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Abstract

A large literature establishes a set of predictors that robustly forecast future

market returns, raising questions about these predictors’ origins. We develop

an approach to determine whether a particular predictor represents a proxy for

fundamental risk, which is based on an intuitive assumption that risk-based pre-

dictors should be linked to new information about economic conditions. We show

that an overwhelming majority of predictors forecast returns either on days with

macroeconomic announcements or on the remaining days. This suggests that

the sources of return predictability differ across predictors with some driven by

fundamental risk and others having different origins. Shiller’s excess volatility

puzzle is confined to non-announcement days, indicating that the ability to fore-

cast the noise component of stock market movements underlies much of the stock

market return predictability documented in the literature.
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1 Introduction

Stock returns are predictable, as shown by a large and still-growing literature.1 While

there exists little dispute about this basic result, the interpretation of many of the

best-known predictors is another matter, with proposed explanations ranging from

behavioral theories to various frictions to risk-based theories.

In this paper, we develop an approach for identifying predictors that represent proxies

for fundamental risk, which is based on an intuitive assumption that such predictors

should be linked to new information about economic fundamentals. We hypothesize

that days when important macroeconomic news is scheduled to be announced (an-

nouncement days) are more likely to coincide with releases of such information than

other days (non-announcement days).2 Thus, predictors whose forecasting power is

concentrated on announcement (non-announcement) days are more (less) likely to rep-

resent proxies for fundamental risk.

As in Savor and Wilson (2013) and subsequent papers, we define as announcement

days those trading days when news about inflation, unemployment, or Federal Open

Market Committee (FOMC) interest rate decisions is scheduled to be released (A-

days) and all other trading days as non-announcement days (N-days). Using quarterly

returns (aggregated separately for A- and N-days), we find that many widely used

stock market predictors forecast returns only on non-announcement days. For example,

log price/dividend ratio (pdt, Campbell (1996), Litzenberger and Ramaswamy (1979)),

long government yield (lty, Fama and French (1989)), treasury bill yield (tbl, Campbell

(1987)), investment-to-capital ratio (i/k, Cochrane (1991)), production output gap

(ogap, Cooper and Priestley (2009)), cyclical consumption (pce, Atanasov, Moller,

and Priestley (2020), consumption fluctuations (skew, Colacito, Ghysels, Meng, and

1See Cochrane (2007), Goyal and Welch (2007), Campbell and Thompson (2007), and Harvey, Liu,

and Zhu (2015), among others.
2Previous literature finds that announcement days are indeed special, both in terms of time-series

(Savor and Wilson, 2013) and cross-sectional (Savor and Wilson, 2014) return patterns.
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Siwasarit (2016)), and year-end economic growth characteristics (gpce, gip, Møller and

Rangvid (2015)) forecast future returns accrued on N-days with a negative sign, while

term spread (tms, Fama and French (1989); Campbell (1987)), and long government

return spread (ltr, Fama and French (1989)) forecast future N-day returns with a

positive sign. These predictors do not exhibit comparable ability to predict A-day

returns, and most of the time the point estimates for these predictors have opposite

signs (none are statistically significant). By contrast, default yield spread (dfy, Fama

and French (1989)), stock return variance (sum of squared daily returns on the S&P

500, svar, Guo (2006)), and oil price changes (wtexas, Driesprong, Jacobsen, and

Maat (2008)) forecast stock returns accrued on A-days with a positive sign but do not

work on N-days. Similarly, although nearness to 52-week Dow high (dtoy, Li and Yu

(2012)) predicts next quarter’s stock returns accrued on A-days with a negative sign,

the variable lacks predictive power for N-day returns. Only nearness to all-time Dow

high (dtoat, Li and Yu (2012)) and average correlation of stock returns (avgcor, Pollet

and Wilson (2010)) predict returns on both types of days. Even then, the magnitude

of this relationship and its statistical significance are much higher on N-days than on

A-days.

The above evidence shows a clear dichotomy exists between A-days and N-days with

respect to their return predictors. Strikingly, the popular in the literature predictors

overwhelmingly forecast returns only on non-announcement days, which supports the

hypothesis underlying our approach that the two sets of days are different. Further-

more, it means that we can group predictors into those that are linked to economic

news and those that are not. The predictors that are based on direct measures of the

amount of risk in the economy (like svar), which according to asset pricing theory

should forecast returns (but fail to do so in reality), forecast quarterly returns accrued

on A-days (but not on N-days). For the predictors historically documented to forecast

future stock returns, we show that while they forecast N-day returns, they do not ex-

hibit explanatory power for A-day returns. Overall, these findings are consistent with
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the hypothesis that sources of return predictability differ across predictors, with direct

risk-based measures driven by economic fundamentals and most of the others having

different origins.

If not fundamental risk, what is the source of predictability for the wide range of

variables forecasting only N-day returns? In order to answer this question, we revisit

the 1980s excess volatility puzzle which claims that the observed price movements

cannot be justified by subsequent events (Shiller, 1981). In particular, they cannot be

explained by the stream of subsequent dividends since the realized prices move too much

compared to the time-series of ex-post rational price (fundamental value) realization.

Our tests show that the excess volatility puzzle defined in this way is very strong on N-

days and limited on A-days. We use multivariate regressions (Yt+1 = β0+β1r
A
t +β2r

N
t )

of future log changes in ex-post rational price (Yt+1) on past returns accrued on both

A-days (rAt ) and N-days (rNt ). The results highlight, once again, a clear difference

between these two types of days. Quarterly and annual returns accrued on A-days are

positively related to future changes in fundamental value with β1 = 0.01 (t(β1) = 1.81)

and β1 = 0.046 (t(β1) = 1.7) in regressions using quarterly and annual frequency data,

respectively. This relation does not hold for their N-day counterparts with β2 not

significantly different from zero at any frequency. Hence, although it may be true that

the price movements on N-days are too big to be justified by subsequent dividends,

this is not the case for price movements experienced on A-days. Using the Campbell

and Shiller (1988) decomposition, we further show that both the excess volatility (with

respect to the dividend discount model) puzzle and the residual volatility (with respect

to the conditional CAPM) puzzles are confined to non-announcement days and absent

from announcement days. This further confirms that variables predicting A-day returns

and those predicting N-day returns are crucially different with respect to the source

of their ability to predict stock market returns. While A-day predictors are driven by

future fundamentals, N-day predictors seem to be predicting the “noise” component of

stock market movements.
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The combined evidence presented confirmes that A-day returns are in fact crucially

different from their N-day counterpart. The returns accrued on A-days are more

fundamentals-driven, explained by the amount of physical risk in the economy, and

justified by subsequent changes in fundamental value. The same is not true for re-

turns accrued on N-days, which are in turn where excess and residual volatility of the

stock market are confined to. Consequently, predictors which forecast stock market

returns accrued on A-days are crucially different to those which forecast stock market

returns accrued on N-days when it comes to the source of the return predictability.

Our methodology can be applied to other predictors discovered in the future.

