then processed and used as weights to recalibrate the
feature maps. On the other hand, the DenseNet121 architecture has a the-
oretical RF that ranges from 1047 to 2071. This occurs due to the skip
connections and concatenation operations that are present in the model,
which leave certain channels unaltered and thus with smaller RFs. Re-
garding ResNet50, it presents the smallest RF from the three models but
still large when compared to typical input sizes.

Table 1: Receptive fields for the different models.

EfficientNet-b0 DenseNet121 ResNet50
Infinite 1047-2071 427

3.2 Explainability evaluation

The next step consisted in producing explanations for each model us-
ing Grad-CAM and computing metrics to evaluate the overlap with the
pathology masks. We performed this not only for the last layer, but also
for intermediate layers where the RF is smaller, as shown in Table 2. In-
terestingly, we can see a significant improvement for intermediate layers
in terms of IoU and HR regardless of feature map resolution, since we
downsample attributions from intermediate layers before the upsampling,
even though these features are a priori less meaningful. We also show
some examples for the Aortic enlargement class in Figure 1 where the ex-
planations for intermediate layers are more accurately targeting the aorta.

Table 2: Mean IoU and HR values for different layers and models.

Model Layer IoU HR
features[-1] 0.21 ± 0.05 0.35 ± 0.08

EfficientNet-b0 features[-2] 0.20 ± 0.04 0.35 ± 0.06
features[-3] 0.23 ± 0.03 0.44 ± 0.04
features[-4] 0.13 ± 0.02 0.32 ± 0.03
denseblock4 0.18 ± 0.02 0.21 ± 0.04

DenseNet121 transition3 0.27 ± 0.02 0.51 ± 0.05
denseblock3 0.26 ± 0.02 0.48 ± 0.05
transition2 0.14 ± 0.01 0.30 ± 0.03

layer4 0.14 ± 0.02 0.30 ± 0.03
ResNet50 layer3 0.20 ± 0.03 0.43 ± 0.04

layer2 0.07 ± 0.01 0.17 ± 0.04

3.3 Effective receptive fields

To complement this analysis, we computed and compared the ERFs for
the last and best intermediate layers (Figure 2). As expected, the ERF is
much more concentrated in intermediate layers which can lead to better
explainability maps. There is, however, an apparent trade-off between the
ERF concentration and feature importance. Therefore, going back one or
two blocks can result in a significant improvement in the faithfulness of
explanations, but going too far back is no longer beneficial.

4 Conclusion

In this work, we studied a possible limitation of the Grad-CAM method
which may also apply to other CAM-based methods. As shown here,
RFs of common architectures can be much larger than typical input sizes,
meaning that any part of the image may influence a given feature. This
can lead to the obvious problem that features and gradients for the last
layer, and consequently attributions, do not have any spatial correspon-
dence relative to the input. We complemented the RF measures with the
computation of the ERF and a link was found between its concentration
and the performance of Grad-CAM. More importantly, we demonstrated
this phenomenon while excluding the effect of different feature map res-
olutions. Ultimately, these results can lead to a better understanding of
why this method can produce inaccurate explanations and pave the way
for its improvement/replacement.

Figure 1: Explanations from the last layer and the best one in terms of
IoU and HR. The image used corresponds to an Aortic enlargement case.

Figure 2: ERFs from the last and best layers.
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