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Abstract

With the increased use of machine learning for liveness detection solu-
tions comes some shortcomings like overfitting, where the model adapts
perfectly to the training set, becoming unusable when used with the test-
ing set, defeating the purpose of machine learning. This paper proposes
how to approach overfitting without altering the model used by focusing
on the input and output information of the model. The input approach fo-
cuses on the information obtained from the different modalities present in
the datasets used, as well as how varied the information of these datasets
is, not only in number of spoof types but as the ambient conditions when
the videos were captured. The output approaches were focused on both
the loss function, which has an effect on the actual ”learning”, used on the
model which is calculated from the model’s output and is then propagated
backwards, and the interpretation of said output to define what predictions
are considered as bonafide or spoof. Throughout this work, we were able
to reduce the overfitting effect with a difference between the best epoch
and the average of the last fifty epochs from 36.57% to 3.63%.

1 Introduction

With the rise of facial recognition technology in day-to-day applications,
such as mobile payments, comes a concern for the security of these sys-
tems. To counteract these security vulnerabilities, which present them-
selves as Presentation Attacks (PA), the development of Presentation At-
tack Detection (PAD) or liveness detection has become a requisite of mod-
ern facial recognition systems.

Most PAD methods are developed with machine learning, with the
data that is fed to these models being presented in multiple modalities,
namely colour, depth and infrared. While the results obtained from the
high end models using all of this information, it is unrealistic that these
systems can be easily transitioned to real life use. This can be due to
either the devices not being able to capture the different modalities of
images or that they do not have the computation power required to run the
model. While costly, it is these complexities that reduce or even remove
the presence of overfitting in these models, which in the case of liveness
detection can be attributed to certain factors like the binary nature of the
problem itself: "bonafide or spoof?".

The overall objective is to reduce the requirements of liveness de-
tection solutions, be it in computational requirements, monetary cost or
information requirements in order to apply these solutions to the systems
that would most benefit from them. This work does that by reducing the
effect of overfitting in the results while restricting itself to the use of only
colour images as its data.

2 Literature Review

Since the question of liveness detection can be put bluntly as ”bonafide or
spoof” the first machine learning solutions employ binary cross-entropy
loss as the sole learning supervision for the network [7]. However due
to its simplicity, the models are prone to overfitting since they can eas-
ily focus their learning in arbitrary features, not relevant to the liveness
detection problem. While the use of different loss functions has been em-
ployed [6] by interpreting the issue in other ways, another solution was to
aid the loss function using pixel-wise supervision.

Pixel-wise supervision can be made by using previous knowledge of
liveness detection, and applying it to the model. For example, the use
of pseudo depth maps [8] based on the knowledge that, two dimensional
attacks (print and replay) will display a ”flat” depth map can be used to

aid the model. By the same logic, binary mask labels [5] or reflection
maps [3] have been used.

The previously mentioned approaches are all based on colour inputs
(RGB, YCbCr or HSV) and it is the modality most commonly used.
However, thanks to the development in sensors, it is possible to retrieve
datasets using other modalities like depth, infra-red or thermal images.
The models can then use a singular type of modality, or use the informa-
tion available from several modalities all at once.

One such work is FeatherNets developed by Zhang et al. [9] in the
interest of adapting the current deep learning approaches to liveness de-
tection, which are usually very heavy in both computation requirements
and data storage, to use in mobile or embedded devices which are inca-
pable of meeting these requirements. To solve this problem, they propose
a network ”as light as a feather” that using depth information is able to
achieve ACER of 0.00168, with only 0.35 million parameters and 83 mil-
lion flops down from the baseline using ResNet18 [2] with an ACER of
0.05 with 11.18 million parameters and 1800 million flops. This network
was chosen since its lightweight nature is in line with the overall objective
of our work.

3 Approach

For the most part, the work conducted for this paper follows the methods
presented by the authors of FeatherNets, adding the use of the WMCA
[1] dataset and resorting to the use of colour (RGB) information instead
of the original use of depth information.

The two datasets used are CASIA-SURF, developed by Zhang et al.
[10], with 21,000 videos of 1,000 individuals captured with an Intel Real
Sense 3000 camera providing not only RGB images but also depth and
infrared images, and WMCA, developed by George et al. [1], being quite
smaller than the previous dataset with 1,679 videos of 72 individuals,
which are divided in 347 bonafide cases and 1,332 spoofs. The datasets
were both captured using the Intel Real Sense 3000 camera, removing
questions regarding camera quality to the discussion. The interest is in
how the larger dataset presents less variety in attacks, with only print at-
tacks varying in their positioning and the smaller dataset having more
types of attacks captured in more varied conditions.