Related literature. This paper relates to a strain of literature documenting the

differential behavior of asset returns on A-days and N-days and the potential expla-

nations for these findings. Savor and Wilson (2014) show that stock returns on said

A-days are significantly higher and their patterns easier to reconcile with known asset

pricing theories than their N-day counterparts. In particular, they show that while

the CAPM holds on A-days, it fails to hold on N-days. Similarly Brooks, Katz, and

Lustig (2018) show that while the expectations hypothesis holds on A-days, it fails

thereafter and this failure increases in the length of the window considered. Attempts

have been made to reconcile these differences within standard asset pricing models

(Savor and Wilson, 2014) and to find the drivers behind the phenomenon pointing

to increases in the price of risk as opposed to the quantity of risk on A-days (Savor,

Wilson, and Puhl, 2015). Meanwhile, other authors argued this differential behavior

of A-day returns is only a by-product of high ex-post returns on those days rather

than an evidence of them being in any way special (Ernst, Gilbert, and Hrdlicka,

2019). The results in our paper show the dichotomy between announcement and non-

announcement days is multifaceted with excess volatility and residual volatility puzzles

confined to non-announcement days and absent from announcement days. We show

that this striking dichotomy can be used to shed light on other asset pricing phenom-

ena like predictability. Consequently, the paper also relates to the wider literature on
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returns predictability.

2 Data and summary statistics

The macroeconomic announcements considered are in line with those used by Sa-

vor and Wilson (2013) and Savor and Wilson (2014). As in these papers, inflation

and unemployment announcement dates come form the US Bureau of Labor Statis-

tics (https://www.bls.gov/) with the available time series staring in 1958. We follow

the authors in using consumer price index (CPI) announcements up to and including

February 1972. Producer price index (PPI) announcements are used between March

1972 and January 2018 (inclusive). This is because in that time period PPI numbers

are reported a few days prior to the CPI ones thus diminishing the informational con-

tent of the CPI numbers. Between February 2018 and December 2019, for some months

CPI is again released before PPI. In our analysis we use the date of the earlier of these

two announcements. FOMC interest rate announcement days come from the Federal

Reserve website and are available from 1978 onwards. Unscheduled FOMC meetings

are excluded from the sample.

Data on stock market returns comes from Center for Research in Security Prices

(CRSP). Data on risk-free interest rate comes from Professor Kenneth French’s website.

Our main stock market proxy is the CRSP NYSE, Amex, and Nasdaq value-weighted

index of all listed shares. We collect daily values of this index between January 1953

and December 2022. We use those valuations and the daily risk free rate to construct

log daily excess returns over this time period. These are then aggregated on a quarterly

basis for all trading days in the given quarter (rA&N
t ), all A-days in a given quarter

(rAt ), and all N-days in a given quarter (rNt ). Panel A of Table 2 presents the summary

statistics for these returns. Since our predictor variables run between 1953Q1 and

2021Q4, we focus on that time period here. We see that the average quarterly return

on N-days over this time period (1.2%) is almost twice as large as the average quar-
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terly return on A-days (0.6%). Compared to N-day quarterly returns, A-day returns

are less volatile (0.03 vs. 0.08), exhibit lower autocorrelation (-0.02 vs. 0.1), and are

less negatively skewed (-0.64 vs. -0.75).

We use a wide range of variables historically documented to be predictors of stock

returns. Table 1 provides a summary of those, their abbreviations used throughout the

paper, references to papers that introduced them to the literature, and the frequency at

which the variables are computed. With the exception of the price dividend ratio, the

variables’ time series are courtesy of Amit Goyal, Ivo Welch, and Athanasse Zafirov,

who have kindly shared their data with us. Panel B and Panel C of Table 2 provide

summary statistics of the predictors considered.

3 Evidence A: Univariate predictive regressions

In this section we analyse the ability of the various predictors considered to forecast

future aggregate quarterly stock market returns, their part accrued on A-days, and

their part accrued on N-days.

Among the predictive variables summarized in Table 1, only svar constitutes a mea-

sure of the amount of physical risk on the market. As a result, it should be the only

variable able to explain future stock returns since according to fundamental asset pric-

ing theories the amount of physical risk should be the only driver behind stock market

returns. Although the remaining variables are not such proxies for the physical amount

of risk on the market, they have been historically found to predict returns.

In our analysis we use the univariate linear regression framework. We regress the

relevant quarterly returns on the various predictors considered lagged by one quarter.

The regression can be summarized as follows:

rit+1 = α + βixt, i = (A&N,A,N),

where rA&N
t+1 , rAt+1, and rNt+1 are the aggregate quarterly return, quarterly return accrued
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on A-days in a given quarter, and quarterly returns accrued on N-days in a given

quarter, respectively. xt is one of the predictors outlined in Table 1.

Panel A of Table 3 summarizes the regression results for variables which were found to

be A-day but not N-day return predictors at quarterly frequency. We see that default

yield spread (dfy) and oil price changes (wtexas) forecast returns accrued on A-days

but lack predictive power for returns accrued over the whole quarter. A one percentage

point increase in dfy (wtextas) leads to 79 (4) basis points increase in next quarter’s

A-day return. On the other hand, stock return variance (svar) nearness to 52-week

Dow high (dtoy) forecast returns accrued on A-days and over the entire quarter as

a whole despite lacking the predictive power for returns accrued on N-days (which

constitute the largest share of days in any given quarter). In fact a one percentage

point increase in svar (dtoy) leads to 58 (6) basis points increase (decrease) in next

quarter’s A-day return and 90 (14) basis points increase (decrease) in next quarter’s

return accrued on both types of days.

Panel B of Table 3 shows that in-sample return predictability (if present) is overwhelm-

ingly an N-day phenomenon. Term spread (tms) and long government return spread

(ltr) are positively correlated with future quarterly N-day returns. An increase of one

percentage point in tms (ltr) leads to 52 (21) basis points increase in next quarter’s

N-day returns. The relationship between the remaining predictors and future quarterly

N-day returns is negative. In particular, some well-established return predictors such as

log price/dividend ratio (logPD), long government yield (lty), treasury bill rate (tbl),

and investment to capital ratio (ik) are negatively correlated with future stock market

returns. A percentage point increase in lty (tbl) leads to a 31 (36) basis points decrease

in next quarter’s N-day return. Similarly, a percentage point increase in ik and logPD

lead to 548 and 2 bps decrease in next quarter’s N-day return, respectively. More

recently discovered return predictors such as production output gap (ogap), cyclical

consumption (pce), consumption fluctuations (skew), and year-end economic growth

characteristics (gpce, gip) also forecast future N-day returns with negative sign. Over-
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whelming majority of N-day return predictors also forecast quarterly returns accrued

on both types of days. This is unsurprising since N-days constitute the vast majority

of days in a any given quarter.

Panel C shows that two of the predictors considered were statistically significant in

predicting the quarterly returns accrued on both A-days and N-days between 1953

and 2021. These were nearness to all-time Dow high (dtoat) and average correlation of

stock returns (avgcor). The magnitude of both relationships is higher for N-day returns

than for A-day returns with βA = −0.03, βN = −0.11 for dtoat and βA = 0.05 and

βN = 0.13 for avcor. Finally, Panel D shows that another fifteen variables historically

found to predict stock market returns failed to do so in sample between 1953 and 2021.

The results outlined above highlight a startling dichotomy between predictors of returns

accrued on A-days and those accrued on N-days. We observe that the vast majority of

variables historically documented to forecast stock market returns, if at all statistically

significant in univariate regressions between 1953 and 2021, predict the part of quarterly

returns accrued on N-days but lack predictive power for their part accrued on A-days.

