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Abstract

We develop a valuation framework for climate-sensitive stocks in the presence of

uncertainty around a policymaker action to prevent global warming. The price-

dividend (P/D) ratio of climate-sensitive stocks depends on investors expectations

about an ambiguous path of future energy generated by a high carbon emitting and

a low carbon emitting firm, and conditional on a climate policy regime shift. We

show theoretically and empirically that, given a required rate of return, the higher

the uncertainty the higher the valuation of climate-sensitive stocks. Moreover, we

discuss a broader set of asset pricing implications in the context of climate change

uncertainty.
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1 Introduction

Technological transitions are oftentimes associated with financial bubbles. The intro-

duction of steam-powered railroads in the 1860s is perhaps one of the first examples in

history. Modern examples are the internet bubble of the late 1990s, or the more recent

experience of crypto-currencies. While oftentimes bubbles are associated with new tech-

nologies, a recently debated and controversial question is whether fossil fuel firms are

carrying a bubble. The maximum amount of cumulative carbon dioxide (CO2) emissions

that would result in limiting global warming to the most ambitious objective of the Paris

agreement of 1.5C with a 50% chance was around 500GtCO2 in 2020, according to the

IPCC sixth assessment report (AR6). This figure is in stark contrast with the around

2800 GtCO2 carbon emissions that would result from burning all known Earth’s fossil

fuel reserves and the around 750 GtCO2 that would result from burning fossil fuel re-

serves held by the 100 largest coal and 100 largest oil and gas companies1. This "carbon

budget" is also depleting very fast at a rate of about 40 GtCO2 per year, raising the

question of whether the current high valuations of fossil fuel stocks are rational.

A possible explanation for the bubble-like pattern of technological revolutions may

reside in their uncertainty. Pástor and Veronesi (2006) argue that time-varying idiosyn-

cratic uncertainty about the growth and profitability of specific firms might justify high

valuations, including those observed in the late 1990s for internet firms. Ex-post prices

might seem irrational, but a sufficiently high level of uncertainty might justify ex-ante

valuations. Similarly, the future of "old economy" technologies, such as fossil fuels, might

be highly uncertain, because they might be replaced by new energy technologies, such as

renewables, but also because governments have the tools to act to stimulate the transition,

introducing political uncertainty.

In the context of global warming much of the uncertainty about the future of fossil fuels

might emerge from unpredictable climate policy (e.g., carbon taxation, green subsidies).

On the one hand, if governments follow through their net zero carbon emission pledges

to fight global warming, energy from high emitting firms should be limited decisively in

the near future. On the other hand, if there is continuous government inaction, fossil
1Source: CarbonTracker.org
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fuel energy might keep growing in line with the past decades. Climate policy, and its

uncertainty, might have a material effect on the cash flows and the valuation of fossil fuel

firms.

Previous literature has highlighted two different effects of uncertainty on asset prices.

A first, discount rate, effect emerges from investors uncertainty-aversion. Investors require

a higher rate of return for holding assets negatively correlated with systematic uncertain,

depressing prices. For example, political uncertainty commands a risk premium because

of the inability of investors to learn and fully anticipate costly government actions (Kelly,

Pástor, & Veronesi, 2016; Pastor & Veronesi, 2012; L. Pástor & Veronesi, 2013). Similarly,

empirical analyses show that investors are willing to pay higher prices, accepting lower

returns, for stocks which perform well in periods of higher economic uncertainty (Bali,

Brown, & Tang, 2017).

A second, cash flow, effect emerges from the option value of volatility. There is a pos-

itive relationship between asset prices and idiosyncratic uncertainty because it increases

future expected cash flows (Pastor & Veronesi, 2009). For example, investors are uncer-

tain about the profitability of newly listed firms which show higher valuations compared

to mature companies. Learning oftentimes leads to a resolution of uncertainty which re-

sults in the convergence of valuation ratios with the passing of time (Pástor & Veronesi,

2003). Pástor and Veronesi (2006) argue that in technological transitions, at first, risk

about the new technology is idiosyncratic pushing up prices, and then gradually turns

into systematic depressing valuations.

In this paper, we take a cash flow view to investigate the effect of time-varying idiosyn-

cratic uncertainty on the valuation of climate sensitive assets. Although uncertainty may

impact the required rate of return, fossil fuel firms fundamental value in the low carbon

energy transition will ultimately be affected by their long-term cash flows trajectory. We

also argue that the climate policy regime is the most material driver affecting future fossil

fuel energy demand, and cash flows. Governments climate policy ambiguity generates id-

iosyncratic uncertainty about the future of fossil fuel firms by sending contrasting signals

to market agents who cannot fully learn about the prospective policy regime. Similarly,

the future of renewable energy will ultimately depend on the speed of the transition. If

fossil fuels are used for longer because no strong climate policy is introduced, renewable
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energy growth will be slower. On the contrary, if government action stimulates the de-

ployment of renewable energy, fossil fuels will disappear faster. The future of low and

high emitting energy technologies is inherently intertwined due to their complementary

role in the economy and largely depends on the climate policy regime.

We develop a valuation model which links investors climate expectations, and their

uncertainty about a climate policy regime shift, with the price-dividend ratio of low and

high carbon emitting firms. The basic idea could be summarised as follows. Let µi be the

subjective probability distribution of a representative investor’s believes about the growth

rate of future dividends of a low carbon and a carbon intensive asset i, and that this is

conditional on a climate policy regime. Let assume that this is normally distributed with

mean gi and variance �
2
i
. Within the traditional present value framework, if we assume

that the price of an asset is the expected present value of its future payoffs, or dividends,

discounted at a rate specified by a known model of expected returns ri, the price-dividend

ratio today is:

Pi

Di

=

Z
T

t=0

exp

n ⇥
(gi + �

2
i
/2)� ri

⇤
t

o
dt

The previous equation shows the well known convex relationship between the price-

dividend ratio, the growth rate gi and the uncertainty about the growth rate �
2
i
. The

price of a stock today is the present value of its future dividends which grow at an ex-

pected rate of gi from today’s level of Di and are discounted at a known rate ri. From

the above equation, we can infer that the higher the uncertainty about climate change,

the higher the valuation of climate sensitive assets today2. Uncertainty right-skews the

distribution of future expected dividends increasing possible values of future cash flows.

Loosely speaking, there is value in the possibility that fossil fuels might remain the pre-

dominant source of energy in the future. We build on this idea and discuss a richer set

of asset pricing implications, focusing on low-carbon and carbon-intensive assets.
2This can be thought as the volatility component of a "real options" valuation. This intuition can

be found in Pástor and Veronesi (2003) where the M/B ratio is defined as M/B = exp[(ḡ + �2/2� r)T ]

where the uncertainty of newly listed companies is discussed. Pastor and Veronesi (2009) also reviews

this concept in the context of the more traditional Gordon Growth Model
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In our model, stocks valuations depend on investors mean dividends growth expec-

tations, and their uncertainty. The higher the mean growth expectation (gi), the higher

the price-dividend ratio. But, also the uncertainty (�2
i
) around climate policy increases

stocks valuations. The higher the climate policy regime shift uncertainty, the higher the

price-dividend ratio. Moreover, we discuss how the elasticity of dividends to energy de-

mand (�i) could have effects on assets valuations. We assume that firms with a value of

�i lower than one are less exposed to the policy regime shift risk while values higher than

one magnify the impact of a possible climate policy on prices.

In our empirical analysis, we find evidence that uncertainty might explain a portion

of the valuation of climate sensitive-assets. We test the analytical model predictions with

an empirical analysis of professional analysts dividends per share forecasts with monthly

snapshots over the decade 2010-2020. We find a statistically significant relationship be-

tween analysts’ estimates of future dividends growth and the valuation of climate sensitive

assets. If we use as a proxy of uncertainty analysts forecasts disagreement, we find, in a

cross section regression, that dividends per share (DPS) idiosyncratic volatility seems to

increase the valuation of climate-sensitive companies. The higher our measure of uncer-

tainty the higher the price-dividend ratio of the firms in our sample. More in general, we

find that financial markets are sensitive to climate ambiguity valuing assets. This result

is consistent across various dimensions explored in our robustness analysis such as: gross

profit margin, price to book, debt to ebitda, debt to asset.

Our paper suggests that the valuation of climate sensitive assets will ultimately de-

pend on the predominant climate policy regime. However, not divesting from high carbon

emitting energy companies has an intrinsic option value until inaction from the policy-

maker is possible. The higher the likelihood of no climate policy regime shift, the higher

the option value of not divesting from fossil fuel firms. Similarly, low carbon emitting

companies have an intrinsic option value discounting the possibility that governments will

meet their targets of limiting global warming. Regardless of the world that will materi-

alise, high levels of political uncertainty might have effects on assets valuations. These

might also be real effects, the status quo might lower the cost of financing of high carbon

emitting firms affecting the allocation of resources. In the absence of clear climate policy,

financial markets might not be able to fully internalise environmental externalities, even
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though more climate information becomes available. This paper shows how the role of

finance in preventing global warming might only be a necessary, but not sufficient, condi-

tion to the problem, which ultimately resides in governments action. Political uncertainty

might also generate systemic risks, such as a carbon bubble, given that the option value

of either low or high carbon emitting firms must ultimately disappear as a cleaner or a

dirtier future materialises.

