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Abstract

Breast tumor analysis is essential to diagnose breast cancer. Accurate 3D
segmentation of breast tumors from medical images is essential for com-
prehensive disease analysis. This paper presents an automated pipeline
for segmenting multiple breast tumors from Magnetic Ressonance Imag-
ing (MRI) scans. Utilizing a 3D region growing algorithm, the study ad-
dresses challenges in detecting multiple tumors and seed point selection.
Successful segmentation of four tumors highlights the potential of this ap-
proach for automatic multi-tumor segmentation, suggesting compatibility
with a classification model based on the segmented structural features.

1 Introduction

Breast cancer is a major global health concern with high mortality rates,
emphasizing the importance of early detection, which has been shown to
improve the quality of life and survival rates [3]. Computer-aided Diag-
nosis (CAD) systems aid in breast mass detection through detection, seg-
mentation, and classification stages [1]. However, automatic breast tissue
segmentation faces challenges due to varying breast sizes and shapes, in-
tensity inhomogeneities, image artifacts, and other noise errors. Tumor
classification relies on distinctive characteristics, with malignant tumors
being often irregularly shaped and surrounded by spicules, whereas be-
nign tumors tend to have more rounded or elliptical shapes [1]. This study
addresses limitations in Pelicano et al. [3] segmentation pipeline, focus-
ing on the automatic seed point selection and the segmentation of multiple
tumors. The paper outlines an overview of related works, a description of
the materials and methods, and the presentation of the results, followed
by a discussion of the findings and main conclusions of this work.

2 Literature Review

Accurately identifying tumor boundaries is essential for treatment assess-
ment, but challenges arise due to variable shapes and intensity distribu-
tions of breast lesions. Traditional methodologies use the intensity values
of the entire image, however, when dealing with heterogeneous structures,
these methods result in a poor segmentation of the tumor volume. Re-
searchers have proposed various solutions, such as specifying seed points
and threshold values to distinguish lesion and non-lesion regions.

Wang et al. [6] proposed a deep learning model for micro-calcifications
detection in mammograms. They segmented images into small clusters
to analyze micro-calcification characteristics and larger clusters for sur-
rounding tissue analysis. In [5], authors employed machine learning to
detect breast tumors in mammograms, utilizing geometric and texture
features, such as roundness, entropy and energy, for tumor localization.
Melouah et al. [2] proposed mammogram segmentation using a thresh-
old determined from row-wise pixel values and seed point selection us-
ing statistical features, yielding strong single-tumor detection but limited
multi-tumor performance. Shrivastava et al. [4] introduced automatic
seed point identification and threshold calculation using seeded region
growing. More recently, Pelicano et al. [3] introduced a semi-automatic
3D region growing technique for the successful segmentation of hetero-
geneous tissues. Although it requires manual seed selection, the method
excels at segmenting varying tissue heterogeneity. However, it struggles
to identify multiple tumors.

Existing tumor segmentation methods present several limitations. Some
prioritize accuracy over efficiency, incurring high computational costs.

Certain approaches demand substantial human input, like seed position
and threshold selection, hindering their implementation. Conversely, oth-
ers attain high accuracy but struggle with multi-tumor segmentation.

3 Materials and Methods

In this exploratory analysis, two MRI scans from different patients were
used, containing a total of six tumors: five in one scan and one in the other.
Patients were scanned using a Siemens MAGNETON Vida MRI machine
and a specialized Siemens Breast 18 coil. Images were collected under
clinical protocols CES/44/2019/ME (2019) and CES/34/2020/ME (2020)
at Hospital de Luz Lisboa. The collected MRI sequences included DCE-
fl3D and T1-w Dixon. DCE-fl3D images enhanced tumor visibility using
a gadolinium contrast agent, and Pelicano et al. [3] performed digital
subtractions for better tumor highlighting. This study also utilized SUB-
DCE-fl3D images for effective tumor segmentation.

The pre-processing followed the pipeline proposed in [3], comprising
bias field correction, data normalization, and image filtering. Bias field
artifacts were corrected using SimpleITK N4BiasFieldCorrectionImage
filter. Data normalization scaled voxel values using Min-Max approach.
Regarding image filtering, a median filter was used to remove Salt-and-
Pepper noise and smooth intensity variations.

3.1 Tumor Segmentation

To address inaccuracies in segmenting heterogeneous tumors with vary-
ing intensity values, a 3D region growing algorithm was utilized. This
algorithm starts from a seed point, and expands the region by adding ad-
jacent voxels within a specified threshold range.

3.1.1 Threshold Selection

The 3D region growing algorithm’s threshold was derived statistically
from non-zero values. The threshold was set at three standard devia-
tions above the mean to differentiate tumors from surrounding tissue ef-
fectively, as suggested in [3].

3.1.2 Seed Selection

The initial stage of the tumor segmentation process involved the selection
of a seed point. To address this, an automatic seed detection algorithm
was developed:

1. Subsampling: Image division into non-overlapping regions using a
5-point step size in both axes, optimizing computational efficiency
while retaining information.

2. Points of Interest: Analyzing each point in the reduced set for each
transverse cut to identify potential regions of interest using the
3D region growing method. This step identifies points where sur-
rounding voxel intensities align with threshold-defined intervals.
The order in which the cuts are processed was determined based
on the number of points of interest identified in each cut, prioritiz-
ing high-intensity areas for efficient tumor detection.