On the contrary, variables which have roots in fundamental asset pricin theories and

are proxies for physical risk on the market, such as stock variance (svar) are both

economically and statistically significant predictors of future returns accrued on A-

days but not on N-days.

These results are highly suggestive and intriguing. They seem to indicate that great

many of well-known stock returns predictors suggested in the literature are not related

to new information about fundamentals being revealed to the market (A-days) but

seem to be predicting something different instead. In order to answer the question of

what the source of this N-day predictability is, we proceed to concentrate on analysing

the relationship between the changes in prices on those two types of days and the

changes in ex-post rational prices (fundamental value) as calculated by Shiller (1981).
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4 Evidence B: Excess and residual volatility – an

N-day puzzle

Shiller (1981) shows that realized stock prices move too much to be justified by the

subsequent changes in dividends. In this section we revisit the relationship between

these price changes and the subsequent dividends independently for A-days and N-

days. We show that quarterly (annual) returns accrued on A-days forecast changes in

next quarter (year) ex-post rational price. The same is not true for quarterly (annual)

returns accrued on N-days. In regressions of fundamental value (understood as sum of

discounted ex-post realized dividends) changes on lagged returns accrued on these two

types of days, the coefficient for returns accrued on A-days is positive and significantly

higher than that for returns accrued on N-days.

In what follows, We use the Campbell and Shiller (1988) decomposition to show that

both excess volatility puzzle (with respect to the dividend discount model) and the

residual volatility (with respect to the conditional CAPM) are strictly N-day puzzles.

This shows that predictability of A-day returns must have different source to the pre-

dictability of N-day returns.

4.1 Shiller’s excess volatility puzzle

We follow Shiller (1981) methodology very closely to calculate the real values of prices

and dividends, and their de-trended counterparts. The only difference compared to

the original paper is that we sample prices at the end of each period while the original

paper records them for its beginning. Since this slightly alters the formulas and as

we acknowledge the time that has passed since the original work, in what follows we

briefly summarize the main idea behind the original excess volatility puzzle and the

steps taken to arrive at it.

Revisiting Shiller (1981) approach. For the simple efficient markets model to be
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correct the real price Pt at the end of time period t should be equal to:

Pt =
∞∑
k=1

γkEtDt+k,
3 (1)

where the Dt is the real dividend paid at time t and γ is a constant real discount factor.

As in the original work, we assume all dividends Dt occur at the end of the relevant

time period t. The constant real interest rate r is defined such that γ = 1/(1 + r)

and has the property that r = Et(Ht), where Ht is the holding period return Ht ≡

(∆Pt+1 +Dt+1)/Pt.
4

It is possible to restate the relationship in Equation (1) using detrended prices and

dividends. Such detrending is done by restating those time series as a proportion of

the long-run growth factor: pt = Pt/λ
t−T , dt = Dt/λ

t−T , 5 where T is the last period

for which we have observations (the base period) and λt−T is the growth factor. The

growth factor is calibrated by estimating a long-run exponential growth path for the

time series of real prices. To this end, we regress ln (Pt) on a constant and time and

set λ = eb, where b is the coefficient on time in ln (Pt) = a + b ∗ t. It can be shown

that the following holds for such detrended time series:

pt =
∞∑
k=1

γkEtdt+k,
6 (2)

where γ ≡ λγ is the constant discount factor appropriate for the detrended time series

of pt and dt. The corresponding discount rate r, γ = 1/(1+r), can be shown to be equal

to the mean detrended dividend divided by the mean detrended price:r = E (d) /E (p).7

The above relationship (2) can be re-written in terms of ex-post rational price series

3Pt =
∑∞

k=0 γ
k+1EtDt+k in Shiller (1981).

4Ht ≡ (∆Pt+1 +Dt)/Pt in Shiller (1981).
5dt = Dt/λ

t+1−T in Shiller (1981).
6pt =

∑∞
k=0 γ

k+1Etdt+k in Shiller (1981).
7This follows from taking unconditional expectation of both sides of equation (2) and solving for

r. Compare: footnote 7, page 424 in (Shiller, 1981).
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p∗t . Such ex-post rational price is the present value of actual subsequent dividends:

p∗t =
∞∑
k=1

γkdt+k.
8 (3)

As pointed out in the original paper, although the summation extends to infinity, with

long enough time series we can observe a reasonably accurate approximation of p∗t .

Subject to the choice of terminal (base year) value of the ex-post rational price, p∗T ,

the entire time series can be determined recursively by

p∗t = γ
(
p∗t+1 + d∗t+1

)
9

working backwards from the base year.

Calibration. We follow the above process for the CRSP NYSE, Amex, Nasdaq value-

weighgted index of all common shares. Prices (pt) are assumed to be the time series of

CRSP index level excluding dividends. We calculate dividends (dt) at monthly intervals

between January 1950 and December 2019. Both prices and dividends are deflated

using the CPI values provided by Professor Shiller on his website. We estimate the

long-run exponential growth path using daily frequency data in line with ln (Pt) = a+bt

and set λ as eb. r is estimated using monthly frequency data as the mean of the

detrended dividend divided by the mean of the detrended price. For the purpose of

calculating p∗t , the terminal value p∗T is set as the average of the detrended real price

over the sample. For the purpose of calculating P ∗
t , the terminal value P ∗

T is set to the

terminal value of the real price process: PT .

Excess volatility. Figure (1) shows the behaviour of detrended real prices (pt) and de-

trended ex-post rational prices (p∗t ) of the CRSP NYSE, Amex, Nasdaq value-weighgted

index between 1950 and 2022. This figure corresponds to Figures (1) and (2) in Shiller

(1981). As in the original work, also here we observe that the realized prices seem

too volatile for their movements to be driven by new information about the stream of

8p∗t =
∑∞

k=0 γ
k+1dt+k in Shiller (1981).

9p∗t = γ
(
p∗t+1 + d∗t

)
in Shiller (1981).
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subsequent dividends (i.e. for the efficient markets model as proposed by Equation (1)

to accurately describe the price process).

4.2 Which returns forecast future fundamental value changes?

Having computed the fundamental value (ex-post rational price) time series we are

now in a position to test whether there is a difference in the informational content of

changes in prices on A-days and N-days. In particular, we can now test which of them

is better able to forecast future changes in fundamental value.

Let P̃ ∗
t+1 = log(P ∗

t+1) − log(P ∗
t ) and p̃∗t+1 = log(p∗t+1) − log(p∗t ). These are the log

change in the real ex-post rational price and the log change in the detrended real

ex-post rational price, respectively. Setting Yt+1 to either P̃ ∗
t+1 or p̃∗t+1, we can run

the following regression to predict these changes at monthly, quarterly, and annual

frequencies:

Yt+1 = β0 + β1r
A
t + β2r

N
t , (4)

where rAt and rNt are the part of the lagged return of the relevant frequency accrued

on A-days and N-days, respectively. Since we are not only interested in the economic

and statistical significance of β1 and β2, but also in formally testing whether β1 > β2,

we turn to the following regression:

Yt+1 = δ0 + δ1(r
A
t + rNt ) + δ2(r

A
t − rNt ). (5)

In the above, we observe that: β1 = δ1+ δ2 and β2 = δ1− δ2. As a result, the following

is true:

1. if β1 > β2, then δ1 + δ2 > δ1 − δ2, and so δ2 > 0

2. since δ1 = 0.5(β1 + β2) and δ2 = 0.5(β1 + β2), δ2 > 0 implies β1 > β2.

