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Abstract

We present a novel hybrid framework that allows for joint learning of a
Hidden Markov Chain and Artificial Neural Network in the context of
fundamental heart sound segmentation. The Markovian nature of the
model allows for unsupervised end-to-end training and our experiments
reveal improvement of up to 3.90% Positive Predictive Value over a pre-
trained baseline using the PhysioNet 2016 and 2022 datasets.

1 Introduction

Cardiovascular diseases are currently the primary cause of mortality world-
wide. Due to its low cost, simplicity, and broad range of diagnostic ca-
pabilities, cardiac auscultation is a particularly attractive diagnostic tool
to mitigate the burden in such challenging scenarios. With the newfound
progress in machine learning, automatic solutions can now extract mean-
ingful clinical information from Phonocardiogram (PCG) recordings dur-
ing the screening phase. These valuable clinical insights depend on key
events in the PCG recording, such as the two basic sounds present in
each heart cycle: the first sound or S1, generated by the mitral and tri-
cuspid valve vibrations from the systolic onset, and the second sound or
S2, which results from the aortic and pulmonary valve closure at the dias-
tolic onset. For these purposes, we put forward an automatic fundamen-
tal heart sound segmentation method using an end-to-end framework that
couples Artificial Neural Networks (ANNs) with Hidden Markov Models
(HMMs) we named Markov-based Neural Networks (MNNs)1. Specif-
ically, we show that these models can learn to fit unseen datum sam-
pled from dissimilar distributions in an unsupervised way using a novel
gradient descent-based approach. We select two golden standard PCG
datasets for this effect and measure very substantial improvements over a
pre-trained baseline.

2 Markov-based Neural Networks

Suppose you have a dataset D = {(o(i),s(i))}N
i=1 such that each obser-

vation sequence o(i) = [o1,o2, . . . ,oTi ] is a function of a state sequence
s(i) = [s1,s2, . . . ,sTi ] that was generated by some (latent) homogeneous
first-order Markov chain with discrete states st ∈ S, S = {0,1, . . . ,L−1}.
The joint distribution of a pair of emissions o(i) and states s(i) is given by:

P(o(i),s(i)) = P(s1)
Ti

∏
t=2

P(st−1|st)
Ti

∏
t=1

P(ot |st). (1)

Presume ignorance of the class of distributions to which P(ot |st) per-
tains. Consider instead access to a highly discriminant ANN such that
ANN(ot) ∼ P(st |ot). One can approximate (1) by using Bayes’ rule to
estimate the emission distribution given this approximated posterior esti-
mation, so that P(ot |st) =

ANN(ot )P(ot )
P(st )

. Thus, the likelihood of o(i) fol-
lows as:

P(o(i)) = ∑
s∈STi

P(s1)
Ti

∏
t=2

P(st−1|st)
Ti

∏
t=1

ANN(ot)P(ot)

P(st)
, (2)

which can be computed efficiently without overflow errors using a scaled
forward-backward algorithm. These equations bind the HMM and ANN
into a single, unified framework since they depend on the parameters of
both models. A Markov-based Neural Network (MNN) is thus a HMM
that shares the parameter space with an ANN, which models its emissions.

1Our implementation is available at https://github.com/miguelmartins/mnn

This also allows us to use the Viterbi decoder to find the most likely se-
quences during inference.

2.1 Training

Let Ψ = {λ ,Θ} be the set of all parameters of an MNN, where Θ denotes
the parameters of the ANN, and λ = {π,Γ} collects the HMM’s parame-
ters, i.e., initial state probabilities π ∈RL and transition matrix Γ ∈RL×L.

Equations (1) and (2) are amenable to be adapted to loss functions
in an optimization context. Firstly, for the supervised case, the complete
log-likelihood loss simply follows as:

LCL(D;Ψ) =−
N

∑
i=1

logP(o(i),s(i)). (3)

Secondly, we adapt (2) to an unsupervised fine-tuning loss (LFT),
which enables Ψ to be adaptive given co-variate shifts in previously un-
seen (and unlabelled) data:

LFT(D;Ψ) =−
N

∑
i=1

logP(o(i)). (4)

We use Glorot’s normalized initialization for the parameters Θ of the
ANN. In a supervised scenario, we find the maximum likelihood estimate
of Γ by calculating the expected number of transitions from {s(i)}N

i=1.
Afterwards, we find π so that it describes the steady state distribution by
solving πΓ = π , so that π ≥ 0 and ||π||1 = 1.

2.1.1 Gradient update projection

We use a gradient descent approach to train the ANN and HMM jointly.
Note that the rows of Γ and π are probabilistic, and thus lie in the canon-
ical simplex of RL:

KL =

{
x ∈ RL : xi ≥ 0, i = 0, . . . ,L−1,

L−1

∑
i=0

xi = 1

}
. (5)

After each gradient descent update over Γ we use Michelot’s finite pro-
jection algorithm [2] to project its rows to KL. We then set π to be the
steady state distribution characterized by the new Γ.