This paper contributes to two strands of financial economics literature. Firstly, this

paper speaks to the recent literature on climate finance (Gasparini & Tufano, 2023; Giglio,

Kelly, & Stroebel, 2021; Hong, Karolyi, & Scheinkman, 2020). Bolton and Kacperczyk

(2021) investigate whether financial markets price climate related risks by looking at

the cross section of stock returns and firms carbon emissions. They find a statistically

significant carbon premium related to the absolute level in carbon emissions and the

year-on-year change. Engle, Giglio, Kelly, Lee, and Stroebel (2020) use textual analysis

of newspapers climate news to develop a climate news index. They use the index to con-

struct a “mimicking” portfolio which allows to dynamically hedge against climate change

innovations. Pástor, Stambaugh, and Taylor (2021) develops a theoretical model to ex-

plain asset valuations as investors want to hedge against climate change, but might also

want to invest in green stocks for non-pecuniary motives. Their model is an augmented

CAPM where green (brown) stocks have negative (positive) alpha, but green (brown)

stocks have also a positive (negative) exposure (beta) to an “ESG factor”.

This paper is most closely related to Hsu, Li, and Tsou (2022). They seek to explain

an environmental pollution premium in a general equilibrium model whereas polluting

firms’ future profits depend on a environmental policy regime. They assume that if

the policy maker tightens environmental regulation the profitability of firms with high

toxic emissions intensity declines more than low toxic emissions. The explanation for

a premium which emerges from their model is that investors require a compensation

for an uncertain environmental policy regime shift risk. In our model, the valuation

of climate-sensitive assets is related to an uncertain climate policy regime. However,

differently from their model, we take a cash-flow perspective and investigate how time-

varying idiosyncratic uncertainty affects assets valuations, rather than the expected rate

of return, which has been the focus of most of the climate finance literature so far.
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This paper is also close to Ilhan, Sautner, and Vilkov (2021) that provide evidence that

option markets price climate policy uncertainty. Carbon intensive firms options are more

expensive than low carbon firms ones and this increases in periods of climate sensitive

political events. In our empirical analysis, by using professional analysts forecast, we

find evidence that time-varying idiosyncratic uncertainty affects assets valuations and it

is priced in stock markets.

Secondly, this paper speaks to the financial economics literature on uncertainty and

asset prices. A first theoretical work is Pástor and Veronesi (2006) who discuss whether

the high valuation of internet companies in the late 1990s represented an asset bubble.

They use a Gordon growth model with uncertain expectations about the stochastic pro-

cess of the growth rate, similarly to Pástor and Veronesi (2003), to explain that high

levels of uncertainty might justify high valuations. They use their model to calculate a

value of implied volatility which might justify assets valuations. They argue that the late

1990s was not a bubble, but it was justified by high uncertainty about the performance

of technology stocks. This paper borrows some of this concepts and applies them to the

context of the net zero carbon transition.

Similarly, Pastor and Veronesi (2012) and L. Pástor and Veronesi (2013) investigate

the effect of political news on financial markets. They develop a model where profitability

follows a stochastic process affected by government policy. The policy is uncertain, but

investors learn in a Bayesian fashion. However, investors cannot fully anticipate the costs

of the policy and, for this reason, political uncertainty commands a risk premium (in

terms of higher expected returns). Their model mostly takes a discount rate view, as

opposed to the cash flow view of this model.

This literature has also a variety of empirical works. Kelly et al. (2016) use option

prices around political events to investigate market pricing of political uncertainty. They

find that around political events options are more expensive because of higher implied

volatility and conclude that political uncertainty is priced in option markets. Bali et al.

(2017) investigate the pricing of economic uncertainty in the cross section of stock returns.

The estimate and uncertainty beta by regressing an index of economic uncertainty on

stocks excess returns and then calculate stock returns by beta decile. They find that

the lowest uncertainty decile generates 6% higher excess returns compared to the higher

7



decile. A portfolio long in stocks in the lowest uncertainty and short stocks in the higher

uncertainty beta generate positive average returns. Consistently with theory, they find

that uncertainty averse investors are willing to pay higher prices for stocks with positive

uncertainty beta.

The remainder of the paper proceeds as follows. In Section 2 we develop a valuation

framework of climate-sensitive assets and discuss some asset pricing implications. In

Section 3 we outline our empirical strategy and the econometric specifications for testing

our theoretical propositions. In Section 4 we provide the results of the analysis and

discuss the empirical evidence. The last section concludes.

2 Valuation framework

We consider an economy with two firms i 2 [1, 2], one producing carbon-intensive energy

and one low-carbon energy, a representative investor and an infinite time horizon t 2

[0,1]. Let Ei,t denote an exogenous level of energy produced by firm i at time t. Energy

supply matches energy demand. For all t 2 [0,1] energy demand for firm i follows

a firm-specific and independent geometric Brownian motion with drift µi and standard

deviation !i, where dWt is a process with mean zero and unit variance dWt ⇠ N (0, 1).

The drift µi remains constant for all t 2 [0,1].

dEi,t = µiEi,tdt+ !iEi,tdWt (1)

The value of µi is not known and depends on the policymaker decision about its

climate policy regime. The policymaker can decide to maintain its current policy regime

a or to make an irreversible decision to change its climate policy towards restricting

energy demand from carbon-intensive sources b, in order to prevent global warming.

All possible values of µi=1 conditional to a are higher than the values conditional to b,

for carbon-intensive energy, f(µi=1|a) > f(µi=1|b). The opposite is true for low-carbon

energy f(µi=2|a) < f(µi=2|b). If the policymaker decides to take action to prevent global

warming, she can implement policies for curbing carbon intensive energy (e.g., carbon

tax) or fostering low carbon energy (e.g., stimulating innovation). For simplicity, we
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assume that the future path of low and high carbon emitting energy only depends on the

uncertain climate policy regime.

The representative investor expectations of µi are distributed normally with mean gi

and variance �
2
i
. The latter term depends on the ambiguity introduced by the policy-

maker about the climate policy regime and describes the uncertainty of the representative

investor about its mean expectation. The more ambiguous the policymaker is about a

possible shift in its climate policy regime from a to b, the more uncertain the represen-

tative investor is about the drift in energy demand µi for each firm i. The investor has

to price a climate-sensitive asset at time t = 0, before the policy decision is taken. We

assume that the policymaker decision, once taken, is irreversible, but we acknowledge

that the reversibility of the climate policy regime introduces additional uncertainty. We

refer to �
2
i

as the regime shift uncertainty.

µi ⇠ N (gi, �
2
i
) (2)

We now want to link the uncertainty about climate action to the ambiguity about the

payoff, or cash flows, of climate-sensitive stocks3. Let Di,t denote the dividend paid by

firm i at time t. We assume that for all t 2 [0,1] the change in the level of dividends

is proportional to the change in energy demand, scaled by a known and constant firm-

specific factor dDi = �idEi. If we set !i = 0 in Equation (1) without loss of generality,

dividends grow at an exponential rate �iµi for all t 2 [0,1].

Di,t = Di,0exp(�iµit) (3)

The reader should note that the model can be generalised to values of !i greater

than zero. The motivation for this assumption is that we are interested in considering

the ambiguity that investors face about the probability distribution of the drift (i.e.,

the long-term path of energy demand) rather than the short-term volatility around it.
3The reader should note that the previous step is a useful construct to link climate policy with asset

valuations, but from a theoretical standpoint assuming uncertainty about the drift of the dividends

diffusion process is equivalent
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Climate policy might impact dividends in the short-term, but the impact on valuations

is greatest if it shifts the growth of the future stream of dividends. For this reason, we

focus only on the drift component.

The parameter �i denotes the elasticity of dividends to changes in energy demand

and represents the exposure of each firm to the regime shift. On the one hand, if µi is

negative, for values of �i greater than one the decline in future dividends is larger. On

the opposite, for values of �i lower than one the decline in dividends is smaller. On the

other hand, if µi is positive, values of �i greater than one lead to a larger increase in

dividends while values lower than one to a smaller increase. This parameter represents

how sensitive each firm is to changes in energy demand and to the policymaker climate

policy regime4. This parameter magnifies the effects of a positive policy regime shift on

companies dividends, but also increases their exposure to the risk of a policy negatively

impacting cash flows. We refer to �i as the exposure of each firm to the regime shift risk.

We then assume that the price of firm i at time t is the expected present value of

future dividends from t = 0 to infinity discounted by a rate ri, based on an exogenous

and known model of expected returns for which Et[ri] = ri. Although previous literature

discuss how systemic uncertainty might also affect the required rate of return, in this

paper we focus on the effect of climate policy idiosyncratic uncertainty on future cash

flows, assuming a constant rate of return. We argue that the fundamental value of climate

sensitive assets in the long-term is mostly impacted by the effect of the climate policy

regime on future dividends.

Pi,t = E0

Z 1

0

Di,texp(�rit)dt (4)

We acknowledge that uncertainty might have a dichotomous effect on asset prices

through both the discount rate and cash flow channels. On one side, a higher rate of

return required by uncertainty-averse investors might have a depressing effect on assets
4In a context with more than two firms, the heterogeneity of companies might generate different levels

of exposure to the policymaker decision. A diversified utility might be less exposed than a pure fossil

fuel company. In the stylised version of the model, we only consider the different exposure between low

and high carbon emitting firms, but not the heterogeneity within each type of firm
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valuations. On the contrary, higher uncertainty might right-skew the distribution of

future dividends. Nevertheless we argue that in this context the latter effect might be

stronger than the former. In this regards, we take a different view compared to the

previous literature which focuses on the expected rate of return and explore a broader

set of effects of climate policy uncertainty.