Hence, δ2 > 0 if and only if β1 > β2.

We estimate the relationships in Equation 4 and 5 at monthly, quarterly, and annual

frequencies for two time periods: 1953 – 2022 and 1953 – 2010. This is to account
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for the fact that starting from January 2011 the terminal values of p∗T and P ∗
T become

non-negligible share of p∗t and P ∗
t . Table 4 summarizes the results for Yt+1 = P̃ ∗

t+1

i.e. the real ex-post rational price. Table 5 summarizes the results for Yt+1 = p̃∗t+1 i.e

the detrended real ex-post rational price. In the below, unless separately specified, we

summarize the regression estimates from the 1953 – 2010 time period.

At monthly frequency, we observe that although the relationship between the returns

and the future fundamental value changes is positive for the share of monthly returns

accrued on A-days (β1 = 0.003 when Yt+1 = p∗t ; β1 = 0.004 when Yt+1 = P ∗
t ) and

negative for the share of monthly returns accrued on N-days (β2 = −0.002 when

Yt+1 = p∗t ; β2 = −0.003 when Yt+1 = P ∗
t ), neither relationship is statistically significant.

Similarly, although positive (0.003 across both specifications), δ2 is not statistically

significant (t(δ2) equal to 1.3 and 1.28 for Yt+1 = P ∗
t and Yt+1 = p∗t , respectively).

There is no evidence that cumulative monthly A-day returns forecast future one-month-

ahead changes of fundamental value better than their N-day counterparts. The same

is, however, no longer true at quarterly and annual frequencies.

Quarterly frequency data shows that cumulative A-day returns forecast next quarter’s

log change of fundamental value with a positive sign. In the shorter time period (1953

– 2012) β1 is equal to 0.010 and 0.014 when Yt+1 = p∗t and Yt+1 = P ∗
t , respectively.

This means that a one percentage point increase in the cumulative A-day return in a

given quarter leads to a 1.4 basis points (1 basis point) increase in the next quarter’s

log change in (de-trended) real ex-post rational price P ∗
t (p∗t ). This relationship is

statistically significant at 10% confidence level (t(β1) = 1.8 when Yt+1 = p∗t and t(β1) =

1.81 when Yt+1 = P ∗
t ). The relationship between N-day returns and future fundamental

value changes is negative but not statistically significantly so (t(β2) = −0.001 for both

Yt+1 = p∗t and Yt+1 = P ∗
t ). Estimates of equation (5) indicate that β1 > β2 at quarterly

frequency: δ2 = 0.006 for Yt+1 = p∗t and δ2 = 0.008 for Yt+1 = P ∗
t and statistically

significant at 10% level (t(δ2) = 1.78 using p∗t ; t(δ2) = 1.82 using P ∗
t ).

We find similar results using annual frequency data. Cumulative A-day returns at
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this frequency forecast next year’s changes in fundamental value with a positive sign:

β1 = 0.035 for Yt+1 = p∗t and β1 = 0.046 for Yt+1 = P ∗
t . Both estimates are significant at

10% confidence level. As such, a one percentage point increase in the cumulative A-day

return in a given year leads to a 4.6 (3.5) basis points increase in next year’s log change

in (detrended) real ex-post rational price P ∗
t (p∗t ). As in the quarterly returns case, the

relationship between cumulative annual N-day returns and next year’s fundamental

value changes is negative but not statistically significantly so. Finally, estimates of

equation (5) indicate that β1 > β2 at annual frequency: δ2 = 0.022 for Yt+1 = p∗t and

δ2 = 0.029 for Yt+1 = P ∗
t and statistically significant at 5% level (t(δ2) = 1.97 using

p∗t ; t(δ2) = 1.99 using P ∗
t ).

These results are of crucial importance for the excess volatility puzzle (Shiller, 1981).

Although it is true that price movements in general are too big to be attributed to new

information about actual subsequent events, a clear dichotomy exists in this respect for

aggregate movements on A-days and N-days. We show that, although the aggregate

returns accrued on N-days can not be justified by subsequent changes in fundamental

value, the same is not true for aggregate returns accrued on A-days. Quarterly returns

accrued on A-days forecast future changes in ex-post rational price (detrended or not)

with a positive sign. Furthermore, at both quarterly and annual frequency the ability

to forecast such future changes in fundamental value is superior for A-day compared

to N-day returns. This suggests that the movements in prices on A-days are not “too

big relative to actual subsequent dividends” (Shiller, 1981).

4.3 Excess and residual volatility: an A/N-day decomposition

One well-known issue with Shiller (1981)’s fundamental value calculations is that they

do not allow for time-varying discount rates. This may make the reader suspicious

of the results derived above. Therefore, in what follows we use the Campbell and

Shiller (1988) decomposition to further showcase that the excess volatility (i.e. excess

volatility relative to the Dividend Discount Model) and residual volatility (i.e. excess
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volatility relative to the Conditional CAPM) phenomena are confined to N-days and

(almost) absent from A-days.

Derivations Let us define the following variables:

pdt = ln

(
Pt

Dt

)
rt+1 = ln(1 +Rt+1)

∆dt+1 = ln

(
Dt+1

Dt

)
σ2
R = V ar[rt+1] = V ar[rAt+1 + rNt+1]

σ2
A = V ar[rAt+1]

σ2
N = V ar[rNt+1]

pd = E[pdt]

ρ = (1 + exp(−pd))−1

k = − ln ρ− (1− ρ) ln(1/ρ− 1)

Then Campbell-Shiller derive:

rt+1 ≈ k +∆dt+1 + ρpdt+1 − pdt. (6)

Rearranging (6) gives us

pdt ≈ k +∆dt+1 − rt+1 + ρpdt+1,

which can be iterated forward to derive

pdt+1 ≈ k +∆dt+2 − rt+2 + ρpdt+2.

Substituting this last expression into (6) gives

rt+1 ≈ k +∆dt+1 + ρ(k +∆dt+2 − rt+2 + ρpdt+2)− pdt

= (1 + ρ)k +∆dt+1 + ρ∆dt+2 − ρrt+2 + ρ2pdt+2 − pdt

=
1− ρ1+1

1− ρ
k + Σ1

j=0ρ
j∆dt+1+j − Σ1

j=1ρ
jrt+1+j + ρ1+1pdt+1+1 − pdt
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Repeating these iterations T times gives:

rt+1 ≈
1− ρT+1

1− ρ
k + ΣT

j=0ρ
j∆dt+1+j − ΣT

j=1ρ
jrt+1+j + (ρT+1pdt+T+1 − pdt). (7)

Since, by construction:

rt+1 = rAt+1 + rNt+1,

the following holds:

rt+1 = rAt+1 + rNt+1 ≈
1− ρT+1

1− ρ
k+ΣT

j=0ρ
j∆dt+1+j −ΣT

j=1ρ
jrt+1+j + (ρT+1pdt+T+1 − pdt).

