
  

 

Abstract 
Focused cardiac ultrasound (FoCUS) emerges as a valuable on-the-spot technique 
for assessing cardiovascular structures and performance. Nevertheless, its 
applicability is curbed by equipment constraints and the proficiency of the 
operator, which leads to mostly qualitative evaluations. This study presents a novel 
framework that aims to automatically estimate the 3D spatial relationship between 
standard FoCUS views. The proposed framework uses a multi-view U-Net-like 
convolutional neural network to regress line-based heatmaps representing the most 
likely areas of intersection between input images. The lines that best fit the 
regressed heatmaps are then extracted, and a system of nonlinear equations is 
created to determine the relative 3D pose between all input views. The feasibility 
and accuracy of the proposed pipeline were validated using a novel realistic in 
silico FoCUS dataset, revealing auspicious outcomes that suggest its potential 
value within clinical contexts. This framework, by estimating the 3D pose, could 
help enabling comprehensive 3D quantitative assessments of FoCUS evaluations, 
enhancing diagnostic proficiencies, especially within urgent and high-care 
scenarios where swift and precise evaluations are paramount. 

1 Introduction 
Focused cardiac ultrasound (FoCUS) stands as a point-of-care imaging 
methodology leveraging ultrasonography for assessing both cardiac 
structure and function. In contrast to conventional echocardiography, 
which demands skilled sonographers for a comprehensive evaluation, 
FoCUS is often conducted by less seasoned clinicians with the intent of 
addressing specific queries directly at the patient's bedside. To do so, it 
requires the acquisition of fewer cardiac views, in addition to smaller 
ultrasound devices, offering enhanced portability at the cost of somewhat 
diminished image quality [1]. 
While recent research has proposed avenues to extract quantitative 
information from FoCUS assessments, the emphasis has predominantly 
revolved through two-dimensional (2D) images [2], a process profoundly 
reliant on the operator. While volumetric quantification could supply 
more precise and accurate indices [3], its implementation often requires 
three-dimensional (3D) imaging, an impracticality in routine FoCUS 
evaluations due to equipment and operator constraints.  
In light of this, we tackle this challenge head-on by introducing an 
innovative deep learning (DL)-driven framework for the automatic 
estimation of the relative 3D pose across all acquired views. This strategy 
has the potential to surmount the primary hurdle limiting the integration 
of 3D cardiac image analysis methodologies into the FoCUS approach, 
thereby augmenting its diagnostic capabilities. 

2 Methodology 
The proposed pose estimation framework is built on the observation that 
the relative 3D pose of a set of input images can be determined if the 
intersection between them is known, provided that a sufficient number of 
images, from distinct views, are available. Hence, the framework is 
divided into three modules (Fig. 1): heatmap regression, line extraction 
and 3D view positioning. 

2.1 Heatmap regression 
The heatmap regression module aims to regress line-based heatmaps 
representing the most probable area of intersection between pairs of input 
images (as projected on both of them). Given the potential for shared 
knowledge among models trained to detect the intersection between 
distinct pairs of FoCUS views, we propose to employ a multi-encoder 
multi-decoder U-Net-like architecture that simultaneously estimates the 
heatmaps of all relevant views. 
The proposed network receives five input images, each representing a 
typical view obtained in a FoCUS examination (apical 4- and 2-chambers, 
parasternal long- and short axis, and subxiphoid). It presents a multi-
encoder architecture, allowing each input to have its dedicated contraction 

path. This enables the encoders to learn view-specific convolutional 
filters and gain a better understanding of the details of each view. 
Similarly, a multiple-decoder strategy is implemented, where the outputs 
are separated to allow each decoder to focus on a specific intersection 
between a pair of views. In total, the network produces 20 heatmaps, 
obtained from pairwise combinations of the intersections between the five 
input views. Each heatmap represents the network's confidence in the 
location of the intersection line between the respective pair of images. The 
proposed network was implemented using TensorFlow. 

2.2 Line extraction 
This module aims to extract the lines that best fit the pre- 
dicted heatmaps. To achieve this, a coarse-to-fine grid search algorithm 
(based on [4]) was employed. The algorithm explores all possible position 
and orientation values to find the line with the highest score (computed 
by summing the heatmap values of pixels that fall within a perpendicular 
distance of ≤1 pixel from the evaluated line). To optimize the 
search and extraction process, five grid resolutions are used. 
Initially, a step of 15 is employed to determine the optimal line 
in the entire image. Subsequently, a refined search is performed in a 
window of size 30 (15 to each side) using a step of 5. This process is 
repeated for the last three resolutions (of step 1, 0.5 and 0.1), 
progressively increasing the accuracy of the search procedure. 