Substituting Di,t in the present value Equation (4) with the dividends growth process

in Equation (3), the price of firm i at time t depends on a dividend stream growing at a

rate µi�i and discounted at a rate ri. If we take the expectations, dividends Di,t are log-

normally distributed, and µi has mean exp(gi+�
2
i
/2). With some further manipulations,

we find the following convex relationship between four parameters and the price-dividend

ratio which we will use throughout the paper to make some considerations about climate

change and asset prices. For ri > gi, in Equation (5), the price-dividend ratio of either

low or carbon-intensive firm i at time t = 0 depends on the distribution of energy growth

expectations described by its mean gi and variance �
2
i

- i.e., regime shift uncertainty -,

the expected required rate of return ri,t and a known constant representing the sensitivity

of dividends to changes in energy demand �i - i.e., regime shift risk.

Pi/Di = 1/[ri � (gi + �
2
i
/2)�i] (5)

Our simple analytical model describes how the uncertainty about climate policy ac-

tion might have effects on the valuation of climate-sensitive assets. The policymaker can

influence the future trajectory of carbon intensive and low carbon energy, and conse-

quently the respective firms dividends or cash flows. The fundamental value of climate

sensitive assets depends on the growth of energy produced by each technology that is

the primary source of income of energy firms. Uncertainty right-skews the distribution

of future cash flows by increasing the expected value and positively affecting valuations,

for both low and high carbon emitting firms.

While the required rate of return is assumed constant in our model, a strengthening

of climate concerns might increase the discount rate for carbon-intensive assets reduc-

ing prices. Systemic uncertainty might also increase the rate of return required by an

uncertainty-averse investor. Nevertheless, given the possibility that carbon intensive en-
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ergy might be, in a substantial part, replaced by low carbon energy, we argue the cash

flow effect in such case could be considerable. For this reason, our model focuses on the

possible trajectory of cash flows rather than the expected returns. It should be noted that

the uncertainty in our approach emerges from the unknown policymaker decision about

an irreversible policy decision affecting the drift of the stochastic process governing the

energy demand. Contrary to the real option approaches, the uncertainty in our model

emerges from an unknown drift of the process rather than the volatility around it.

g -0.03 g 0 g 0.03

r 0.06 r 0.09 r 0.12 r 0.06 r 0.09 r 0.12 r 0.06 r 0.09 r 0.12

� 0.5
�
2 0 13.33 9.52 7.41 16.67 11.11 8.33 22.22 13.33 9.52

�
2 1% 13.79 9.76 7.55 17.39 11.43 8.51 23.53 13.79 9.76

�
2 3% 14.81 10.26 7.84 19.05 12.12 8.89 26.67 14.81 10.26

� 1
�
2 0 11.11 8.33 6.67 16.67 11.11 8.33 33.33 16.67 11.11

�
2 1% 11.76 8.7 6.9 18.18 11.76 8.7 40 18.18 11.76

�
2 3% 13.33 9.52 7.41 22.22 13.33 9.52 66.67 22.22 13.33

� 1.5
�
2 0 9.52 7.41 6.06 16.67 11.11 8.33 66.67 22.22 13.33

�
2 1% 10.26 7.84 6.35 19.05 12.12 8.89 133.33 26.67 14.81

�
2 3% 12.12 8.89 7.02 26.67 14.81 10.26 NA 44.44 19.05

Table 1: Sensitivity of Price-Dividend ratio and model parameters. The table
shows the values of the Price-Dividend ratio in output of the valuation model varying
input parameters.

Our model is broadly in line with previous financial economics literature on asset

pricing. In line with the framework proposed by Campbell (2019), stock valuations

depend on the expected dividends growth and the expected required rate of return. This

model shares common features with the present value relation models where the price-

dividend ratio depends on the expected required rate of return and the expected dividends

growth rate (Campbell & Shiller, 1987, 1989). Perhaps our modelling framework is most

similar to Pástor and Veronesi (2003) and Pástor and Veronesi (2006) which links firms’

valuations with a stochastic process of investors’ uncertainty about profitability. The

difference with their model is that investors are not able to learn with the passing of time

because climate uncertainty is guided by unpredictable policy action. Although with
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significant differences, this model is also close to the real option valuation framework

developed by Schwartz and Moon (2001) in the context of the dot.com bubble where high

valuations of companies are explained by the high uncertainty around revenue growth.

While our focus is on the uncertainty about the drift of the cash flows, the philosophy

of this model is akin to real option modelling approaches, some of them also used in

environmental economics (Kolstad, 1996; Paddock, Siegel, & James, 1988; Pindyck, 1991).

No uncertainty about climate policy

We now turn to some of the implications arising from this model and make two proposi-

tions about the relationship between investors’ expectations, their uncertainty, and assets

valuations. Before we discuss the more realistic case where investors face ambiguity about

climate action, we focus on a simpler context without uncertainty to draw some initial

observations. We first assume that the representative investor knows with certainty the

future energy demand path of low-carbon and carbon-intensive energy and there is no

ambiguity about the climate policy regime. In this case, �
2 is equal to zero and the

expected value of µ is g.

Pi/Di = 1/[ri � gi�i]

In this context without uncertainty, the higher the expected growth of future dividends

the higher the price relative to its dividends today. Investors know which energy produc-

tion technology (either low-carbon or carbon-intensive) will be predominant in the future

and they can forecast dividends accordingly. In this hypothetical case, the price-dividend

ratio of a stock is positively related to investors’ expectations about climate-sensitive

firms’ dividends growth and negatively related to the required rate of return. The eco-

nomic interpretation of this relationship is straightforward. Investors are willing to pay

more today for a climate-sensitive stock which is expected to pay more in the future

given a known and certain payoff distribution and an uncertainty-neutral required rate

of return.

This interpretation of the model is equivalent to the traditional framework proposed by

Gordon (1962) and in line with the subsequent financial economics literature (Campbell,
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2019; Campbell & Shiller, 1989). The only difference with this previous literature is that

the growth rate of dividends depends on investors’ climate expectations, which in turn,

depend on the policymaker climate policy regime. Until now, the contribution of the

model is limited to conceptualising the link between investors climate expectations and

climate-sensitive assets valuations.

PROPOSITION 1: The price-dividend ratio (P/D) increases with investors mean ex-

pectation about the growth of carbon-intensive/low carbon energy demand, and conse-

quently dividends from carbon-intensive/low-carbon firms, given a known level of ex-

pected rate of return

Figure 1: Price-Dividend ratio, discount rate and growth rate. Price-dividend
ratio for different levels of discount rate r (x-axis), energy growth rate g (y-axis) and
arbitrary levels of sensitivity of dividends to energy demand �. Left-hand side chart
� = 1, right-hand side chart � = 0.5

The convexity of this relationship depends on the level of policy regime risk, which we

quantified with the parameter �i. On the one hand, if g < 0 then �i is negatively related

with the price-dividend ratio (the higher �i the lower the price-dividend ratio). On the

other hand, if g > 0 then �i is positively related with the price-dividend ratio (the higher

�i the higher the price-dividend ratio). Further, the lower the discount rate the higher

the sensitivity of the price-dividend ratio to changes in �i due to the higher convexity of
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the present value relation. A higher discount rate gives less weight to higher dividends

in the future as opposed to a lower discount rate. The different exposure of energy firms

to the policy regime risk might be a material driver of their valuations. Although we do

not estimate this parameter empirically, we argue that carbon intensive firms might have

higher values of � given that low carbon energy is likely to be less susceptible to climate

policies compared to carbon intensive energy, especially on the downside risk.

This simplified version of the model allows to link investors’ climate expectations with

the valuations of low-carbon and carbon-intensive firms today, but it disregards the high

uncertainty of climate change and the net zero transition. If strong policy action to fight

global warming was taken, investors would be able to estimate the trajectory of dividends

for climate-sensitive assets and price them accordingly. But, until strong action is taken,

investors remain uncertain about a possible policy regime shift and ambiguous about the

conditional distribution of µi. In the following part of this section, we discuss how the

above proposition might be affected by investors’ uncertainty about future climate policy.

Uncertainty about climate policy

We now turn to the more realistic case where investors do not know whether the pol-

icymaker will act to curb carbon emissions. The growth rate of energy demand µi is

not known, but investors can observe the distribution of µi conditional to each climate

policy regime. This can be done, for example, by looking at climate mitigation scenarios

such as The Intergovernmental Panel on Climate Change (IPCC). We assume that the

investors information set contains such data and it is available to market agents. The rep-

resentative investor, however, does not know the policymaker decision, and she remains

ambiguous about the policy regime shift. In this case, in our model, the valuation of

low and carbon-intensive assets not only depends on the required rate of return and the

expected growth rate of dividends, but also the uncertainty around the expected growth

rate.

Pi/Di = 1/[ri � (gi + �
2
i
/2)�i]
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In this context of ambiguity, higher uncertainty about the growth of climate-sensitive

firms leads to higher prices. Investors do not know whether carbon-intensive energy will

remain predominant (leading to global warming) or whether the world will move towards

net zero carbon emissions thanks to low-carbon energy and the policy regime shift. In

such case, uncertainty around policy action might lead to higher valuations, similar to

the case of internet companies in the dot.com bubble ( Pástor & Veronesi, 2006) or the

uncertainty about the future profitability of newly listed firms (Pástor & Veronesi, 2003).