Since the variance of the LHS of (7) equals the covariance of the LHS with the RHS,

and since dividing both sides by V ar[rt+1] yields both sides to equal (approximately)

one, it can be shown that the following holds true:

Cov
[
rAt+1,Σ

T
j=0ρ

j∆dt+1+j

]
V ar[rAt+1]

V ar[rAt+1]

V ar[rt+1]
+

Cov
[
rNt+1,Σ

T
j=0ρ

j∆dt+1+j

]
V ar[rNt+1]

V ar[rNt+1]

V ar[rt+1]
(8)

−
Cov

[
rAt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rAt+1]

V ar[rAt+1]

V ar[rt+1]
−

Cov
[
rNt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rNt+1]

V ar[rNt+1]

V ar[rt+1]

+
Cov

[
rAt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rAt+1]

V ar[rAt+1]

V ar[rt+1]
+

Cov
[
rNt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rNt+1]

V ar[rNt+1]

V ar[rt+1]

≈ 1.

The expressions of the form

Cov[rkt+1, yt+1]

V ar[rkt+1]
, k ∈ [A,N ]

are just the betas from a univariate regression of the form

yt+1 = αk + βkr
k
t+1 + εkt+1

or if Cov[rAt+1, r
N
t+1] = 0, they are also the betas from a bivariate regression of the form

yt+1 = α + βAr
A
t+1 + βNr

N
t+1 + εt+1.
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This decomposition outlined by (8) allows us to measure the shares of A-day and N-day

returns in total stock market volatility. It also allows us to measure how much each

type of market return contributes to excess volatility. At a high value of T , the share

of excess volatility of returns under each regime are given by

SA
EV =

Cov
[
rAt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rAt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rt+1]

(9)

and

SN
EV =

Cov
[
rNt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rNt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rt+1]

. (10)

That is not the end of the story. A-day returns will account for a positive share of excess

volatility under this measure. However, some of that share is likely due to changing

measures of fundamental risk such as stock market return variance, which is somewhat

persistent, but nowhere near as persistent as dividend-price ratios. If, following the

Conditional CAPM, we believe that changing risk-free rates and changing measures of

stock market variance are not really irrational drivers of changes in returns, then we

can further decompose these measures into shares due to risk-free rates, market return

variances, and a residual. It’s only the residual that requires explanation beyond the

CCAPM.

We show that the above residual is indeed almost entirely due to N-day returns. This

is done by taking the CCAPM as a benchmark, and then allowing it to vary across

regimes:

rAt+1 = rAf,t+1 + γAV art[rt+1] + υA
t+1 (11)

rNt+1 = rNf,t+1 + γNV art[rt+1] + υN
t+1

where V art[rt+1] is the conditional expectation of the physical variance of market re-

turns and υt+1 is the residual.

As shown by Savor and Wilson (2013), γA is positive and significant while γN is not.

Moreover, rf,t+1 is slightly lower on A-days. Imposing (11) on (8) gives a rather lengthy
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expression which can be used to back out a residual volatility, as opposed to excess

volatility, for returns under each regime.

From the above,

rt+1 = rAt+1 + rNt+1

= rAf,t+1 + γAV art[rt+1] + υA
t+1 + rNf,t+1 + γNV art[rt+1] + υN

t+1

= rAf,t+1 + rNf,t+1 + γAV art[rt+1] + γNV art[rt+1] + υA
t+1 + υN

t+1.

Then the middle two terms in (8) can each be replaced:

Cov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jrt+1+j

]
V ar[rk=A,N

t+1 ]

=
Cov

[
rk=A,N
t+1 ,ΣT

j=1ρ
jrAf,t+1+j

]
V ar[rk=A,N

t+1 ]
+

Cov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jrNf,t+1+j

]
V ar[rk=A,N

t+1 ]

+
γACov

[
rk=A,N
t+1 ,ΣT

j=1ρ
jV art+j[rt+1+j]

]
V ar[rk=A,N

t+1 ]
+

γNCov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jV art+j[rt+1+j]

]
V ar[rk=A,N

t+1 ]

+
Cov

[
rk=A,N
t+1 ,ΣT

j=1ρ
jυA

t+1+j

]
V ar[rk=A,N

t+1 ]
+

Cov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jυN

t+1+j

]
V ar[rk=A,N

t+1 ]

The resulting variance decomposition contains sixteen terms, but many of them will

be zero. For example we know from previous results that the covariance of rA with

future returns at any horizon is zero once variance-driven effects have been removed.

According to this line of reasoning, residual volatility (i.e. excess volatility relative to

the Conditional CAPM) as opposed to excess volatility (i.e. excess volatility relative

to the Dividend Discount Model) shares under each type of regime are then:

SA
RV =

Cov
[
rAt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rAt+1,Σ

T
j=1ρ

jυA
t+1+j

]
V ar[rt+1]

(12)

and

SN
RV =

Cov
[
rNt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rNt+1,Σ

T
j=1ρ

jυN
t+1+j

]
V ar[rt+1]

. (13)
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In line with previous results, we would expect SA
RV to be (almost) zero and SN

RV to be

(almost) one, for all T .

Evidence Equipped with the above derivations and hypothesis we proceed to analyse

the A-day and N-day components of excess (with respect to the Dividend Discount

Model) and residual (with respct to conditional CAPM) volatility using the wider

CRSP universe index (spanning NYSE, Amex, and Nasdaq stocks) as a proxy.

The V art[rt+1] variable (expected variance) – the estimate of aggregate risk accord-

ing to conditional CAPM – is calculated in line with Savor and Wilson (2014) as the

conditional expectation of one-quarter-ahead variance of daily market returns on the

corresponding index. This conditional forecast is computed as a function of contempo-

raneous (quarter t) excess returns accrued on a-days, excess returns accrued on n-days,

realized variance (annualized average squared daily excess market return), and a con-

stant. The corresponding coefficients are calibrated using constrained least squares

(where the RV forecast is constrained to be non-negative) predictive regression of re-

alized variance on the lagged variables mentioned before using quarterly data between

1964Q1 and 2022Q4. 10 Figure 2 compares the realized and expected variance between

1964 and 2022 computed for the wider CRSP universe index.

We then proceed to calculate the excess and residual volatility components given by

equations 9, 10, 12, and 13 using quarterly data and wider CRSP universe index.

Figure 3 shows the A-day and N-day components to excess volatility with respect to the

dividend discount model. Figure 4 shows the A-day and N-day components to residual

volatility with respect to conditional CAPM. The figures show that the contribution

of A-day returns to both excess volatility with respect to dividend discount model and

residual volatility with respect to the conditional CAPM is almost non-existent for

high values of T (i.e. the number of quarters). In fact both the excess and residual

volatility puzzles are almost entirely N-day phenomena.

10Savor and Wilson (2014) explain the model selection in greater detail.
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All in all, A-day and N-day returns are visibly different on many levels as evidenced

here and in previous work (Savor and Wilson (2013), Savor et al. (2015)). Hence, the

sources of predictability of A-day and N-day returns must be different. The results in

this paper suggest that while A-day returns are driven by economic fundamentals, their

N-day counterparts are not. We argue that the excess and residual volatility results

documented above suggest that it is the ability to forecast the “noise” component of

stock market movements (as opposed to fundamental risk), that is the source of a lot

of the stock market return predictability documented in the literature.