2.3 3D view positioning 
The main goal of this module is to estimate the relative 3D pose between 
all input views based on the extracted lines. Since the left ventricle is 
present in all considered views and no duplicated ones are included in the 
model, it is reasonable to assume that all images intersect with each other. 
It is also unlikely, although not impossible, for three images to not 
intersect at a single point, as collinearity only occurs between specific 
pairs (apical 4- and 2-chambers, or parasternal long- and -short axis) and 
no more than two views are acquired from a given cardiac window. These 
intersections among view triplets form a system of nonlinear equations 
that enables the estimation of the images' unknown poses.  
Let us now consider a specific view triplet V consisting of images A, B 
and C. Through the previous modules, one has estimated two lines 
representing the intersection of any image i in V with the other two 
images. For any of the three images, the intersection between these two 
lines represent the point where the three images intersect, and therefore 
corresponds to the same point in 3D space. Hence, it is possible to express  
the equality between these points based on 3DTi  as follows: 
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Fig 1 - Overview of the proposed multi-view pose estimation framework. 
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Pi represents the 2D point estimated for image i. However, assuming all 
unknown variables to be zero would result in a set of true equations that 
do not correspond to a valid solution. To address this, one of the input 
images must be set as reference by assigning its transformation matrix to 
the identity matrix. The pose of the remaining images will then be given 
with respect to it. In our experiments, the A4C view was chosen as the 
reference image. Additionally, the three triplets with the poorest 
performance on the estimation of the intersection lines were excluded to 
prevent a detrimental influence on the pose estimation accuracy. 

3 Results and discussion 

3.1 Dataset 
A total of 7800 realistic synthetic FoCUS images [5] were used to 
implement and evaluate the proposed framework. The dataset was divided 
into two groups in a patient-disjoint manner: (1) a train/validation set 
(~80%) used for architecture design and hyperparameter tuning (in a 5-
fold cross validation); and (2) a test set (~20%). It is worth nothing that 
after obtaining the fine-tuned architecture and optimal hyperparameters, 
the final model was trained using the complete train/validation set, 
allowing the network to be exposed to a wider range of diverse anatomical 
structures during the training phase. 

3.2 Evaluation metrics 
To assess the images’ final positioning, we evaluate: the displacement 
error (d3D), which was determined by calculating the 3D Euclidean 
distance between the image's centre point when positioned according to 
the predicted or ground truth pose; the rotational error (𝜃!") , which 
quantifies the magnitude of rotation required to transform the predicted 
pose to the ground truth one through a single rotation. 
Considering the absence of comparable studies in the literature, we 
established a baseline (Baseline-mid) to evaluate the results of the 
proposed framework. It consists in the expected error when using the 
‘average’ intersection line and any other intersection line within pairs of 
random images from a given view pair. This ‘average’ line is obtained by 
intersecting the first image with the reference transducer's pose (which 
effectively represents the average pose of all simulated images for said 
view pair).  

3.3  3D positioning 
Table 1 provides an analysis of the accuracy of the predicted relative 
poses by comparing the median 𝜃!"  and d3D errors of the proposed 
approach with those obtained using the baseline. The results demonstrate 
that the proposed model outperforms the baseline, particularly in terms of 
the rotational component (approximately 75% and 67% reduction in 𝜃!" 
and d3D, respectively). 

The best result per metric, both per view and averaged, is highlighted in bold. No results 
are provided for the A4C view since it is used as reference. 
 
The results shown in Table 1 demonstrate the ability of the proposed pose 
estimation framework to assemble all views relative to one another, 
serving as a fundamental aspect of our approach. It not only allows the 
development and utilization of 3D image analysis algorithms in FoCUS, 
facilitating the extraction of the relevant chambers (e.g., the left ventricle) 
and computation of the necessary indices in a three-dimensional manner, 
but also potentially addresses the impact of foreshortening by enabling 
the use of any acquired views not affected by it. These aspects provide a 
potential advantage over existing approaches that rely on a single view or 
on geometrical assumptions, and may result in the extraction of more 
accurate, reliable, and reproducible clinical indices. 
Despite the framework's merits, this study presents some limitations. 
Firstly, while the use of synthetic images is a common practice in 
computer vision research, it may not fully capture the intricacies and 

variations present in real data. To address this concern, we conducted an 
exploratory study using real FoCUS images of a patient from our in-house 
dataset (depicted in Fig.2). Although ground truth data was unavailable to 
confirm the accuracy of the 3D view positioning, our framework 
demonstrated a remarkable ability to seamlessly position all views. This 
finding holds immense significance, as it shows the potential applicability 
of our framework in a clinical setting. However, these findings need to be 
confirmed using a large real FoCUS dataset that includes pose 
information (namely by using electromagnetic tracking technology to 
determine the transducer's pose). Secondly, while our proposed method 
yielded promising results, it is important to note that these findings were 
compared against theoretical baselines due to the absence of existing 
works addressing this specific topic. We acknowledge the limitations of 
these baselines and emphasize the importance of conducting further 
research to validate our approach against other benchmarks or by 
leveraging alternative datasets.  

4 Conclusion 
In summary, we have introduced and validated a novel automatic 
framework for multi-view pose estimation in FoCUS. The experiments 
have demonstrated the accuracy and effectiveness of the proposed 
framework in estimating the relative pose of all input views. Ultimately, 
the proposed framework opens up new avenues for 3D analysis in 
FoCUS, showcasing its potential to enhance the diagnostic capabilities of 
this imaging modality in clinical practice. 
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Fig 2 – Estimated relative 3D pose for a set of images from our in-house dataset, 
and highlight the intersection between six pairs of vires 

Table 1 – Global performance of the proposed pose estimation framework. 


