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Abstract

Over the past decade, there has been growing evidence that artificial in-
telligence and radiomics may be helpful in the prediction of clinical out-
comes in the entire prostate cancer disease continuum, such as the predic-
tion of disease aggressiveness. However, the radiomics pipeline’s depen-
dence on segmentation masks has made it challenging to build machine-
learning algorithms robust to inter- and intra-radiologist segmentation vari-
ability. With the goal of getting insight into the best methodology to build
models that are robust to this heterogeneity, two radiologists were asked
to draw whole prostate gland segmentations on T2W and DWI MRI ex-
aminations, and the resulting radiomic features calculated were used in
several model training approaches: training with purely stable radiomic
features according to their intraclass correlation coefficient (ICC); train-
ing independently with features extracted from each radiologist’s mask;
training with the feature average between both radiologists; extracting
radiomic features from the intersection or union of the two masks; and
creating a heterogeneous dataset by randomly selecting one of the ra-
diologists’ masks for each patient. The classifier trained with this last
resampled dataset presented with the lowest generalization error, suggest-
ing that training with heterogeneous data leads to the development of the
most robust classifiers. On the contrary, removing features with low ICC
resulted in the highest generalization error.

1 Introduction

In 2020, prostate cancer was the second most frequent cancer in men
worldwide and ranked 5th in terms of mortality [10]. An accurate deter-
mination of clinical significance is essential for ascertaining the most ap-
propriate treatment options and ensuring the best clinical outcome. With
this purpose, artificial Intelligence and, in particular, radiomics have been
reported to be predictive of prostate cancer disease aggressiveness [1, 2,
3, 4, 6, 7, 12]. However, a major limitation of this analysis is the tight
link between the computed radiomic features and the delineated volume
of interest (VOI) from where they have been extracted. The delineation of
the VOI suffers from inter- and intra-radiologist variability[9] (Figure 1),
which inevitably leads to feature value changes[13]. Hence, when these
are used for model training, a lack of robustness is often found.

Thus, the purpose of this work was to find the best approach to train
robust classifiers to minor differences in segmentation margins.

2 Methodology

Dataset: 181 patients with T2W, DW, and ADC exams from the SPIE-
AAPM-NCI PROSTATEx challenge [5]. Manual segmentations of the
whole prostate gland were performed by two radiologists on T2W and
DWI. Radiomic features extracted using PyRadiomics[11] and used to
train machine learning classifiers to predict clinical significance.

Seven approaches were compared: (1) Train only with ICC stable fea-
tures; (2) Train with features extracted from masks drawn by radiologist
1; (3) Train with features extracted from masks drawn by radiologist 2;
(4) Train with the feature average; (5) Train with features extracted from
the masks’ intersection; (6) Train with features extracted from the masks’
union; (7) Train with a randomly resampled dataset.

All classifiers were tested on the same hold-out test sets and their
performance was statistically compared.

Figure 1: An example of the segmentation variability in the masks drawn
by radiologist 1, (a), and radiologist 2, (b), on patient Prostatex0000.

A more comprehensive description of the methodology can be found
at [8], as this work has already been published.

3 Results

Table 1 shows the performance of each model on the three hold-out test
sets. The resampledRad dataset consistently produced the highest perfor-
mance (approach 7). While the lowest-performing models were obtained
by approach 1, which consisted of training classifiers only with features
robust to segmentation differences.

Figure 2 shows ROC curve for the resampledRad classifier. The de-
cision threshold chosen for this classifier was 0.32, which ensured a min-
imum 0.9 sensitivity on the train set.

The five features with the highest impact on model output were con-
sistent on the three hold-out test sets. Thus, as an example, the shap analy-
sis for the predictions of the resampledRad classifier on the resampledRad
test set is displayed in Figure 3. The feature DWI_gradient_glcm_lmc1 is
inversely associated with a clinically significant output, while the remain-
ing four features are directly associated with it.

4 Discussion

In the current study, we attempted to answer the well-known issue of
inter-reader variability introduced into the radiomics pipeline in the seg-
mentation stage (RQ I). Our results revealed that the removal of unstable
features through ICC, a technique currently recommended by radiomics
guidelines and evaluated in the radiomics quality score, proved to pro-
duce the classifiers with the least ability to generalize to hold-out data.
On the other hand, training classifiers with a radiomics dataset annotated
by different radiologists, proved to be the highest performing across all



Table 1: Classification performance on three different hold-out test sets.
The highest value per column is highlighted in bold.

a)
Training data

rad1 Hold-out test-set performance
F2 CohensKappa AUC Sensitivity Specificity

stableRad1 0.6696 0.2042 0.7625 0.7895 0.4615
Rad1 0.7353 0.4636 0.7827 0.7895 0.7179
Rad2 0.7143 0.5110 0.8219 0.7368 0.7949

avgRad 0.6881 0.2758 0.7584 0.7895 0.5385
unionRad 0.7522 0.3073 0.7814 0.8947 0.4872

intersectionRad 0.6364 0.1863 0.6802 0.7368 0.4872
resampledRad 0.7767 0.5055 0.8198 0.8421 0.7179

b)
Training data

rad2 Hold-out test-set performance
F2 CohensKappa AUC Sensitivity Specificity

stableRad1 0.6757 0.2275 0.7605 0.7895 0.4872
Rad1 0.7353 0.4636 0.7794 0.7895 0.7179
Rad2 0.6250 0.4208 0.8151 0.6316 0.7949

avgRad 0.7075 0.3525 0.7901 0.7895 0.6154
unionRad 0.7522 0.3073 0.7659 0.8947 0.4872

intersectionRad 0.6522 0.1371 0.6356 0.7895 0.3846
resampledRad 0.7843 0.5351 0.8381 0.8421 0.7436

c)
Training data

resampledRad Hold-out test-set performance
F2 CohensKappa AUC Sensitivity Specificity

stableRad1 0.6696 0.2042 0.7537 0.7895 0.4615
Rad1 0.7353 0.4636 0.7841 0.7895 0.7179
Rad2 0.6633 0.4358 0.8192 0.6842 0.7692

avgRad 0.6944 0.3008 0.7746 0.7895 0.5641
unionRad 0.7522 0.3073 0.7827 0.8947 0.4872

intersectionRad 0.6522 0.1371 0.6430 0.7895 0.3846
resampledRad 0.7767 0.5055 0.8192 0.8421 0.7179

Figure 2: Receiver Operator Characteristics Curve for the resampledRad
classifier when applied to the rad1, rad2 and resampledRad hold-out test
sets, respectively in blue, orange and green. Some of the probability de-
cision thresholds are included as annotations.

hold-out test sets. Supporting the hypothesis that the more heterogeneous
the training data the more generalizable the results may be on unseen data.
This classifier also performed similarly on the different hold-out test sets,
indicating its robustness to radiologists with different years of experience.
This was further confirmed by the performance on the resampledRad test
set, which simulates a real-world clinical environment, where a deployed
model would be used by several physicians.

5 Conclusions

Heterogeneous radiomics datasets where segmentation masks come from
more than one radiologist produced classifiers with the highest generaliza-
tion power. These results are extremely relevant for the clinical translation
of AI models.
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