Not divesting from the carbon intensive energy firm has an intrinsic option value until

inaction from the policymaker is possible. The higher the likelihood of no regime shift,

the higher the option value of not divesting from carbon-intensive energy.

PROPOSITION 2: The price-dividend ratio (P/D) increases with the uncertainty

about growth expectations of carbon-intensive/low carbon energy demand, and conse-

quently dividends from carbon-intensive/low carbon firms, given a known level of ex-

pected rate of return ri and a mean expected growth gi

Figure 2: Price-Dividend ratio and uncertainty. Price-dividend ratio for different
levels of energy growth rate g (x-axis) and uncertainty � (y-axis) assuming sensitivity of
dividends to energy demand � = 1 and arbitrary levels of discount rate. Left-hand side
chart discount rate r = 0.09, right-hand side chart discount rate r = 0.07

The status quo generated by climate political uncertainty might have effects on the val-
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uations of climate-sensitive assets by right-skewing the expected value of future dividends.

This, in turn, might have real effects by lowering the cost of financing for low carbon,

but also carbon-intensive, firms and affecting the allocation of resources. Arguably the

option value is higher for high-emitting assets given the larger potential downside in case

of strong climate policy action. In the absence of resolution of climate policy uncertainty,

financial markets might not be able to fully price environmental externalities, even if

more information about firms’ exposure to climate related risks becomes available. From

a policy perspective, the largest part of climate finance policies rely on the assumption

that financial markets are able to price environmental externalities, if sufficient informa-

tion is provided. In contrast, our model shows that climate information is less important

in a context of high climate political uncertainty. Ambiguity about future climate policies

reduces the value of climate information.

In this section, we described a theoretical framework of stock market valuations of

firms exposed to an uncertain policy regime shift to curb carbon emissions and prevent

global warming. Our first two propositions are aligned with previous financial economics

literature, but they are extended to the context of global warming. Moreover, our model

provides us with two testable propositions that could help us in understanding to what

extent current climate-sensitive assets valuations are explained by the uncertainty around

climate policy and by investors expectations regarding low and high carbon emitting

energy firms. This will be the focus of the next sections.

3 Empirical Analysis

In the empirical analysis we use professional analysts forecasts, or estimates, of climate-

sensitive firms fundamental value to proxy investors’ expectations and climate policy

uncertainty. Using analysts forecasts is appealing for assessing investors’ time-varying

expectations because it allows to compute statistical moments summarising investors’

consensus. In line with previous literature, it also allows the estimation of a proxy

of uncertainty based on forecast disagreement (Anderson, Ghysels, & Juergens, 2009;

Diether, Malloy, & Scherbina, 2002; Johnson, 2004). It seems reasonable to assume that

if all analysts agreed on the same fundamental value, uncertainty would be low. On the
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opposite, if the disagreement about the future fundamental value of a firm was high,

uncertainty might be high. This approach allows us to calculate investors idiosyncratic

uncertainty about climate-sensitive firms, which we assume depends mostly on climate

policy uncertainty5.

In order to identify the largest universe possible of climate-sensitive energy stocks

we use international data from CRSP/Compustat merged stock dataset where we select

sub-industries related to energy oil & gas consumable fuels and utility renewable energy

companies6. This gives us a large set of stocks and their respective market data such as

daily prices, earnings and dividends from 1994. We then merge this data with Refinitiv

IBES through IBES/CRPS mapping table available at Wharton Research Data Services

(WRDS). We use the code PERMNO as main unique identifier for firms between the

tables. IBES reports data about analysts forecasts of financial indicators monthly (e.g.,

Dividends per share, Earnings per share). We use the summary dataset which reports

mean, standard deviation, high, low of analysts estimates (including the number of under-

lying forecasts) as well as a set of aggregated statistics about the detailed estimates. IBES

detailed file also allows to retrieve information about each analysts estimate underlying

the aggregated statistics.

Joining IBES with CRPS dataset gives us a total of 495 stocks that are followed

by analysts of which 15 renewable energy and 480 fossil fuel from 1994. This data has

monthly records (forecast date) corresponding to more than 800,000 underlying estimates

which summarise investors’ believes of a representative sample of climate-sensitive com-

panies worldwide. We recognise that our sample is skewed towards fossil fuel firms, being

predominantly large and concentrated firms, as opposed to renewable energy companies.

Table 2 shows some descriptive statistics.
5There are different methods for assessing uncertainty in financial markets proposed in the literature.

To cite some: i. ARCH conditional variance discussed by Engle (1983), ii. market-based methods

Bekaert and Hoerova (2014); Brenner and Izhakian (2018), iii. text-mining methods Baker, Bloom, and

Davis (2016); Bloom (2009), of which some applied to climate policy uncertainty Berestycki, Carattini,

Dechezleprêtre, and Kruse (2022); Gavriilidis (2022); Noailly, Nowzohour, and Van Den Heuvel (2022)
6GIC Sub-industries selected: Integrated Oil & Gas (10102010), Oil & Gas Exploration & Produc-

tion (10102020), Oil & Gas Refining & Marketing (10102030), Oil & Gas Storage & Transportation

(10102040), Oil & Coal & Consumable Fuels (10102050) and Renewable Energy (55105020)
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Our data reports analysts forecasts for different forecasting horizon (FH) in the future,

from 1 to 5 years, allowing us to construct our measures for different temporal horizons.

For example, estimates could be for next fiscal year (FH 1) or for 5 years in the future

(FH 5). The number of analysts estimates for 4 and 5 years in the future is quite

limited. For this reason we disregard forecasts of more than 3 years ahead. Further,

considering combinations of firm-date with a low number of underlying analysts forecasts

would decrease the robustness of our measures. In line with previous literature, we set

a threshold of minimum required number of analysts. We set the threshold to 10 in

order to achieve the highest number possible of underlying estimates without reducing

substantially the number of snapshots. We test in the robustness analysis that this does

not affect our key results.

FH P/D DPS_G DPS_STD P/E EPS_G EPS_STD

Mean
1 38.72 0.03 0.07 23.18 0.11 0.2
2 42.44 0.33 0.14 15.25 -0.37 0.11
3 25.81 0.37 0.14 15.95 -1.18 -0.17

Std
1 65.7 0.25 0.25 477.22 15.08 6.89
2 125.29 1.66 0.58 207.04 11.39 5.22
3 26.18 1.3 0.46 286.91 22.89 20.94

Min
1 0.46 -1 0 -1583 -156.83 -272.85
2 0.45 -1 0 -2810 -320.00 -203.53
3 0.45 -1 0 -4526 -365.40 -850.33

Max
1 843 5.1 6 29820 979 440
2 3399 24 11 3410 319.2 62.24
3 394.75 14.98 6.35 3188 663.27 99.02

N
1 5291 5291 5291 8895 8895 8895
2 4556 4556 4556 10040 10040 10040
3 1212 1212 1212 3365 3365 3365

Table 2: IBES Descriptive statistics CRSP/IBES sample descriptive statistics. Val-
ues between January 2010 and December 2019. From top to bottom: mean, standard
deviation, minimum, maximum and number of observations. FH refers to different fore-
casting horizons from 1 year forward until 3 years ahead.

We select the decade between the beginning of 2010 and the end of 2019 because

particularly suitable for our empirical analysis, but also for data limitations. Firstly, if
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we consider a minimum number of analysts forecasts for each forecast date, data before

2010 is scattered. Secondly, between the global financial crisis and Covid 19, this period

has been relatively stable from a macroeconomic standpoint while various climate policy

events occurred (e.g., Paris agreement, Trump election) without being influenced by other

macroeconomic factors. This allows us to avoid to worry about the influence of other

major economic and policy developments on the valuations of the stocks in our sample

that would affect our results (e.g., Global financial crisis). This period give us a sufficient

number of monthly forecast dates, analysts forecasts across three forecasting horizon and

heterogeneity of climate policy events to estimate a regression model (Table 7 and 8).

We define two measures of analysts forecast as follows: i. Mean Dividend Per Share

(DPS) growth forecast (DPS_G
FH

i,t
) relative to the most recent payed dividend per share

at forecast date and ii. Standard deviation of DPS growth forecasts (DPS_STD
FH

i,t
) rel-

ative to the most recent payed dividend per share at forecast date (or forecast disagree-

ment about dividends mean growth). We use the latter measure as a proxy of analysts

uncertainty. Consistently with previous literature, we assume that the larger the fore-

cast disagreement (DPS_STD
FH

i,t
), the higher the uncertainty. More formally, we define

DPS
FH

i,t,k
as the DPS forecast for the forecasting horizon FH of analyst k for firm i at

time t (where K is the total number of analyst estimates). Further, we define DPSi,t as

the most recent payed dividend at forecast date t and DPS
FH

i,t
as the arithmetic average

of the K analysts forecasts for firm i for each forecasting horizon FH. Firm i could be

either carbon intensive or low carbon.

