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Abstract

Radiomics refers to the extraction of hand-crafted features from radio-
graphic images. Combined with machine learning and data analysis al-
gorithms, it can provide a valuable tool to enable a phenotypic tumour
profile. Based on the hypothesis that quantitative analysis of medical im-
ages may have a similar prognosis power to phenotypes and gene protein
signatures, radiomics debates with the lack of standardisation and repro-
ducibility issues. CT convolution kernels modify the frequency contents
of projection data before back projection during image reconstruction, af-
fecting the values of, mainly, intensity and texture features. This study
evaluated the effect of eight convolution kernels from two General Elec-
tric (GE) Computed Tomography (CT) scanners on 19 patients. Feature
extraction was restricted to the Clinical Target Volume (CTV), manually
defined by experts at Instituto Português de Oncologia do Porto Francisco
Gentil (IPO-PORTO). Afterwards, the feature set was grouped per patient
following the variance computation kernel-wise. Results show that shape-
based features are invariant to changes in the convolution kernel, while
Gray Level Size Zone Matrix (GLSZM) and Gray Level Run Length Ma-
trix (GLRLM) seem more exposed to such changes. Additionally, results
also suggest that first-order features can withstand slight modifications to
the kernel, much like Gray Level Co-occurrence Matrix (GLCM).

1 Introduction

Radiomics is an emerging field involving feature extraction from radio-
graphic images using data-characterization algorithms. Combining ra-
diomics with machine learning and data analysis algorithms may provide
valuable insights into texture, shape and spatial relationships between pix-
els unlocking hidden patterns and quantifying phenotypic characteristics
in medical imaging [1].

The typical workflow for radiomics studies begins with collecting
medical images, usually Computed Tomography (CT) or Magnetic Resso-
nance Imaging (MRI). Next, images are processed using specialized soft-
ware that identifies and extracts quantitative features from an Region Of
Interest (ROI) in the image data. Finally, statistical analysis is performed
on the extracted features to identify patterns and correlations with clin-
ical outputs [2], such as staging, grading, detection, Biochemical Re-
currence (BCR) or aggressiveness. Recently, Mendes et al. [4] evalu-
ated CT-based radiomics to predict Prostate Cancer (PCa) aggressiveness
with promising results. Although highly valuable in medical imaging,
radiomics lack standardisation and presents reproducibility issues. Addi-
tionally, radiomics may not account for several factors affecting imaging
results, such as patient movement or variations in the imaging equipment.

CT convolution kernels are mathematical algorithms that enhance im-
age contrast and resolution, allowing better visualisation of internal struc-
tures. Kernels modify the frequency contents of projection data before
back projection during image reconstruction, thus affecting the values of
radiomic features, especially intensity and texture features. The CT ac-
quisition parameters such as kVp, mAs, slice thickness and pixel size
also affect image quality, introducing differences in extracted features, al-
though resampling and smoothing reduces these effects [3]. This study
evaluated the radiomic features using eight CT convolution kernels from
General Electric (GE) (Bone, BonePlus, Chest, Detail, Edge, Lung, Soft
and Standard). The purpose is to address the variability of extracted fea-
tures for further studies.

2 Materials and Methods

2.1 Image Dataset

The research involved patients who underwent a CT scan at Instituto Por-
tuguês de Oncologia do Porto Francisco Gentil (IPO-PORTO) as part of
External Beam Radiotherapy Treatment (EBRT). All images were ac-
quired using a GE Lightspeed or Brightspeed scanner featuring 2.5mm
of slice thickness, 120 Kvp, and automatic tube current modulation in ret-
rospect. The dataset contains a total of 30928 images from 19 patients:
three from GE LightSpeed and 16 from GE Optima, both 16 slices scan-
ners. The series spanned from October 18th, 2022 to May 29th, 2023,
and the age range of the patients included those between 60 and 84 years
old. There are eight distinct filters available for series reconstruction us-
ing both scanners: Bone, BonePlus, Chest, Detail, Edge, Lung, Soft and
the commonly used for PCa, Standard. Reconstruction diameter was set
to 500 mm and the pixel spacing to 0.977x0.977. Table 1 summarises the
acquisition parameters of both scanners.

Table 1: GE LightSpeed and GE Optima aquisition parameters.

Thickness (mm) Kvp mAs Diameter (mm) Pixel spacing

2.5 120 Auto 500 0.977x0.977

Experts at the institution delineated the Clinical Target Volume (CTV)
that contains the gross demonstrable extent and location of the tumour,
which may also include metastatic regional nodes and distant metastasis
if they are indistinguishable from the primary tumour plus a margin that
reflects the probability of subclinical disease occurrence. The study was
conducted according to the guidelines of the Declaration of Helsinki. The
study was approved by the IPO-PORTO Porto Healthcare Ethics Commit-
tee (protocol code CES.274/020 and date of approval October 1st 2020).
Figure 1 shows an example CT image reconstructed with GE convolution
kernels and in blue the manually drawn CTV.

(a) Bone (b) BonePlus (c) Chest (d) Detail

(e) Edge (f) Lung (g) Soft (h) Standard

Figure 1: CT images reconstructed with GE convolution kernels.