FeatherNets’ structure is based on a main block, a down sampling
block and then a streaming module that substitutes the fully connected
layer as to reduce overfitting. The main block is based on the "MobileNet
v2" model proposed by Sandler et al. [4] which employs the use of depth
wise convolution as well as inverted Rectified Linear Unit (ReLU) blocks
to improve the computation requirements associated with the computer vi-
sion tasks. The main block is then followed by one of two down sampling
blocks, creating the distinction between FeatherNetA and FeatherNetB.
FeatherNetA’s downsampler is the simpler of the two having a singular
branch of the depth wise convolution/inverted ReLU combination while
increasing the stride of the convolution to 2 thus reducing the dimensions
of the input to 12.5% of the original size. FeatherNetB’s downsampler
has also a first branch equal to FeatherNetA but adds a parallel secondary
branch with average pooling to better learn more diverse features.

The occurrence of overfitting will be defined through the decrease of
accuracy over the epochs, the larger the reduction, the more prevalent the
overfitting. This can be simply read through the result tables presented
throughout the document and is translated graphically in an increase of
accuracy until it hits a peak (the highest accuracy score, considered then as
the best epoch) and a subsequent decrease until a plateau is reached (here
the model is no longer learning and is perfectly adapted to the training
set).



4 Experiments and Results

Several experiments were conducted following the methods described in
[9], first strictly to confirm that the model works as intended and then with
only the colour image and varying certain parameters in the model. For
the sake of brevity, these results showed that the dataset with more dif-
ferent types of attacks showed less overfitting than the dataset with only
the print attacks, with the discrepancy between the best epoch and the av-
erage of the final 50 epochs being 1.00% and 36.57% respectively. This
could be explained with the information that depth maps give in this con-
text that can easily detect 2D types of attacks (print and replay) from 3D
attacks (masks or mannequin heads for example) as can be seen in figure
1. This conclusion was further explored by adding 3D attack examples
to the simpler dataset and observing that the overfitting would slightly re-
duce. The parameter variation, namely in the focal loss function, showed
little effect.

Figure 1: Comparison between RGB and depth images of a print attack
(left) and a bonafide face (right). Note that the depth images aren’t of
great quality, not being able to capture the eyes cut out of the print attack
and not giving much detail to the bonafide case, but being possible to
notice the differences. Images selected from the CASIA-SURF dataset
[10].

The more notable results came from the tests involving a Precision-
Recall (PR) curve, where in the threshold that defines the classification
of bonafide or spoof was tuned to reach the best PR curve with Precision
being the percentage of correctly predicted true cases among all predicted
true cases and Recall the percentage of true values predicted as such. The
approach is running the model at different thresholds between 1, where
no image can be considered as bonafide and 0 where all predictions will
be bonafide. Once all these values are obtained the points can be plotted
in a graph and then a curve adjusted to them. From this curve a point can
be picked out as what is considered ideal, in this case the closest point to
what be considered perfect i.e. (precision,recall) = (1,1), however the
threshold value needs to be inferred from where the ideal point stands in
the graph. This ablation study was conducted using the CASIA-SURF
dataset on FeatherNet A, reaching the curve presented in figure 2.

Figure 2: Precision-Recall curve. The curve was obtained using Matlab’s
polyfit() function. The threshold chosen was obtained by using Euclidean
distance to find the closest point to the perfect (1,1) which resulted in
point (0.8913,0.7828) which corresponds to a threshold value of roughly
0.9675.

With the ”ideal” threshold calculated threshold = 0.9675, it is only a
matter of repeating the initial experiments with the new threshold, which
reduced the initial 36.57% discrepancy to only 3.63%.

5 Conclusion

This work showed the importance of a varied dataset and how these vari-
ations are able to compensate for loss of information associated with the
multiple modalities an image can be presented with. From this loss of
information, the overfitting effect present in the model became consid-
erably noticeable with a difference between the best result, obtained at
epoch 9 with an accuracy of 89.75%, and the average accuracy of the last
fifty epoch’s, equal to 36.57%. By adjusting the threshold that defined
bonafide or spoof, this difference was reduced to 3.63%.

The results obtained during this work present possible considerations
that could be helpful in the development of future solutions, both regard-
ing the size, diversity and applicability of the datasets, as well as the
modality given to the model.
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