DPS_G
FH

i,t
=

DPSi,t

FH

DPSi,t

� 1

DPS_STD
FH

i,t
=

qP
K

k=1(DPS
FH

i,t,k
�DPSi,t

FH

)2/K

DPSi,t

We estimate a cross section model between the price-dividend ratio, analysts Mean

DPS growth forecast (DPS_G
FH

i,t
) and Standard deviation of DPS growth forecasts

(DPS_STD
FH

i,t
) across firm i and time t, where ✏i is the error term. In this specifi-

cation we remove the firm-fixed effect because we are interested in the time-varying level
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of idiosyncratic uncertainty. We de-mean both the firm level P/D in our time-frame and

the two measures of analysts forecasts. By de-meaning these variables we remove the

known effect of idiosyncratic uncertainty on asset valuations (e.g., Pástor and Veronesi

(2003)) and only investigate how the time-varying idiosyncratic uncertainty affects cli-

mate sensitive assets valuations. Loosely speaking we are interested if in period of higher

climate policy uncertainty, climate sensitive assets relative valuations are higher rather

than understanding whether more uncertain firms show higher prices. Moreover we repli-

cate the same specification for the Price-Earnings and Earnings Per Share (EPS) forecast

in our dataset in order to avoid the concern of not dividends paying stocks and use a

larger number of datapoints.

PDi,t = ↵t + �1 ⇤DPS_G
FH

i,t
+ �2 ⇤DPS_STD

FH

i,t
+ ✏i,t

Before we proceed with our empirical analysis, we verify that our measures, in aggre-

gate, are sensitive to climate policy events. In order to have a more stable measure we

use earnings per share rather than dividends per share in this comparison. The average

expected growth rate of earnings across all firms in our sample EPS_G
FH

i,t
and their

uncertainty EPS_STD
FH

i,t
varies throughout time in line with key policy events (Figure

3). In the period around the announcement of the Paris agreement and following Presi-

dent Trump’s subsequent withdrawal, we observe spikes in our measures of uncertainty,

demonstrating the sensitivity of this variable to climate policy. Similarly our measure

increases around the more recent UN Climate action summit in 2019 and the release of

the fourth IPCC report in late 2014. The measure for the forecasting horizon (FH) of 1

year is more volatile than longer term expectations of a FH of 3 years, which reacts more

slowly. Interestingly, all three measures of uncertainty are at their highest around the

period of the Paris Agreement, arguably the major climate policy event of the decade.

Analysts expectations about the growth of earnings also seem to react to policy events

such as the Paris agreement and President Trump withdrawal. Following the former, all

three average measures of earnings growth for the firms in our sample start decreasing,

although the metric for FH 3 is more stable. The average earnings growth estimate
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for FH 1 and FH 2 seem to reverse following President Trump withdrawal from the

Paris agreement gradually increasing afterwards. The measure for FH 3 starts decreasing

towards the end of Trump mandate, perhaps anticipating a change in climate policy.

Figure 3: Average forecast estimates time series. Average Mean DPS
growth forecast (DPS_G

FH

i,t
) and average Standard deviation of DPS growth forecasts

(DPS_STD
FH

i,t
) relative to the absolute value of EPS. Only fossil fuel companies in our

sample, excluding the 15 renewable energy companies. Blue line on left hand side axis
represents EPS_G

FH and orange line on right hand side axis represents EPS_STD
FH

for forecasting horizons (FH) 1,2,3. Vertical lines from left to right represent Fourth
IPCC assessment report release, Paris Agreement, President Trump withdrawal from it
and 2019 UN Climate action summit.

We are aware that other types of uncertainty might be captured in our measure (e.g.,

broader political uncertainty), but we argue global warming might be the largest source

of uncertainty for the long term future of climate-sensitive stocks, such as fossil fuels. In

order to better understand if this is the case, we compare our measure of climate policy

uncertainty (CPU) based on analysts disagreement with other measures of CPU and

general macroeconomic uncertainty. Our measure of CPU correlates with similar metrics

in the literature, but not substantially with measures of general economic uncertainty.
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Nevertheless, we are conscious of the fact that in some periods there could be a certain

level of correlation between Climate policy uncertainty and macroeconomic uncertainty.

For example, the election of President Trump resulted in political uncertainty because of

economic reforms, but also because of his declarations about withdrawing from the Paris

Agreement.

In Figure 4, we compare our measure of climate policy uncertainty for 3 years fore-

casting horizon with two general uncertainty indexes: the VIX of the S&P 500 index and

the measure proposed by Bloom (2009). Our measure has a low correlation with gen-

eral political and economic uncertainty. The VIX and the GEPU indexes are low in the

period between the release of the IPCC Fourth Assessment report and the Paris agree-

ment, contrary to our measure of climate policy uncertainty which peaks in the months

preceding the Paris Agreement. The VIX is also low around the election of President

Trump, although the GEPU spikes in the months preceding the nomination and then

returns to normal levels around the elections. In this period, the forecast disagreement

index does not spike in the months preceding the election, but only around and after the

election when discussions about the US withdrawal from the Paris Agreement started.

Although the VIX index is flat for most of the periods where climate policy developments

unfolded, the GEPU index shows a somewhat negative correlation with our measure of

CPU showing how it might not be substantially biased by general uncertainty.

Furthermore, in Figure 4 we compare our measure of climate policy uncertainty for 3

years forecasting horizon with three CPU indexes: the text mining approaches of Gavri-

ilidis (2022), Noailly et al. (2022) and Berestycki et al. (2022). Opposite to general

macroeconomic uncertainty indexes, our measure co-moves with these indexes of climate

policy uncertainty, especially in the first part of President Trump term. All measures

of climate policy uncertainty increase in the periods around and after President Trump

election, consistently with our measure of forecast disagreement. Interestingly, the text-

based methods of climate policy uncertainty do not increase in the periods around the

Paris Agreement, as opposed to our measure, which peaks in the months preceding the

Paris Conference of Parties (COP). Arguably in such case uncertainty might have been

high given the relevance of such accord for the future of the fossil fuel industry. Nev-

ertheless, with the exception of the Paris Agreement, our measure seems to track fairly
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well the trend of the EnvPU index proposed by Noailly et al. (2022) giving comfort that

our proxy is, to a good extent, capturing climate policy uncertainty.

Figure 4: Uncertainty indexes comparison. Comparison of average Standard de-
viation of DPS growth forecasts (DPS_STD

FH

i,t
) relative to the absolute value of EPS

(Full line, left axis) and three indexes of uncertainty (Dashed lines, right axis). From top
to bottom Vix of the S&P 500 index retrieved from Fred Database, Global Economic Un-
certainty Index of Bloom (2009), Climate Policy Uncertainty index of Gavriilidis (2022)
used by Chan and Malik (2022), EnvPU from Noailly et al. (2022) and OECD CPU index
of Berestycki et al. (2022). Vertical lines from left to right represent Fourth IPCC assess-
ment report release, Paris Agreement, President Trump withdrawal from it and 2019 UN
Climate action summit. Excluding the 15 renewable energy companies in our sample.
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The empirical set up described in this section as well as the data of analyst forecasts

allows to investigate empirically our theoretical model prediction about the relationship

between climate-sensitive stocks valuation and investors uncertainty. Although climate

policy uncertainty metrics are still emerging in the literature, we propose a novel approach

based on forecast disagreement and discussed some of the limitations. In the next section

we discuss some results of our empirical investigation in the context of our theoretical

model.

4 Results

We now turn to discuss some empirical results testing our model propositions. Firstly, we

find a statistically significant relationship between analysts dividends growth expectations

(DPS_G) and the price-dividend ratio (P/D) observed at forecast date. This result is in

line with our model first proposition. Table 3 shows that the regression model coefficients

are positive for all three forecasting horizons (FH) and significant at 5% confidence level.

The R
2 ranges between 14% and 32%. As expected, the results are stronger for the

relationship between analysts earnings growth expectations (EPS_G) and the price-

earnings ratio (P/E) observed at forecast date. Similarly, the regression model coefficients

are positive for all three forecasting horizons and significant at 5% confidence level. The

R
2 increases to between 54% and 86% because of the cleaner data and the higher number

of observations compared to the dividends forecast.

We then investigate the second model proposition. We find a statistically significant

relationship between analysts dividends growth uncertainty (DPS_STD) and the price-

dividend ratio (P/D) observed at forecast date. The coefficients are all positive and

significant. The R
2 is high for forecasting horizon 3 at around 45%, but it becomes

lower for FH 1 (17%) and close to zero for FH 2 (1.5%). The sign also turns negative in

FH 2 for the multivariate analysis including dividends growth expectations as additional

independent variable. However, the results are more in line with expectations for the

relationship between analysts earnings growth uncertainty (EPS_STD) and the price-

earnings (P/E). The coefficients are positive and statistically significant at 5% confidence

level. The R
2 increases substantially to between 80% and 86% for FH 1 and FH 2
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respectively, although it is low for FH 3 (5%).

In Table 3, we look at the multivariate analysis with both dividends (earnings) growth

expectations and uncertainty and price-dividend (earnings). For the price-dividend mul-

tivariate regression the R
2 ranges between 18% and 47% while for the price-earnings

between 80% and 93% across all forecasting horizons. Moreover, the size of the coeffi-

cients is material. In the price-earnings multivariate model for FH 2, one with the highest

R
2, a mean expectation of doubling of the earnings in the following 2 years leads to a 9

points increase in the price-earnings ratio. An earnings growth uncertainty, expressed in

terms of standard deviation around the mean growth rate, of 50% would lead to a around

7 points increase in the price-earnings ratio. However, these figures should not be used

in isolation as expectations act across different forecasting horizons. Nevertheless, this

shows the statistically significant and material effect of investors climate expectations on

the valuation of climate sensitive firms.