3 Experiments

We use two datasets in our experiments: the 2016 PhysioNet Challenge [1]
(PhysioNet’16) dataset and the 2022 PhysioNet Challenge CirCor DigiS-
cope dataset [3] (CirCor’22). The former spans 2435 recordings from
1297 healthy or pathological patients. These recordings were originally
re-sampled at 2000 Hz with anti-aliasing [1]. We use only the 792 heart
sounds (181 healthy, 611 pathological from a total of 135 patients) that
have an associated ECG recording2. The fundamental heart sound se-
quence was estimated through analysis of the synchronous ECG record-
ings following [5]. We discarded 39 samples, accounting for the cases
where the signal lasted less than 1 second or had noisy labels (i.e., ille-
gal state sequences, such as those that allow transitions from state S1 di-
rectly to state S2). Secondly, we use CirCor’22 which is currently the
largest publicly available pediatric heart sound dataset. It spans 5282
PCG recordings with expert manual annotations of the fundamental heart
sounds from 1568 subjects. The signals were sampled at 4000 Hz with
a 16-bit resolution. Of the 5282 recordings, we used the 3279 samples
publicly available in the training set for the 2022 PhysioNet Challenge3.

2The dataset is available at https://PhysioNet.org/physiotools/hss/
3The dataset is available at https://physionet.org/content/

circor-heart-sound/1.0.3/



Figure 1: Fine-tuning average performance of MNNΨ0
LCL

compared with MNNΨi
LFT

, for 1 ≤ i ≤ 20. The baseline is pre-trained on CirCor’22 and
fine-tuned throughout different number of epochs to the PhysioNet’16 dataset. (Top) PPV. (Bottom) Sensitivity.

Figure 2: The architecture of the convolutional ANN discriminator.

3.1 Experimental methods

We follow [4] to compute the Positive Predictive Value (PPV) and Sen-
sitivity. We consider a prediction a true positive if the centre of an S1
(S2) prediction is closer than 60 ms to the next S1 (S2) sound in the true
sequence. All other predicted S1 or S2 segments are considered false pos-
itives. A set of four envelograms is extracted for each sound in order to
serve our models after downsampling the signals to 50 Hz following [5].
We adopt a patient exclusive 10-fold cross-validation setup throughout
our experiments, where the folds have a fixed length of roughly 10% of
the length of the dataset in its entirety. We set aside 10% of the out-of-fold
data for early stopping.

We selected the ANN depicted in Figure 2 as the descriminator. A
left-to-right HMM is implemented that enforces state transitions of the
type: . . .→S1→Systole→S2→Diastole→S1→. . .. The procedure pre-
sented in Section 2.1.2 is applied solely on the two possible non-zero
components of each row while adding/subtracting a small perturbation ε

in order to avoid absorbing states.

3.2 Results

We pre-train the MNN in the CirCor’22 dataset using LCL with a batch
size of 1 in an 80/10/10 random holdout split with early-stopping at the
best loss value using the Adam algorithm. The parameters of the model
attained at this pre-training stage are denoted as Ψ0 and the associated
model as MNNΨ0

LCL
. Then, as described in Section 2.1, we fine-tuned

MNNΨ0
LCL

to each observation of the PhysioNet’16 dataset seperately and
recorded the average PPV and Sensitivity of each additional round of
fine-tuning until k = 20 epochs in the entire dataset, which is denoted

by MNNΨi
LFT

. Pairwise t-tests between MNNΨ0
LCL

and MNNΨi
LFT

, 1 ≤ i ≤ k,
with significance α = 0.05 were performed to grasp wether there was a
statistical significant improvement of the fine-tuned models over the base-
line MNNΨ0

LCL
, as depicted in Fig. 1. A steady increase in PPV is observed

throughout all i with a positive or negligible impact in Sensitivity. In fact,
baseline MNNΨ0

LCL
scored a mean PPV of 0.847 and mean Sensitivity of

0.891, while the model MNNΨ20
LFT

scores the best average PPV at 0.886
(3.90% statistically significant increase) with mean Sensitivity of 0.889
(0.20% statistically non-significant decrease), which is a substantial im-
provement in performance.

4 Conclusion

We presented Markov-based Neural Networks as a unifying framework
between ANNs and HMMs in the context of heart sound segmentation.
The expression that characterizes the likelihood of the model was used as
the optimization objective for the goal of unsupervised training in unseen
datum. Concretely, we observed that a pre-trained model in the CiCor’22
dataset could be enhanced through fine-tuning with an improvement of up
to 3.90% PPV over its baseline performance in the PhysioNet’16 dataset.
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