5 Conclusion

In this paper, we develop an approach to determine whether a particular predictor

represents a proxy for fundamental risk or not. Our methodology is based on the intu-

itive assumption that risk-based predictors should be linked to new information about

economic conditions. As our measure of such new information we use days when im-

portant macroeconomic announcements are released. In support of this hypothesis, we

show that A-day returns are positively related to future changes in fundamental value

(understood as a discounted sum of ex-post realized dividends) while N-days returns

are not. Furthermore, we show that both the excess volatility (with respect to dividend

discount model) and the residual volatility (with respect to the conditional CAPM)

phenomena are limited to N-days and absent from A-days. We use this multifacet

dichotomy to infer about the sources of return predictability.

We study a wide range of well-known predictors and find that (with very few exceptions)

they forecast returns accrued either on days with macroeconomic announcements (A-

days) or on days when no such announcements are made (N-days). In the limited

cases when the predictor forecasts returns on both types of days, both the magnitude

and the statistical significance of this relationship are overwhelmingly concentrated

on N-days. These results allow us to group predictors into those that are linked to
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economic fundamentals and those that are not. More specifically, predictors based

on direct measures of the amount of risk in the economy, which according to asset

pricing theory should forecast returns, forecast the share of quarterly returns accrued

on A-days but not their share accrued on N-days. The opposite holds for predictors

historically documented to forecast future stock market returns – they forecast only

the part of returns accrued on N-days but lack predictive power for their share accrued

on A-days.

Together, these results suggest that the sources of return predictability differ across

predictors. While direct risk-based measures are backed by future economic funda-

mentals, the remaining ones have different origins. We argue our excess and residual

volatility results suggest that the N-day returns predictors possess superior ability to

explain the “noise” component of stock market returns. The methodology and results

presented can be further used to evaluate other predictors of asset returns.
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Figures

Figure 1: Deflated and detrended market price (p) and fundamental value (p*)

This figure shows the behaviour of detrended real prices (pt) and corresponding ex-post rational prices (p∗t ) for the CRSP NYSE, Amex, Nasdaq

value-weighted index between 1950 and 2022. It corresponds to figures (1) and (2) in Shiller (1981).
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Figure 2: Expected and Realized Variance computed using wider CRSP index

The figure plots the realized variance of quarterly log excess market returns (RV) and its one-quarter-ahead forecast (EV) between 1964 and

2022. EV is a linear combination of RV, A-day, and N-day log excess returns.
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Figure 3: Excess variance of the CRSP index – A- and N-day components

The figure shows the contribution of quarterly A-day and N-day returns to the excess volatility of aggregate quarterly returns and its components

as defined in equations 9 and 10 for various values of T. The returns and dividends correspond to the CRSP value-weighted index. Returns

and dividends data cover the period between 1964 and 2022.
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Figure 4: Residual variance of the CRSP index – A-day and N-day components

The figure shows the contribution of quarterly A-day and N-day returns to the residual volatility of aggregate quarterly returns and its

components as defined in equations 12 and 13 for various values of T. The returns and dividends correspond to the CRSP value-weighted index.

Returns and dividends data cover the period between 1964 and 2022.
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Table 1: Variables definition

This table presents definitions of variables used to forecast stock market returns on A-days and N-days and the source of the data used.

Most variables and content of this table are courtesy of Amit Goyal and co-authors.

OurName Descr Authors Freq

GWZ Q pce consumption/trend Atanasov, Møller, Priestley Quarterly

GWZ M vp variance premium Baekert, Hoerova Monthly

GWZ M impvar implied σ2 Bakshi, Panayotov, Skoulakis Monthly

GWZ M vrp σ2 risk premium Bollerslev, Tauchen, Zhou Monthly

GWZ Q govik public sector investmt Belo, Yu Quarterly

GWZ M lzrt 9 illiq measures Chen, Eaton, Paye Monthly

GWZ S skew skewness Colacito, Ghysels, Meng, Siwasarit Semiannual

GWZ Q crdstd credit standards Chava, Gallmeyer, Park Quarterly

GWZ M ogap prdctn-output gap Cooper, Priestley Monthly

GWZ M wtexas oil price changes Driesprong, Jacobsen, Maat Monthly

GWZ A accrul accruals Hirshleifer, Hou, Teoh Annual

GWZ A cfacc accruals (CFO) Hirshleifer, Hou, Teoh Annual

GWZ M sntm distilled sentiment Huang, Jiang, Tu, Zhou Monthly

Continued on next page
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Table 1: – continued from previous page

OurName Descr Authors Freq

GWZ M ndrbl new order-ship durables Jones, Tuzel Monthly

GWZ M skvw avg stock skewness Jondeau, Zhang, Zhu Monthly

GWZ M tail x-sect tail risk Kelly, Jiang Monthly

GWZ M fbm b/m x-sect factor Kelly, Pruitt Monthly

GWZ M dtoy to Dow 52-week high Li, Yu Monthly

GWZ M dtoat to Dow all-time high Li, Yu Monthly

GWZ M ygap stock-bond yield gap Maio Monthly

GWZ M rdsp stock return dispersion Maio Monthly

GWZ M svix scaled risk-neutral vix Martin Monthly

GWZ A gpce yearend econ growth Møller, Rangvid Annual

GWZ A gip yearend econ growth Møller, Rangvid Annual

GWZ M tchi 14 technical indicators Neely, Rapach, Tu, Zhou Monthly

epbound M3 low. bound on 3m exp. r. premium Martin Monthly

GWZ A house housing/consumption Piazzesi, Schneider, Tuzel Annual

epbound M6 low. bound on 6m exp. r. premium Martin Monthly

GWZ M avgcor acvg corr stock returns Pollett, Wilson Monthly

Continued on next page
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Table 1: – continued from previous page

OurName Descr Authors Freq

epbound M12 low. bound on 12m exp. r. premium Martin Monthly

GWZ M shtint short interest Rapach, Ringgenberg, Zhou Monthly

GWZ M disag analyst disagreement Yu Monthly

logPD dividend price ratio Campbell, Shiller Monthly

logSP500e12p earnings price ratio Campbell, Shiller Monthly

logSP500d12e12 dividend payout Campbell, Shiller Monthly

svar σ2 Guo Monthly

bm b/m Kothari, Shanken Monthly

ntis net equity issuance Boudoukh, Michaely, Richardson, Roberts Monthly

BW eqis pct equity issuance Baker, Wurgler Annual

tbl t-bill Campbell Monthly

lty long govt yield Fama, French Monthly

ltr long govt return Fama, French Monthly

tms term spread Fama, French Monthly

dfy default yield spread Fama, French Monthly

dfr default return spread Fama, French Monthly

Continued on next page
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Table 1: – continued from previous page

OurName Descr Authors Freq

inflscsp inflation Fama, Schwert Monthly

ik invstmt/capital Cochrane Quarterly

cayGW cnsm, wlth, incm Lettau, Ludvigson Quarterly
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Table 2: Summary Statistics – 1953 through 2021

The table reports summary statistics of variables analysed. Panel A provides summary statistics of quarterly returns,

quarterly returns accrued on A-days, and quarterly returns accrued on N-days. Panel B (C) reports summary statistics

of variables that have been found to be A-day (N-day) returns’ predictors in univariate linear regressions using quarterly

data. Panel D (E) reports summary statistics of variables which have been found to predict returns accrued on both