To ensure our results are not sensitive to outliers we winsorise to the 1st/99th per-

centile all variables in our sample and re-estimate our model. In Table 4 we show that the

explanatory power of the regressions decreases following the censoring, but all parame-

ters remain significant and the sign of the coefficients in line with our results. The only

exception is the sign of analysts earnings growth expectations (EPS_G) which turns

negative for FH 1. Similarly, analysts dividends growth uncertainty (DPS_STD) FH 3

turns negative, although the number of observations is particularly low, especially given

that monthly snapshots are considered.

In order to ensure our results are robust, we divide the sample in different sub-samples

according to various measures that include Gross profit Margin (GPM), Price to Book

(PTB), Debt to Ebitda (DtE), Debt to Asset (DtA), Return of Equity (ROE), and Cash to

Debt (CtD), and re-run the univariate and multivariate regressions on each sub-sample.

More in details, for the financial variables, we classify companies in different quartiles

and run our empirical analysis on each subset of firms. Financial information refers to

the most recent quarterly data available and has been extracted from WRDS firm-level

financial ratio dataset and merged with our sample. This analysis allows us to ensure

our results are not susceptible to particular types of firms and a broader generalisation

of our findings.
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FH 1 FH 2 FH 3

Dep Var Coef P-value Coef P-value Coef P-value

DPS_G P/D 99.4894 < .0001⇤ 39.0343 < .0001⇤ 16.9548 < .0001⇤
R

2 P/D 0.1394 < .0001⇤ 0.3195 < .0001⇤ 0.2844 < .0001⇤
DPS_STD P/D 110.3557 < .0001⇤ 25.5029 < .0001⇤ 78.6529 < .0001⇤
R

2 P/D 0.1687 < .0001⇤ 0.0151 < .0001⇤ 0.4445 < .0001⇤
DPS_G P/D 41.9708 < .0001⇤ 47.019 < .0001⇤ 6.7857 < .0001⇤
DPS_STD P/D 79.4654 < .0001⇤ -46.8876 < .0001⇤ 63.7451 < .0001⇤
R

2 P/D 0.1803 < .0001⇤ 0.3572 < .0001⇤ 0.4741 < .0001⇤
N 5135 4402 1170

EPS_G P/E 27.115 < .0001⇤ 14.6694 < .0001⇤ 10.3986 < .0001⇤
R

2 P/E 0.759 < .0001⇤ 0.8652 < .0001⇤ 0.542 < .0001⇤
EPS_STD P/E 64.8853 < .0001⇤ 37.3005 < .0001⇤ 4.1617 < .0001⇤
R

2 P/E 0.8794 < .0001⇤ 0.7976 < .0001⇤ 0.0535 < .0001⇤
EPS_G P/E 1.4391 < .0001⇤ 9.4191 < .0001⇤ 12.9087 < .0001⇤
EPS_STD P/E 61.9367 < .0001⇤ 17.6393 < .0001⇤ 9.6276 < .0001⇤
R

2 P/E 0.8797 < .0001⇤ 0.9327 < .0001⇤ 0.7965 < .0001⇤
N 8831 9919 3342

Table 3: Cross section regression removing firm fixed effect. Panel regression coefficient, R2 and P-value for DPS and EPS,
removing firm fixed effect. From top to bottom: univariate regression between dividends (earning) per share growth DPS_Gi,t

(EPS_Gi,t) and price-dividends (price-earning ratio). Univariate regression of dividends (earnings) per share relative standard
deviation (defined as the ratio between the standard deviation of analysts estimates and latest dividend (earnings)) DPS_STDi,t

(EPS_STDi,t) and the price-dividend (price-earning) ratio. Multivariate regression between relative standard deviation and mean
expected growth. From left to right: analysts’ estimates for next fiscal year (FH+1) up to FH in 3 years (FH+3). Monthly estimates
between January 2010 and December 2019 for 480 fossil fuel companies and 15 renewable energy companies. For FH 1,FH 2, FH 3
only records with underlying number of analysts estimates greater than 10. N refers to number of snapshots each with at least 10
underlying analysts’ estimates. Asterisk denotes significance at 5% level.
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FH 1 FH 2 FH 3

Dep Var Coef P-value Coef P-value Coef P-value

DPS_G P/D 28.2869 < .0001⇤ 35.4799 < .0001⇤ 6.881 < .0001⇤
R

2 P/D 0.0094 < .0001⇤ 0.0763 < .0001⇤ 0.0319 < .0001⇤
DPS_STD P/D 31.946 < .0001⇤ 61.8057 < .0001⇤ -7.2153 < .0001⇤
R

2 P/D 0.0129 < .0001⇤ 0.0291 < .0001⇤ 0.003 < .0001⇤
DPS_G P/D 16.729 < .0001⇤ 31.9457 < .0001⇤ 8.134 < .0001⇤
DPS_STD P/D 24.6776 < .0001⇤ 38.5307 < .0001⇤ -15.1612 < .0001⇤
R

2 P/D 0.0155 < .0001⇤ 0.0869 < .0001⇤ 0.0440 < .0001⇤
N P/D 4930 3856 978

EPS_G P/E -9.7157 < .0001⇤ 16.2482 < .0001⇤ 11.7763 < .0001⇤
R

2 P/E 0.0138 < .0001⇤ 0.2744 < .0001⇤ 0.5067 < .0001⇤
EPS_Std P/E 68.4154 < .0001⇤ 41.7412 < .0001⇤ 28.4224 < .0001⇤
R

2 P/E 0.4044 < .0001⇤ 0.5085 < .0001⇤ 0.4357 < .0001⇤
EPS_G P/E -13.0798 < .0001⇤ 6.7248 < .0001⇤ 8.2245 < .0001⇤
EPS_Std P/E 69.4922 < .0001⇤ 35.2739 < .0001⇤ 16.2291 < .0001⇤
R

2 P/E 0.4294 < .0001⇤ 0.5433 < .0001⇤ 0.6026 < .0001⇤
N P/E 8527 8656 2375

Table 4: Cross section regression removing firm fixed effect - Winsorised results. Panel regression coefficient, R2 and
P-value for DPS and EPS, removing firm fixed effect. From top to bottom: univariate regression between dividends (earning) per
share growth DPS_Gi,t (EPS_Gi,t) and price-dividends (price-earning) ratio. Univariate regression of dividends (earnings) per
share relative standard deviation (defined as the ratio between the standard deviation of analysts estimates and latest dividend
(earnings)) DPS_STDi,t (EPS_STDi,t) and the price-dividend (price-earning) ratio. Multivariate regression between relative
standard deviation and mean expected growth. From left to right: analysts’ estimates for next fiscal year (FH+1) up to FH in 3
years (FH+3). Monthly estimates between January 2010 and December 2019 for 480 fossil fuel companies and 15 renewable energy
companies. For FH 1,FH 2, FH 3 only records with underlying number of analysts estimates greater than 10. N refers to number
of snapshots each with at least 10 underlying analysts’ estimates. Asterisk denotes significance at 5% level. Values winsorised at
the 1st and 99th percentile.
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In Table 5 we report the univariate regressions of analysts dividends growth expecta-

tions (DPS_G) and uncertainty (DPS_STD) broken down by quartiles. The signs of

the coefficients are generally positive and significant, although with a few exceptions. In

the lowest quartile, the coefficient DPS_STD tends to have in some occurrences nega-

tive sign. This also occurs for the highest quartile, although it is mostly limited to GpM

and CtD and oftentimes these coefficients are not significant. As expected, the results are

more solid for earnings per share forecast. In Table 6 we report the univariate regressions

of analysts earnings growth expectations (EPS_G) and uncertainty (EPS_STD) bro-

ken down by quartiles. Similarly, the signs of the coefficients are in most cases positive

and significant, although with a few exceptions. All coefficients of EPS_STD have the

correct sign and only 2 out of 72 combinations are not significant. On the opposite, there

are more instances where EPS_G coefficients turn negative (11 out of 72 combinations)

or are not significant (7 out of 72 combinations). In any case, this effect does not seem

to indicate any particular pattern or bias in our regression model, but it highlights the

challenges of using forecast data.

