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Abstract

Motion estimation in echocardiography is critical when assessing heart
function and calculating myocardial deformation indices. Nevertheless,
there are limitations in clinical practice, particularly with regard to the
accuracy and reliability of measurements retrieved from images. In this
study, deep learning-based motion estimation architectures were used to
determine the left ventricular longitudinal strain in echocardiography. Three
motion estimation approaches, PWC-Net, RAFT and FlowFormer, were
applied to a simulated echocardiographic dataset, achieving an average
end point error of 0.24, 0.22 and 0.21 mm per frame, respectively. Thus,
optical flow-based motion estimation has the potential to facilitate the use
of strain imaging in clinical practice.

1 Introduction

Cardiac motion estimation from ultrasound (US) images is an essential
tool for the diagnosis of cardiovascular disease [5]. Currently, speckle
tracking echocardiography (STE) is frequently used to non-invasively im-
age heart displacement and strain with sufficient temporal resolution. De-
spite being considered the standard, there is a significant clinical con-
cern related to the reported low reproducibility between the solutions of-
fered by various vendors [1]. Additionally, these strategies face a number
of obstacles due to fundamental limitations of US acquisitions, such as
dropouts, shadows, out-of-plane motion, drift sensitivity and foreshorten-
ing. The US speckle pattern is affected by several of these distortions,
which makes tracking more difficult [8].

The use of deep learning based motion estimation in US, and es-
pecially in echocardiography, is still limited. In [4], the authors pro-
posed a modified version of Pyramidal processing, Warping, and Cost
volume Network (PWC-Net) and generated a synthetic dataset to measure
global longitudinal strain (GLS) in echocardiograms. When compared to
the GLS produced through manual segmentation, the approach showed
promise, with a mean absolute error of 2.5 ± 2.1% and a correlation of
0.77. Furthermore, [8] developed a novel DL-based framework for motion
estimation in echocardiography, based on a PWC-Net architecture, with
the goal of fully automating myocardial function imaging. Using simu-
lated data from an open access database, the motion estimator obtained
an average end point error of (0.06 ± 0.04) mm per frame. Similarly,
[2] sought to fully automate measurements of GLS, producing compara-
ble results to a commercially available semi-automated speckle-tracking
method. Motion estimation was once again based on a modified PWC-
Net, trained using synthetic echocardiography images where the true mo-
tion was known. All steps in the artificial intelligence (AI) pipeline were
performed in < 15 s, eliminating the need for time-consuming manual
input. Nevertheless, the documented low reproducibility across the solu-
tions provided by different manufacturers is still a serious clinical con-
cern. The intrinsic limitations of US acquisitions, including as dropouts,
shadows, out-of-plane motion, drift sensitivity, and foreshortening, also
provide a variety of challenges for these approaches [8].

The main purpose of this work is to explore the viability of apply-
ing cutting-edge computer vision techniques for motion estimates to 2D
echocardiography, with the ultimate goal of fully automatic strain analy-
sis. The utilization of optical flow (OF) for motion estimation served as
the main premise behind this research.
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2 Methods

2.1 Datasets

Two publicly available datasets commonly used for training and bench-
marking of OF methods, FlyingChairs2D and FlyingThings3D, were used
in the models pre-trained weigths. The datasets consist of image pairs and
a corresponding dense displacement map.

For testing, the publicly available dataset of simulated echocardiog-
raphy images [1], consisting of 105 sequences or 6,165 frames was used.
The data is created with a complex biomechanical model for comparison
of speck tracking imaging algorithms. In total, the data is composed of
templates from 7 different vendors, 3 echocardiographic views and 5 mo-
tion patterns from the biomechanical model, including one healthy and
four pathologies. A set of 180 points divided among five longitudinal
lines and 6 segments is provided by the authors for each frame [1].

2.2 Automated Strain Analysis using Deep Learning

An automated strain quantification method using OF-based DL networks
was developed. The proposed workflow for this work is summarized in
the following steps:

1) Data Pre-processing: To reduce the image size, the simulated US
images were cropped around the left ventricle. This allowed for less com-
putational effort, while maintaining the image original resolution. The
size of the input images varies across the seven different vendors.

2) Motion Estimation: OF-based motion estimation networks were
used to estimate each pixel movement field of the heart from two consec-
utive images (It , It + 1). In this work, three different variants (PWC-net
[6], RAFT [7] and FlowFormer [3]) were implemented to identify the op-
timum basic architecture. PWC-Net [6] estimates OF in a coarse-to-fine
way with several pyramid levels using CNNs, and constructs a cost vol-
ume with a feature map from the source image and the warped feature
map from the target image based on the current flow. Nevertheless, PWC-
Net inherently suffered from missing small fast-motion objects in coarse
stage. To remedy this issue, [7] proposed RAFT, which performs OF
estimation in a coarse-and-fine (i.e. multi-scale search window in each it-
eration) and recurrent manner. On the other hand, FlowFormer [3] adapts
transformer architectures to effectively process cost volumes. Currently,
FlowFormer is currently ranked within the top 10 models on the Sintel
benchmark. All the methods produce a dense displacement map of veloc-
ity components v(x,y) = vx, vy between It and It + 1 (Figure 1.a). These
output dense displacement maps are later used to update the position of
left ventricle mid-centerline.

3) Centerline Extraction: The centerline C of the myocardium on
the initial image frame was used as a starting point for tracking. The
centerline is defined as the mid-point between two nearest endo- and epi-
cardial points on the line perpendicular to the longitudinal. Furthermore,
the mid, base and apex points are defined as the points furthest away from
the LV lumen centroid, in left bottom, right bottom and top direction re-
spectively.

