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Impact of miscalibration and camera noise in an active stereo-based LiDAR in 3D object detection
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Abstract

LiDARs are a powerful technology capable of capturing high-resolution
3D point clouds of the surroundings. However, because it is expensive
and immature, LiDAR is not yet a viable option for car manufacturers for
mass-production.

We propose an alternative LiDAR sensor made of affordable and
mass-produced components, which works like an active stereo system,
however with physically detached cameras.

This paper focuses on the fact that such a setup is prone to being
miscalibrated and is also affected by camera noise. The objective of this
paper is to observe whether camera miscalibration and noise are harmful
to 3D object detection.

1 Introduction

According to studies from the WHO [7], 1.3 million people die each year
as a result of road traffic crashes. Factors such as speeding, distracted
driving and driving under the influence of alcohol or other psychoactive
drugs are some of the major risk elements that cause these numbers to
be so high. To mitigate these risks, one possible solution is offsetting the
human functions, such as, driving and parking to the vehicle.

Of all the groups of electronics that can assist in this realm, the vision
sensor group is one of the most important. Vision sensors enable the
vehicle to perceive the environment and make decisions accordingly. In
this group there are: cameras, LiDARs and RaDARs. From these the
LiDAR is the most capable of acquiring a 3D map of it’s surroundings,
enabling the autonomous vehicle to have 3D vision. However, due to
it’s expensiveness and immaturity it is still not a viable option for car
manufacturers.

In this work, we propose a LiDAR based on an active stereo setup
made with affordable, mass-produced components.

1.1 Proposed Stereoscopic LiDAR Setup

The setup makes use of active stereo, by using two cameras with a dis-
tance of 1.2 meters between each other and a dot pattern projector that
generates a dot pattern similar to a Velodyne HDL-64E [4]: 64 lines of
dots with two consecutive dots of the same line diverging by 0.08 degrees.
And thus, enabling the setup to make a point cloud of the surroundings.
The setup is in a simulated environment and uses a synthetic dataset [1]
[2].

Some factors are needed to be taken in consideration: noise, calibra-
tion, correspondence and centroiding. This paper focuses on noise and
calibration. Physically unattached cameras are prone to become miscali-
brated over time. Camera noise will vary depending on the camera sensor
used. Because of that, there is a need to know if camera miscalibration
and noise impair the performance of 3D object detection.

2 Methodology

The methodology behind this work is detailed in Figure 1. The use cases
are as such:
1. The first use case is the ideal scenario and the dataset for the model is

used as is. This model acts as a baseline.
2. The second use case depicts a realistic LiDAR sensor. The dataset

suffers a non-systematic change, which means that every point in a
point cloud will be randomly shifted between 0 and 10 centimeters
from their original position.

Figure 1: Methodology and main objective in this work.

3. The third use case is the first usage of the proposed setup. A stereo-
scopic LiDAR means that every point is calculated via triangulation,
but in this case, since both intrinsic and extrinsic camera matrices are
ideal, the points are only shifted by the amount of the residual trian-
gulation error, which is in the order of the picometers. The results are
expected to be identical to the first use case.

4. In the fourth use case we added error to the rotation axes of the extrin-
sic camera matrices. The selected error value is the Field-of-View per
Pixel value, which is approximately 0.24 degrees. This error is only
applied to the right camera, while the left camera is left with an ideal
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rotation matrix.
5. In the fifth use case we introduced camera noise. To reduce compu-

tation complexity, we first created a table of values to add during the
processing of the point cloud. The noise value is calculated using a
model from [3]. The model will depend on five free parameters that
vary from camera-to-camera. They are: the total quantum efficiency;
the read noise variance (or its standard deviation); the dark current;
the sensitivity; and the bit-depth of the camera. The model starts by
converting the electric field to units of photons. Then, it computes the
photon shot noise and the number of photo-electrons, the number of
photo-electrons is the product of the quantum efficiency with the shot
noise. After that, it needs to simulate the read noise and dark current
that are the main sources of dark noise. The next step is to convert
each pixel from electrons to ADU. To do this, the number of electrons
after the addition of read noise is multiplied by the sensitivity and it’s
maximum upper value is 2k − 1, where k is the camera’s bit-depth.
The last step is to add a baseline to prevent the number of ADU’s from
becoming negative at low input signal.

6. The sixth use case is a combination of the techniques described in the
fourth and fifth use cases.
PointPillars [5] was the 3D object detection Deep Learning model

chosen due to it’s robustness and fast training time while having good per-
formance. And also because of it’s availability in the OpenPCDet toolbox
[6], that simplifies the model configuration and optimization.

The metrics employed by the KITTI benchmark are widely adopted
for perception tasks. Because of that, the models are evaluated in 3D
object detection using the Average Precision metric, with 40-point inter-
polation, for three KITTI difficulty levels: Easy, Moderate and Hard.

Cross-validation with 4 folds was used in the first and sixth use cases.
The remaining use case were validated using only the first fold. If the
results are consistent in both use cases, then the rest of the use cases are
also consistent, therefore, due to our time constraints this was the best
option to perform evaluation of the models.

3 Results

The evaluation of the models was done using both training and testing
frames to validate the models. Besides that, the labels across all the use
cases were the original labels.

As we can observe from Table 1, when any model is evaluated on
the dataset generated for the same use case, the performance holds high.
However when confronting the baseline scenario, some score drops oc-
cur, mainly in the fourth and sixth use cases. When changes occur, start-
ing from the second use case, we can determine that, although there was
a small change in the dataset, the model is robust enough to handle it.
However in the fourth and sixth use cases, the changes are more notice-
able. The score drops up to almost fifty points. When error is added to the
rotation axes of the extrinsic camera matrices, some sections of the point
cloud expand, while others shrink, this leads to the object dimensions not
being constant and, therefore, not being in a box shape with certain di-
mensions. This could mean that objects will not be able to be classified
correctly by the model. Another explanation might be, because the mod-
els, from the fourth and sixth use cases, were trained with this error, they
are able to compensate the displacement caused by the error, that is, the
models ’see’ where an object is after the displacement, but know where it
should be if the displacement did not happen, which is not the case for the
first use case model. Also in the sixth use case, because of the introduc-
tion of camera noise, the score increases by a small amount. One possible
explanation can be that when the point cloud becomes fuzzy the model
becomes less rigid and leaves more room for the detection of objects.

4 Conclusion

In this paper, we analyzed how different impairments affect the precision
of an automotive LiDAR based on active stereo.

From the results, we can observe that 3D object detection operates
well provided that the model is trained in the same conditions. While the
other way around shows that the introduction of a non-constant error is
difficult to handle for models that are not expecting it. We can conclude
that a non-ideal calibrated model can have a good performance in 3D

Table 1: Results for all difficulties. Every cell, from top to bottom,
presents the average precision (%) for Easy, Medium and Hard difficul-
ties.

object detection, but only if the calibrated error is taken into consideration
when training the models.

Improving the overall results can be done by increasing the robust-
ness of the model. This can be done in two ways: increasing the re-
silience of the 3D object detection or keeping the miscalibration within
limits. The former one can be accomplished by adding frames that range
several types of errors: systematic and non-systematic. For example, ob-
taining frames using the proposed setup with other calibration errors, ag-
glomerating them and using them to train the model. The latter one can
be accomplished by resorting to surrounding features for estimating the
camera parameters and correcting them if needed.
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