We then ensure that our threshold of minimum analysts estimates required for each

snapshot (K) does not impact our results. In Table 10, we increase the cut-off of 10

minimum number of estimates to 20 and decrease it to 5 to test the sensitivity of our

results to this parameter. The results generally persist increasing the minimum number

of estimates, especially for EPS forecast. As expected, the size of the sample decreases

substantially for DPS and it is not sufficient for fitting a regression model. On the

opposite, decreasing the minimum number of estimates increases the sample size, but the

metrics are less robust. The results are confirmed also in this case with few exceptions,

although we are cautious in using our metrics with fewer than 10 analysts forecast. In

such case, the metrics might have been estimated on a not sufficiently representative

sample of analysts. Nevertheless this robustness analysis shows that the results are not

substantially sensitive to the cut-off threshold above a certain level.
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Quartile

1 2 3 4

FH DPS_G DPS_STD DPS_G DPS_STD DPS_G DPS_STD DPS_G DPS_STD

GpM
1 52.8227 57.3577 541.428* 504.4536* 90.22* -163.7855* 214.9057 -234.7128*
2 174.687* -9.5713* 167.7687* 281.6284* 69.0461* -70.5084 144.5712* -115.0367
3 16.6498* 462.0239* 45.0919 251.4164* 15.2465* -24.9879 328.5066 -1380.4112

PtB
1 66.3326* 45.1269 295.4287* 421.5916* 620.5067* 492.4462* 586.9758* 273.5026
2 142.1021* -5.3509 191.3892* -377.6472* 207.9459* 575.2677* 122.0017* -38.2852
3 67.1339* -87.6881 23.6299* 22.3529 34.1098* 317.3548* 12.2422* 88.555

RoE
1 91.3188 63.6379 287.5353* 646.3775* 281.1523* 560.0479* 540.7451* 867.7944*
2 144.5849* 2.9049 199.7477* -12.3589 137.9472* 687.2251* 227.01* 939.2452*
3 15.9842* 24.0327 21.0598* 39.1491 40.3415* 306.1989* 29.7324* 345.3014*

DtE
1 254.0618* 227.8183* 531.4117* 627.0554* 221.1972* 746.6944* 99.8423 82.2473
2 177.4825* -9.0147 135.5823* 561.0598* 215.5362* 231.0026* 60.7788* 118.3451*
3 16.662* 454.9363 19.1176 302.3469* 41.1607* 312.0763* 20.335* 11.9431*

DtA
1 400.7759* 739.7801* 857.099* 709.2959* 131.7464* 151.4767* -15.3911 20.3184
2 186.425* 603.6976* 221.4064* 285.9312* 94.5601* 34.196 9.0553* -1.2376
3 18.3681* -132.0503* 30.9269* 321.9528* 19.1162* 161.1632 20.6765* 4.9389*

CtD
1 162.5744 127.7333 381.366* 659.7918* 100.5659* 181.5656* 33.5901 -313.6675*
2 73.6039* 66.7532* 196.7561* 25.5559* 90.6128* 78.4098 90.9721* -85.3032
3 45.8424 222.8177* 22.9849* 313.8575* 12.1082* 11.7659* 30.0008* -43.5933

Table 5: Robustness analysis - Dividends Per Share. Panel regression coefficient of univariate regression of dividends per
share growth (DPS_G), dividends per share relative standard deviation (defined as the ratio between the standard deviation of
analysts estimates and the mean estimate - DPS_STD) and the price-dividend ratio on quartiles sub-samples (columns) and
forecast year (rows). From top to bottom: gross profit margin (GpM), price to book (PtB), Return on Equity (RoE), Debt to
Ebitda (DtE) and Debt to Assets (DtA), Cash to Debt (CtD). Asterisk denotes significance at 5% level.
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Quartile

1 2 3 4

FH EPS_G EPS_STD EPS_G EPS_STD EPS_G EPS_STD EPS_G EPS_STD

GpM
1 -5.0008* 112.9525* -14.741* 105.9097* 28.269* 107.704* -2.7729* 100.7705*
2 6.9528 17.1292* 27.8225* 84.6064* 29.4402* 56.9256* 30.0163* 41.1883*
3 5.6956 4.9698* 19.7981* 28.2803* 26.0582* 30.1439* 48.905* 39.1724*

PtB
1 -22.2288* 99.2841* 8.1578* 189.838* 13.7657 185.3505* 20.1661* 99.6883*
2 15.3363* 27.5419* 26.5443* 69.9493* 30.9442* 78.7878* 36.8359* 69.9745*
3 6.594* 4.7321* 20.5644* 49.0402* 29.5631* 28.045* 39.0372* 88.3075*

RoE
1 -15.6531* 83.4235* 2.8319* 161.6082* 53.6435* 115.9682* -14.3844 267.6626*
2 11.4101* 24.2099* 32.723* 68.5964* 26.7836* 72.9188* 28.9148* 102.1837*
3 6.1827* 5.157* 32.5066* 35.2754* 37.5687* 39.2823* 25.2263* 25.3827*

DtE
1 -43.7157* 91.7872* 4.6395* 170.4652* 15.3896 160.2649* 12.2567* 87.6546*
2 11.0833* 21.9322* 29.7815* 80.9066* 32.7492* 54.1759* 24.3952* 52.7597*
3 7.8546* 6.2162* 35.4586* 76.9386 25.0945* 47.6057 25.0026* 15.4121*

DtA
1 38.0079* 159.8507* -7.036* 156.8291* -43.4679* 163.5252* 7.5206* 51.9559*
2 28.79* 80.2547* 29.7451* 78.354* 29.2546* 66.9892* 5.1453 13.5246*
3 24.9284* 85.656* 32.1614* 75.649* 25.1029* 28.4684* 12.0611* 8.0253*

CtD
1 37.2597* 99.3115* -3.3857 106.1132* -23.0837 95.3551* 8.8786* 196.1569*
2 22.8545* 42.3094* 10.3069* 22.7089* 25.7457* 57.7817* 33.3235* 93.3295*
3 6.2123* 12.0242* 17.0551* 10.3863* 18.6669* 35.6528* 34.6479* 88.9322*

Table 6: Robustness analysis - Earnings Per Share. Panel regression coefficient of univariate regression of earnings per share
growth (EPS_G), earnings per share relative standard deviation (defined as the ratio between the standard deviation of analysts
estimates and the mean estimate - EPS_STD) and the price-earnings ratio on quartiles sub-samples (columns) and forecast year
(rows). From top to bottom: gross profit margin (GpM), price to book (PtB), Return on Equity (RoE), Debt to Ebitda (DtE) and
Debt to Assets (DtA), Cash to Debt (CtD). Asterisk denotes significance at 5% level.
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We are aware of the limitations of this paper and a few caveats should be pointed

out. Starting with our theoretical model, we recognise that we are only considering how

idiosyncratic uncertainty affects future cash flows. However, systemic climate uncertainty

might also impact the required rate of return, increasing the discount rate and depressing

valuations. Secondly, a strengthening of climate concerns may lead to lower (higher)

discount rates for low (high) carbon assets, as highlighted by some related literature

(Bolton & Kacperczyk, 2021). Thirdly, our model only considers uncertainty from an

unknown policymaker action, but investors might also be uncertain about endogenous

technological innovation which might lead to a larger deployment of low carbon energy

regardless of policy intervention. Nonetheless, we argue that our model provide a useful

conceptual framework for better understanding climate uncertainty and assets valuations.

Specifically, our framework suggests a novel finding in the climate finance literature, that

the high uncertainty about a climate policy regime shift may increase valuations of climate

sensitive firms.

The propositions of this paper are generally corroborated by empirical evidence. But

we are also aware of the challenges of using professional analysts forecast data. Fore-

cast disagreement might not necessarily represent uncertainty, but only heterogeneous

expectations and investors may or may not rely on analysts forecast for their investment

decisions. Nevertheless, we argue that analysts forecasts are a sufficiently representative

proxy of the overall market sentiment. Moreover, uncertainty is the leading driver of more

or less heterogeneous expectations or forecast disagreement. We have found reassurance

in this assumption comparing our measure of uncertainty based on disagreement with

other measures of uncertainty, and climate policy uncertainty in the previous section.

Yet, our empirical analysis suggests that investors expectations, and their uncertainty,

might have a material effect of climate sensitive assets valuations, in line with our theo-

retical model.

Regardless of the limitations, this paper provides a first useful conceptual framework

for understanding climate-sensitive assets valuations in the context of climate policy

uncertainty. Our propositions are supported by empirical evidence using a metrics that

naturally emerge from studying investors’ expectations gauged with analysts forecast.

Although we are not able to conclude whether current levels of climate policy uncertainty
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are sufficient to justify the valuations of climate sensitive assets - or if we are living in a

carbon bubble - we show that high levels of climate policy ambiguity might have perverse

effects on asset prices. The key finding of the paper is that climate policy uncertainty

creates a potentially material option value for both low and high carbon emitting assets.

However, ultimately the valuation of climate-sensitive assets will need to align to either

a cleaner or dirtier future, but both states of the world will not materialise. Yet, current

valuations of climate sensitive assets seem to price a possibility that both worlds will

materialise. As long as climate policy inaction is possible, climate policy ambiguity

might have effects on financial markets.

Our paper also shows that the role of finance in preventing global warming might only

be a necessary, but not sufficient, condition to the problem, which ultimately resides in

governments action. Even if additional climate information is provided, financial markets

might not be able to price environmental externalities in asset prices because of the

uncertainty introduced by the policymaker. In turn, climate policy uncertainty might

have real effects on resources allocation by lowering the cost of capital of high carbon

emitting energy. The possibility that high carbon firms might remain profitable in the

future might justify investments in those assets. This highlights that financial markets

may not be able to lead the transition, but will only follow the path decided by the

policymaker. Although financial markets will be important in the fight for preventing

global warming, they will remain a necessary, but not sufficient, condition for achieving

net zero carbon emissions.

5 Conclusion

This paper shows that the valuation of climate-sensitive assets depends on a representative

investor expectations, and her uncertainty about an unknown climate policy regime shift.