(neither) A-days and (nor) N-days. For each of the variables we report the length of its time series and the first and last

month for which the data is available. We then report the summary statistics of the relevant time series: mean, standard

deviation, minimum value, maximum value, first order autocorrelation, and skewness

Variable N Start End Mean SD Min Max Autocorr skew

Panel A: Returns

r 276 19530331 20211231 0.02 0.08 −0.30 0.22 0.04 −0.77

rA 276 19530331 20211231 0.01 0.03 −0.18 0.13 −0.02 −0.64

rNA 276 19530331 20211231 0.01 0.07 −0.28 0.18 0.10 −0.75

Panel B: A-day return predictors

dfy 276 19530331 20211231 0.01 0.00 0.00 0.03 0.87 1.87

svar 276 19530331 20211231 0.01 0.01 0.00 0.11 0.38 6.74

GWZ M wtexas 276 19530331 20211231 0.01 0.08 −0.54 0.45 0.03 −0.41

GWZ M dtoy 276 19530331 20211231 0.93 0.08 0.58 1.00 0.64 −1.75

Continued on next page
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Table 2: – continued from previous page

Variable N Start End Mean SD Min Max Autocorr skew

Panel C: N-day return predictors

logPD 275 19530630 20211231 4.96 0.39 4.09 5.95 0.94 0.24

lty 276 19530331 20211231 0.06 0.03 0.01 0.15 0.98 0.74

tbl 276 19530331 20211231 0.04 0.03 0.00 0.15 0.95 0.88

tms 276 19530331 20211231 0.02 0.01 −0.04 0.05 0.84 −0.15

ltr 276 19530331 20211231 0.02 0.05 −0.15 0.24 −0.05 0.89

ik 276 19530331 20211231 0.04 0.00 0.03 0.04 0.97 0.44

GWZ M ogap 276 19530331 20211231 0.00 0.07 −0.16 0.14 0.95 0.08

GWZ Q pce 273 19531231 20211231 0.00 0.04 −0.11 0.08 0.94 −0.20

GWZ S skew 275 19530630 20211231 −0.21 0.61 −1.29 1.28 0.50 0.43

GWZ A gpce 273 19531231 20211231 0.00 0.00 −0.01 0.02 0.78 0.03

GWZ A gip 273 19531231 20211231 0.01 0.02 −0.05 0.05 0.70 −0.90

Panel D: Predictors of returns on both types of days

GWZ M dtoat 276 19530331 20211231 0.90 0.10 0.54 1.00 0.79 −1.15

Continued on next page
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Table 2: – continued from previous page

Variable N Start End Mean SD Min Max Autocorr skew

GWZ M avgcor 276 19530331 20211231 0.27 0.11 0.03 0.71 0.53 1.00

Panel E: Variables which do not predict returns

cayGW 276 19530331 20211231 0.00 0.04 −0.28 0.05 0.86 −3.33

ntis 276 19530331 20211231 0.01 0.02 −0.05 0.05 0.94 −0.76

dfr 276 19530331 20211231 0.00 0.03 −0.15 0.16 −0.13 −0.52

bm 276 19530331 20211231 0.50 0.25 0.13 1.20 0.98 0.75

logSP500d12e12 276 19530331 20211231 −0.74 0.30 −1.24 1.38 0.89 2.81

logSP500e12p 276 19530331 20211231 −2.84 0.42 −4.81 −1.90 0.94 −0.72

GWZ M lzrt 276 19530331 20211231 −1.76 0.35 −4.69 −1.20 0.71 −4.40

GWZ M skvw 276 19530331 20211231 0.03 0.05 −0.38 0.16 −0.01 −2.56

GWZ M tail 276 19530331 20211231 0.42 0.05 0.30 0.53 0.90 −0.66

GWZ M fbm 276 19530331 20211231 0.17 0.11 −0.10 0.62 0.85 1.10

GWZ M ygap 275 19530630 20211231 −2.90 0.41 −4.84 −2.02 0.93 −0.83

GWZ M rdsp 276 19530331 20211231 0.03 0.01 0.01 0.12 0.66 3.60

GWZ M tchi 276 19530331 20211231 −0.02 1.45 −2.68 1.06 0.60 −0.94

Continued on next page
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Table 2: – continued from previous page

Variable N Start End Mean SD Min Max Autocorr skew

GWZ Q govik 276 19530331 20211231 0.03 0.01 0.03 0.06 0.97 1.09

GWZ A house 273 19531231 20211231 −0.25 0.01 −0.26 −0.22 0.95 0.37

Table 3: Univariate regressions - predicting quarterly returns

This table reports the results of univariate regressions of quarterly returns on predictor variables. All regressions are of the following

type:

rit+1 = α+ βxt, i = (A&N,A,N),

where rit+1 is the quarterly return (columns (2) through (4)), quarterly return accrued on A-days (columns (5) through (7)), or quarterly

return accrued on N-days (columns (8) through (10)). In the interest of readibility we only report the values of the β coefficient, it’s

t-statistics, and the R2 for each of the regressions. Panel A (B) reports regression results for variables that have been found to be A-day

(N-day) returns’ predictors. Panel C (D) reports regression results for variables which have been found to predict returns accrued on

both (neither) A-days and (nor) N-days. Variables are summarized in Table 1. Period covered: 1953 – 2021.

Quarterly returns A-day quarterly returns N-day quarterly returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variable β t(β) R2 β t(β) R2 β t(β) R2

Continued on next page
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Table 3: – continued from previous page

Quarterly returns A-day quarterly returns N-day quarterly returns

Variable β t(β) R2 β t(β) R2 β t(β) R2

Panel A: Announcement day return predictors

dfy 1.36 [ 1.18] 0.1% 0.79 [1.90] 0.9% 0.57 [ 0.55] −0.3 %

svar 0.90 [1.94] 1.0% 0.58 [3.54] 4.0% 0.32 [ 0.76] −0.2 %

GWZ M wtexas 0.02 [ 0.33] −0.3 % 0.04 [1.77] 0.8% −0.02 [−0.35 ] −0.3 %

GWZ M dtoy -0.14 [-2.05] 1.2% -0.06 [-2.42] 1.7% −0.08 [−1.32 ] 0.3%

Panel B: Non-announcement day return predictors

logPD −0.02 [−1.42 ] 0.4% 0.00 [ 0.45] −0.3 % -0.02 [-1.78] 0.8%

lty -0.30 [-1.74] 0.7% 0.01 [ 0.19] −0.4 % -0.31 [-2.03] 1.1%

tbl -0.38 [-2.39] 1.7% −0.01 [−0.22 ] −0.3 % -0.36 [-2.59] 2.0%

tms 0.63 [1.78] 0.8% 0.11 [ 0.87] −0.1 % 0.52 [1.64] 0.6%

ltr 0.22 [2.40] 1.7% 0.01 [ 0.30] −0.3 % 0.21 [2.57] 2.0%

ik -5.31 [-3.34] 3.6% 0.17 [ 0.29] −0.3 % -5.48 [-3.89] 4.9%

GWZ M ogap -0.31 [-4.25] 5.9% 0.00 [−0.17 ] −0.4 % -0.30 [-4.73] 7.2%

GWZ Q pce -0.47 [-3.49] 4.0% −0.06 [−1.11 ] 0.1% -0.41 [-3.45] 3.9%
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Table 3: – continued from previous page