3. Regions of Interest: K-means clustering groups high-intensity points
by spatial location, separating isolated points from actual regions
of interest. Single-point clusters are discarded, focusing on multi-
voxel clusters.



4. Region Segmentation: Applying the 3D region growing algorithm
to each group’s centroid segments regions of interest, with the pro-
cess continuing across cuts without re-segmentation. This results
in a comprehensive mask encompassing the structures identified
across cuts.

3.1.3 Structure Characterization

After segmentation, structures underwent analysis by calculating volume,
circularity, and compactness measures. The volume was calculated by
voxel count multiplied by voxel size (1mm x 1mm x 1mm), providing
structural size information. The circularity was computed by multiply-
ing the volume by 4π and then dividing it by the square of the surface
area, providing circularity values between 0 and 1. The compactness was
calculated by multiplying the square of the volume by 36π , and then di-
viding the result by the cube of the surface area, yielding compactness
values between 0 and 1.

4 Results

The results showcase the application of the proposed methodology to MRI
scans: one with multiple tumors (1 malignant, 4 benign), another with a
single malignant tumor. One transverse cut was chosen for demonstration.
The 3D region-growing algorithm applied in the centroids of the k-means
clustering, successfully segments tumors based on intensity thresholds.
In Figure 1, the left side shows the yellow segmented tumor mask on the
transverse cut. The right side displays the same mask in three dimensions,
confirming accurate segmentation.

Figure 1: Left: Output of the 3D region-growing, represented in yellow.
Right: Representation, in three dimensions, of the application of the yel-
low mask on the left.

The segmentation was expanded to all transverse cuts, yielding a
complete mask. In Figure 2, on the left, four tumors were well-segmented,
and an irregular artifact appeared. One benign tumor was missed, likely
due to parameter constraints when detecting small volumes. For the other
scan (Figure 2, on the right), the algorithm struggled with a large, irregu-
lar tumor, suggesting the need for parameter tuning for better results.

Figure 2: Left: Representation of the final 3D mask obtained for the multi-
tumor MRI exam. Right: Representation of a poorly-segmented tumor
obtained for the single-tumor MRI exam.

Masks were segmented into individual structures for analysis: five in
the first exam and one in the second. The resulting structures were label
based on their position in Figure 2, numbered from 1 to 5 from left to
right, and characterized by their volume, compactness, and circularity.

Table 1 reveals that malignant tumors exhibited larger volumes (11.682
mm3 and 12.259 mm3 for the first and second exams, respectively) than
benign tumors. Malignant tumors showed lower circularity (0.0067 and
0.0035) and compactness (0.1502 and 0.0586), indicating irregular and
less rounded shapes. In contrast, benign tumors (structures 2, 4, and 5)

Table 1: Characterization of the structures according to their volume,
compactness, and circularity. The classification was based on medical
records and human expert inspection.

Structure Volume Compactness Circularity Classification
1 (MRI1) 11682 0.1502 0.0067 Malignant
2 (MRI1) 1938 0.2016 0.0148 Benign
3 (MRI1) 845 0.0167 0.0037 Not Tumor
4 (MRI1) 763 0.8451 0.0526 Benign
5 (MRI1) 1813 0.2602 0.0180 Benign
1 (MRI2) 12259 0.0586 0.0035 Malignant

demonstrated higher circularity and compactness, indicating their round
and compact shapes. The third structure - an artifact - had the lowest
compactness (0.0167) and ranked second lowest in volume and circular-
ity (845 mm3 and 0.0037, respectively). These findings align with the
expected characteristics of malignant and benign tumors, enhancing the
pipeline accuracy in distinguishing non-tumor structures.

5 Discussion and Conclusions

Our novel approach overcomes previous methods’ limitations by utilizing
k-means clustering for automatic multi-tumor segmentation with multi-
ple seed selection. Visual inspection suggests promising results, but due
to the absence of direct comparisons, effective evaluation is challenging.
The algorithm successfully segmented irregular and large structures re-
sembling malignant tumors and also round and small structures corre-
sponding to benign tumors. However, limitations arise from parameter
choices, leading to missed benign tumors and false non-tumor identifi-
cation. Adjusting the threshold value may impact the segmentation per-
formance as a lower value might include non-tumor regions, whereas a
higher value may exclude them. Moreover, variations in the parameter k
would change the grouping, impacting the seed point identification and
consequently the resulting mask. Further analysis involved characteriz-
ing structures through volume, compactness, and circularity. Malignant
tumors had larger volumes and lower compactness and circularity, align-
ing with expected characteristics, whereas benign tumors were round and
compact. These insights can enhance differentiation of malignant and
benign tumors, suggesting the potential integration of features into classi-
fication machine learning algorithms for improved performance.

In conclusion, our automated methodology for breast MRI multi-
tumor segmentation successfully achieved the objectives of automatic seed
selection and multiple tumor segmentation. Despite promising results,
limited sample size restricts generalization, underscoring the importance
of expanding the dataset for validation. In summary, our study presents
a promising approach with potential for improvement through parame-
ter tuning and integration with a classification model based on segmented
structure characteristics.
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