Our theoretical model suggests that the higher the ambiguity about the policymaker de-

cision, the higher the valuation of climate-sensitive firms, given a certain level of required

rate of return and mean expected dividends growth. Our empirical analysis supports

the theoretical model predictions. We find a statistically significant relationship between

analysts mean dividends (earnings) growth forecast, and their standard deviation - as a
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proxy of uncertainty - and the price-dividend (price-earnings) ratio of climate-sensitive

firms. Although we do not conclude whether current levels of uncertainty may justify

the valuations of fossil fuel firms, we provide a useful conceptual framework for better

understanding climate sensitive assets valuations in the context of climate change. We

argue that the results of this paper suggest that for sufficiently high levels of uncertainty

around the policymaker action to curb carbon emissions and prevent global warming,

financial markets might price an option value to account for the possibility of no policy

regime shift. The valuation of climate sensitive assets will ultimately depend on the pre-

dominant climate policy regime, but the higher the likelihood of no climate policy regime

shift, the higher the option value of not divesting from fossil fuel firms. High levels of

political uncertainty might have real effects on assets valuations which might inflate as-

set prices. Importantly, our paper suggests that financial markets might not be able to

fully internalise environmental externalities, even if more climate information becomes

available. Unfortunately, the finance sector will remain a follower, but not a leader, in

the fight against global warming, that will ultimately reside in government action.
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6 Appendix

6.1 Full derivation of the model

Let Ei,t denote the level of energy supply produced by firm i. Energy supply matches

energy demand. Let Ei,t follows the process in (1), where dWt is a process with mean

zero and unit variance dWt ⇠ N (0, 1)

dEi,t = µiEi,tdt+ !iEi,tdWt (1)

The drift µi in (1) remains constant for all t 2 [0,1]. The level of µi is not known a

priori and depends on an exogenous decision from the policy-maker about climate action.

The representative investor subjective expectations of µi are distributed normally with

mean gi and variance �
2
i

as in (2)

µi ⇠ N (gi, �
2
i
) (2)

We assume that the change in the level of dividends Di is proportional to the change

in energy demand Ei. In (1), we set !i = 0 without loss of generality such that the

parameter �i denotes a known and constant scaling factor between the change in energy

demand and the change in dividends for firm i.

dDi = �idEi (3)

With the assumptions in (3), dividends grow at an exponential rate �iµi for all t 2 [0,1]

Di,t = Di,0exp(�iµit) (4)

Let Di,t denote the dividend paid by firm i at time t. The price of an asset at time 0 is

the expected present value of future dividends from 0 to infinity discounted by a known

rate ri as in (5):
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Pi = E0

Z 1

0

Di,texp(�rit)dt (5)

We assume that the discount rate ri is based on an exogenous and known model of

expected returns Et[ri] = ri. Substituting Di,t in equation (5) with the process in equation

(4) and taking the expectations:

Pi = E0

Z 1

0

Di,0exp [(µi�i)t] exp [(�ri)t] dt (6)

Pi = E0

Z 1

0

Di,0exp [(µi�i � ri)t] dt (7)

Pi

Di,0
= E0

Z 1

0

exp [(µi�i � ri)t] dt (8)

Pi

Di,0
=

Z 1

0

exp

n ⇥
(gi + �

2
i
/2)�i � ri

⇤
t

o
dt (9)

Equation (9) is a growing perpetuity growing at the rate ↵ = (gi+�
2
i
/2)�i and discounted

at the rate ri. Solving the integral between 0 and infinity results in the following equation:

Pi/Di = 1/[ri � (gi + �
2
i
/2)�i] (10)

Equation (10) shows a relationship between the price-dividend ratio and four parameters
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6.2 Additional tables

Forecasting horizon (FY)

Year 1 2 3 4 5

2010 10725 10342 6605 2211 1668
2011 13376 12841 8025 1546 1229
2012 15944 15353 9438 1940 1362
2013 18584 18135 11483 2214 1574
2014 20513 20497 13068 2918 2130
2015 22643 22194 14554 3556 2549
2016 22526 21551 14947 3180 2367
2017 20590 19827 13161 3135 1515
2018 19040 18513 12971 2603 1533
2019 15578 15133 10049 2343 1345

Table 7: Number of estimates - DPS. Number of underlying analysts dividends fore-
casts in the sample considered for the empirical analysis. GIC Sub-industries: Integrated
Oil & Gas, Oil & Gas Exploration & Production, Oil & Gas Refining & Marketing, Oil &
Gas Storage & Transportation, Oil & Coal & Consumable Fuels and Renewable Energy

Forecasting horizon (FY)

Year 1 2 3 4 5

2010 21317 22939 10283 3038 2220
2011 23616 26004 11174 2330 1755
2012 26238 28398 12748 2521 1726
2013 29007 32068 15339 2429 1773
2014 30534 34426 17419 3287 2316
2015 31325 37094 20419 4281 2535
2016 30931 36082 21112 3658 2583
2017 29516 32733 18084 4317 2200
2018 26170 29641 18294 3432 2022
2019 23313 26372 15721 3797 2384

Table 8: Number of estimates - EPS. Number of underlying analysts earnings fore-
casts in the sample considered for the empirical analysis. GIC Sub-industries: Integrated
Oil & Gas, Oil & Gas Exploration & Production, Oil & Gas Refining & Marketing, Oil &
Gas Storage & Transportation, Oil & Coal & Consumable Fuels and Renewable Energy
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City Count Share City Count Share

Houston 125 25.2525 Parsippany 2 0.404
Denver 36 7.2727 Pekin 2 0.404
Calgary 29 5.8586 Plano 2 0.404
Dallas 26 5.2525 Richmond 2 0.404
Tulsa 20 4.0404 Salt Lake City 2 0.404
Fort Worth 16 3.2323 Spring 2 0.404
Oklahoma City 13 2.6263 Stamford 2 0.404
Hamilton 12 2.4242 Sugar Land 2 0.404
Canonsburg 8 1.6162 Abingdon 1 0.202
London 8 1.6162 Addison 1 0.202
Midland 7 1.4141 Allentown 1 0.202
New York 7 1.4141 Ames 1 0.202
San Antonio 7 1.4141 Antwerp 1 0.202
Irving 6 1.2121 Birmingham 1 0.202
The Woodlands 6 1.2121 Bogota 1 0.202
Athens 5 1.0101 Brentford 1 0.202
Pittsburgh 5 1.0101 Bristol 1 0.202
Saint Louis 5 1.0101 Cambridge 1 0.202
Austin 4 0.8081 Casper 1 0.202
Tampa 4 0.8081 Central 1 0.202
Bethesda 3 0.6061 Cleveland 1 0.202
Buenos Aires 3 0.6061 Corpus Christi 1 0.202
Findlay 3 0.6061 Courbevoie 1 0.202
Piraeus 3 0.6061 Cupertino 1 0.202
Radnor 3 0.6061 Dalian 1 0.202
Sao Paulo 3 0.6061 Dayton 1 0.202
Vancouver 3 0.6061 Detroit 1 0.202
Aberdeen 2 0.404 East Brunswick 1 0.202
Beijing 2 0.404 Edison 1 0.202
Brentwood 2 0.404 El Segundo 1 0.202
El Paso 2 0.404 Enid 1 0.202
Englewood 2 0.404 Frisco 1 0.202
Lafayette 2 0.404 Fujairah 1 0.202
Leawood 2 0.404 Fuzhou 1 0.202
Littleton 2 0.404 Geneva 1 0.202
Mexico City 2 0.404 Gillette 1 0.202
Monaco 2 0.404 Grand Cayman 1 0.202
Moon Township 2 0.404 Greenwich 1 0.202
New Orleans 2 0.404 Indianapolis 1 0.202
Omaha 2 0.404 Inver Grove 1 0.202

Table 9: Companies headquarters. Top 80 most represented cities of company
headquarter for 495 firms in our sample (out of 132 cities).

38



FY 1 FY 2 FY 3

Numest (K) Dep var Value P value Value P value Value P value

>5

DPS_G P/D 25.4648 < .0001⇤ 23.2796 < .0001⇤ 8.637 < .0001⇤
DPS_STD P/D 50.9673 < .0001⇤ -13.6409 < .0001⇤ 90.8015 < .0001⇤
R

2 P/D 0.0469 < .0001⇤ 0.0849 < .0001⇤ 0.3601 < .0001⇤
N P/D 11538 10409 5903

>20

DPS_G P/D 19.2063 < .0001⇤ 8.3608 < .0001⇤ NA NA
DPS_STD P/D 10.7605 0.0639 -2.6337 0.6801 NA NA
R

2 P/D 0.1138 < .0001⇤ 0.0672 < .0001⇤ NA NA
N P/D 209 138 1

>5

EPS_G P/E -10.201 < .0001⇤ 22.7027 < .0001⇤ 22.626 < .0001⇤
EPS_STD P/E 88.7505 < .0001⇤ -5.3869 < .0001⇤ 13.9104 < .0001⇤
R

2 P/E 0.7354 < .0001⇤ 0.9241 < .0001⇤ 0.952 < .0001⇤
N P/E 16786 17337 9273

>20

EPS_G P/E 11.6577 < .0001⇤ 11.4268 < .0001⇤ 9.2074 < .0001⇤
EPS_STD P/E 73.9246 < .0001⇤ 24.0086 < .0001⇤ 17.9008 < .0001⇤
R

2 P/E 0.4717 < .0001⇤ 0.6702 < .0001⇤ 0.7433 < .0001⇤
N P/E 2724 3079 373

Table 10: Robustness analysis - Minimum number of analysts forecasts. Panel regression coefficient, R2 and P-value for
DPS and EPS, removing firm fixed effect. Only records with underlying number of analysts estimates greater than NUMEST (K).
Asterisk denotes significance at 5% level.
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