4) Tracking Update: In this step, the centerline coordenates are up-
dated by propagating the points with the displacement field, i.e. C(t + 1)
= C(t)+ f(t), and its arc-length representing the longitudinal length of LV
myocardium is calculated at each timestep/frame (Figure 1.b.

5) Strain Measurements: Following, the calculation of longitudinal
ventricular length, the global longitudinal strain is determined for each
timestep (Figure 1.c): GLS =

L(t)−L(0)
L(0) .. The reference length L0 is mea-

sured at the initial frame. The peak-systolic strain was used for GLS esti-
mation, where the peak was defined as the minima of the strain values.



Figure 1: (a) Example of predicted flow patterns for the FlowFormer
method within the myocardium. The hue values, color and saturation
indicate direction and magnitude respectively. (b) Velocity vector com-
parison between the ground truth (GT) and the FlowFormer method. Blue
dots represent the GT, while orange dots represent predictions. (c) Strain
measurements derived from the tracking results.

2.3 Evaluation

The end point error (EPE), which is a common metric for benchmarking
motion estimation performance, was used to evaluated the models. It is
defined as the Euclidean distance between the GT velocity and the pre-
dictions, i.e. EPE = ||vGT − vpred|| [8].

Moreover, strain measurements are used to describe the degree of de-
formation of the myocardium, providing quantitative evaluations of mo-
tion estimates. Correlation metrics, such as regression slope α and corre-
lation coefficient ρ , as well as bias µ , are reported for the strain measure-
ments [1].

3 Results and Discussion

The average EPE with corresponding standard deviation can be seen in
Table 1. The smallest EPE for each model are 0.0782, 0.0916 and 0.0781
for PWC-Net, RAFT and FlowFormer, respectivelly. FlowFormer had
lower EPE in comparison to PWC-net and RAFT, and PWC-Net had a
better performance than RAFT.

Vendor PWC-Net RAFT FlowFormer

Hitachi 0.0886 (± 0.0045) 0.1006 (± 0.0083) 0.0789 (± 0.0066)

Toshiba 0.0924 (± 0.0053) 0.1029 (± 0.0101) 0.0836 (± 0.0076)

ESAOTE 0.1109 ( ± 0.0065) 0.1088 (± 0.0083) 0.0956 (± 0.095)

Samsung 0.1043 (± 0.0096) 0.1373 (± 0.0185) 0.1073(± 0.0177)

Siemens 0.0782 (± 0.0052) 0.0916 (± 0.0097) 0.0781 (± 0.0103)

Philips 0.0952 (± 0.0056) 0.1093 (± 0.0109) 0.0876 (± 0.0097)

GE 0.1269 (± 0.0067) 0.1356 (± 0.0119) 0.1057 (± 0.0127)

Table 1: Results on simulated ultrasound data. Average EPE for every
vendor. Units given in mm per timestep/frame.

Since the FlowFormer had the best performance regarding motion
tracking, only the results of this method were used to assess the strain
correlation. The GLS was calculated across all frames for all sequences.
Of note, there is a variability in strain accuracy between vendors. Over-
all, the tested algorithm seemed to perform better on simulated Toshiba
images (α closest to 1, highest lowest ρ and low µ) and slightly worse
on simulated Samsung images (lowest α AND lowest ρ; Table 2). This
is a direct consequence of the high variability between image appearance
from different vendors and shows the difficulty in developing techniques
designed to work on generic systems.

All three types of networks perform well at estimating motion, how-
ever it is unknown which is best for echocardiography. The applica-
tions of PWC-Net in myocardial movement, which presented a refinement
method that optimizes flow prediction based on the pyramidal layers, have
been detailed by [8], [2] and [4]. Recent results, however, imply that the
spatial pyramid architecture may disregard small, quick movements. This
design might not be ideal for this application because the myocardium has
small displacement magnitudes between frames. In this work, RAFT and
FlowFormer were compared to PWC-net, and ultimately the FlowFormer
was shown to have the best performance in motion estimation (Table 1).

Although the results are promising, there are a few points that should

Vendor α ρ µ

Hitachi 0,3755 0,6947 2,8634

Toshiba 0,8359 0,8991 0,697

ESAOTE 0,7468 0,7931 -0,224

Samsung 0,2972 0,6332 2,7467

Siemens 0,7761 0,8531 -0,0645

Philips 0,8541 0,8722 0,6807

GE 0,5241 0,7944 2,2313

Table 2: Results from the FlowFormer Method Averaged Over the Differ-
ent Vendors in the Simulated US Data.

be mentioned as areas that need more work. Common datasets utilized in
OF research, such as FlyingChairs2D and FlyingThings3D, have motion
magnitudes that are often substantially larger than the normal echocardio-
gram data’s frame-to-frame displacement. Therefore, to get better out-
comes, it should be investigated whether training FlowFormer using sim-
ulated US data is a viable option. Additionally, the capacity of DL-based
approaches to adapt to the data representation used during training is one
of the primary reasons for researching their application. This makes the
employment of augmentation procedures that imitate common image ar-
tifacts particularly enticing since it may also be able to solve some of the
major problems with conventional techniques.

4 Conclusion

Estimating cardiac motion is crucial for the diagnosis of cardiovascular
diseases. The development of effective motion estimate techniques is still
a challenge due to the limited annotated clinical data, US image noise
and the differences among different vendors. The experimental findings
demonstrated that the most recent model, FlowFormer, which is presently
one of the highest-ranked networks on the MPI Sintel benchmark, per-
formed better than the other evaluated techniques. The obtained results
could be further improved by training in the simulated US dataset and
use of data augmentation to increased data volume, and resemblance to
clinical echocardiography. The presented pipeline has the capacity to au-
tomatically measure longitudinal strain in a prospective manner.
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