2.2 Feature Extraction

Radiomics extracts two types of features: semantic and agnostic. Seman-
tic features describe lesions with prognostic values, such as size, shape
or necrosis. Agnostic features provide first-order, second-order or higher-
order statistics. First-order statistics focus on individual voxels reducing
the volume to a single value. Second-order descriptors are texture features
grouping voxels with similar statistics and are very useful to measure tu-
mour heterogeneity. Higher-order statistics search for pattern repetitions



in the volume. Table 2 shows some of the features that can be extracted
with PyRadiomics [5].

Table 2: Extracted features.
Feature Class # Features

First Order Statistics 19
Shape based (3D) 16
Shape based (2D) 10
Grey Level Co-occurrence Matrix (GLCM) 24
Grey Level Run Length Matrix (GLRLM) 16
Grey Level Size Zone Matrix (GLSZM) 16
Neighbouring Gray Tone Difference Matrix (NGTDM) 5
Gray Level Dependence Matrix (GLDM) 14

Total 120

Features comply with the Image Biomarker Standardisation Initiative
(IBSI), an independent international collaboration that aims at standard-
izing the extraction of image biomarkers for high-throughput quantitative
analysis (radiomics).

All features from Table 2 were extracted from the original image, re-
stricted to the CTV, using an isotropic resampling ([1, 1, 1]), a B-spline
interpolation, a bin width of 25 and a voxel size of 2 for 3D feature extrac-
tion. The full analysis was performed on an Intel(R) Core(TM) i7-6500U
CPU@2.50GHz 2.60 GHzz, with 16 Gb of RAM and an Nvidia GeForce
930M (2Gb DDR3).

3 Results and Discussion

This work studied the variability of some radiomic features with different
convolution kernels used in the CT image reconstruction algorithm. Fea-
tures were standardized with z-score, subtracting the mean and dividing
by the standard deviation. Next, features were grouped by patient, and the
variance was computed along the convolution kernels.

The obtained results suggest that shape-based features are invariant to
the used convolution kernel as expected since the CTV was the same for
all reconstructions. These features are descriptors of the size and shape of
the CTV independent of the grey-level intensity distribution. The applied
convolution kernels work at the frequency level leaving the shape and size
of the structures unchanged. The other features present some variation.
First-order features describe the distribution of voxel intensities within
the image region [5]. Gray Level Co-occurrence Matrix (GLCM), Gray
Level Size Zone Matrix (GLSZM) and Gray Level Run Length Matrix
(GLRLM) are highly dependent on grey-level values in the image dataset.
The Neighbouring Gray Tone Difference Matrix (NGTDM) quantifies the
difference to the average grey-level neighbourhood values, and the Gray
Level Dependence Matrix (GLDM) quantifies grey-level dependencies.
Figure 3 shows the ten features that presented a higher variance.

Figure 2: Variance Matrix: 10 features with higher variance across con-
volution kernels.

Case number 3 was excluded from this analysis since it was recon-
structed with a diameter of 650mm. For patients 6 and 17, the GLDM
DependenceVariance feature, which measures the variance in dependence
size in the image, had the highest variance value. For patients 9, 10, 12,13
and 19, the GLCM JointEnergy feature presented the highest variance
value. The JointEnergy measures homogeneous patterns in the image.

A high value may indicate a higher heterogeneity change with the con-
volution kernel. Patients 7, 11, 15 and 16 had a high variance for the
GLDM DependenceNonUniformityNormalized feature indicating more
heterogeneity among dependencies in the image. Patients 1, 2 and 4 had
very similar variances along convolution kernels. Patient 5 presented a
high variance value for the GLRLM ShortRunEmphasis feature indicat-
ing a higher variance on the fine textural textures.

The mean-variance of GLSZM and GLRLM features is notably high
in each patient, particularly in patients 5, 8, 9, and 13. However, note that
the variance is highly dependent on the patient. With the exception of pa-
tient 6, who shows high mean-variance values, and patient 4, who shows
low mean-variance values, all patients exhibit similar mean-variance val-
ues for their first-order features, much like the GLCM. The mean-variance
for all feature groups was the lowest for Patient 4, while GLDM features
were found to be significant for every patient. Additionally, NGTDM
had the lowest mean variance for all patients. Figure 3 shows the mean
variance by feature group per patient.

Figure 3: Mean variance by feature group.

4 Conclusions

Radiomic studies present several reproducibility issues, such as a depen-
dence on the acquisition parameters, patient movements and other fac-
tors affecting image quality. This research shows that radiomic features
depend at some level on the convolution kernel used for CT image re-
construction. For further radiomic studies involving CT images, these
findings may suggest using a convolution kernel other than the Standard.
Although more investigation is needed to determine which kernel may
be most effective in radiomic studies, in building a classifier or finding
a radiomic signature, this work highlights a potential issue. Shape-based
features are invariant to changes in the convolution kernel used for im-
age reconstruction if the same volume is used for feature extraction. On
the other end, GLSZM and GLRLM are the ones that present the highest
variance among all patients. First-order features seem to withstand slight
modifications to the kernel, much like GLCM.
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