Quarterly returns A-day quarterly returns N-day quarterly returns

Variable β t(β) R2 β t(β) R2 β t(β) R2

GWZ S skew −0.01 [−1.39 ] 0.3% 0.00 [ 0.70] −0.2 % -0.01 [-1.84] 0.9%

GWZ A gpce -3.62 [-3.57] 4.2% −0.28 [−0.76 ] −0.2 % -3.34 [-3.70] 4.5%

GWZ A gip -0.91 [-3.49] 4.0% −0.03 [−0.32 ] −0.3 % -0.88 [-3.80] 4.7%

Panel C: Announcement and non-announcement day return predictors

GWZ M dtoat -0.15 [-2.87] 2.6% -0.03 [-1.77] 0.8% -0.11 [-2.49] 1.9%

GWZ M avgcor 0.18 [4.17] 5.6% 0.05 [3.00] 2.8% 0.13 [3.41] 3.7%

Panel D: Variables not predicting either announcement or non-announcement returns

cayGW −0.03 [−0.23 ] −0.35 % 0.04 [ 0.92] −0.06 % −0.08 [−0.63 ] −0.22 %

ntis −0.25 [−0.99 ] −0.01 % −0.04 [−0.39 ] −0.31 % −0.22 [−0.95 ] −0.04 %

dfr 0.08 [ 0.40] −0.31 % −0.04 [−0.54 ] −0.26 % 0.12 [ 0.67] −0.20 %

bm 0.01 [ 0.26] −0.34 % 0.00 [−0.59 ] −0.24 % 0.01 [ 0.53] −0.26 %

logSP500d12e12 0.02 [ 1.25] 0.20% 0.01 [ 1.62] 0.59% 0.01 [ 0.74] −0.16 %

logSP500e12p 0.00 [ 0.26] −0.34 % −0.01 [−1.34 ] 0.29% 0.01 [ 0.83] −0.11 %

GWZ M lzrt −0.01 [−0.51 ] −0.27 % −0.01 [−0.91 ] −0.06 % 0.00 [−0.20 ] −0.35 %

GWZ M skvw −0.06 [−0.61 ] −0.23 % −0.01 [−0.14 ] −0.36 % −0.06 [−0.62 ] −0.22 %

Continued on next page
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Table 3: – continued from previous page

Quarterly returns A-day quarterly returns N-day quarterly returns

Variable β t(β) R2 β t(β) R2 β t(β) R2

GWZ M tail 0.13 [ 1.41] 0.36% 0.00 [ 0.12] −0.36 % 0.13 [ 1.53] 0.49%

GWZ M fbm 0.02 [ 0.38] −0.31 % 0.02 [ 1.06] 0.04% 0.00 [−0.01 ] −0.37 %

GWZ M ygap 0.01 [ 0.44] −0.30 % −0.01 [−1.37 ] 0.32% 0.01 [ 1.05] 0.04%

GWZ M rdsp −0.06 [−0.15 ] −0.36 % 0.18 [ 1.21] 0.17% −0.24 [−0.66 ] −0.20 %

GWZ M tchi 0.00 [ 0.46] −0.29 % 0.00 [−0.67 ] −0.20 % 0.00 [ 0.79] −0.14 %

GWZ Q govik 0.24 [ 0.33] −0.33 % −0.16 [−0.59 ] −0.24 % 0.40 [ 0.61] −0.23 %

GWZ A house 0.60 [ 1.12] 0.10% −0.11 [−0.56 ] −0.25 % 0.71 [ 1.49] 0.45%
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Table 4: Forecasting changes in fundamental value using real ex-post rational

price P ∗
t+1 as its proxy

This table reports the results of regressing the change in real ex-post rational price P̃ ∗
t+1 on lagged

returns accrued on A-days and N-days at various frequencies. The left-hand side of the table presents

results of estimating equation (4): Yt+1 = β0+β1r
A
t +β2r

N
t . The right-hand side of the table presents

results of estimating equation (5): Yt+1 = δ0+ δ1(r
A
t + rNt )+ δ2(r

A
t − rNt ). In both cases Yt+1 = P̃ ∗

t+1.

For each of the equations two time periods are considered: 1953 – 2022 and 1953 – 2010. This is

to account for the fact that starting from January 2011 the terminal value of P ∗
T is becoming non-

negligible share of P ∗
t . t-statistics are reported in the second row below each coefficient value. Since

Yt+1 are constructed using non-overlapping windows, standard unadjusted t-statistics are reported.

Eq.(4): Yt+1 = β0 + β1r
A
t + β2r

N
t Eq.(5): Yt+1 = δ0 + δ1(r

A
t + rNt ) + δ2(r

A
t − rNt )

β0 β1 β2 Adj.R2 N δ0 δ1 δ2 Adj.R2 N

Panel A: Monthly data 1953 – 2022 Panel A: Monthly data 1953 – 2022

0.003 0.002 -0.002 0.00% 839 0.003 0.000 0.002 0.00% 839

[39.96] [0.60] [-1.31] [39.96] [0.03] [1.05]

Panel B: Monthly data 1953 – 2010 Panel B: Monthly data 1953 – 2010

0.003 0.004 -0.003 0.08% 695 0.003 0.001 0.003 0.08% 695

[31.49] [0.85] [-1.37] [31.49] [0.26] [1.30]

Panel C: Quarterly data 1953 – 2022 Panel C: Quarterly data 1953 – 2022

0.008 0.007 0.000 -0.32% 279 0.008 0.003 0.004 -0.32% 279

[40.62] [1.05] [-0.13] [40.62] [0.98] [0.98]

Panel D: Quarterly data 1953 – 2010 Panel D: Quarterly data 1953 – 2010

0.008 0.014 -0.001 0.61% 231 0.008 0.006 0.008 0.61% 231

[34.61] [1.81] [-0.53] [34.61] [1.56] [1.82]

Panel E: Annual data 1953 – 2022 Panel E: Annual data 1953 – 2022

0.033 0.032 -0.005 -0.67% 69 0.033 0.013 0.018 -0.67% 69

[18.34] [1.17] [-0.46] [18.34] [0.93] [1.24]

Panel F: Annual data 1953 – 2010 Panel F: Annual data 1953 – 2010

0.030 0.046 -0.012 3.72% 57 0.030 0.017 0.029 3.72% 57

[16.02] [1.70] [-1.16] [16.02] [1.19] [1.99]
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Table 5: Forecasting changes in fundamental value using detrended real ex-

post rational price p∗t+1 as its proxy

This table reports the results of regressing the change in detrended real ex-post rational price p̃∗t+1 on

lagged returns on A-days and N-days at various frequencies. The left-hand side of the table presents

results of estimating equation (4): Yt+1 = β0+β1r
A
t +β2r

N
t . The right-hand side of the table presents

results of estimating equation (5): Yt+1 = δ0+ δ1(r
A
t + rNt )+ δ2(r

A
t − rNt ). In both cases Yt+1 = p̃∗t+1.

For each equation two time periods are considered: 1953 – 2022 and 1953 – 2010. This is to account

for the fact that starting from January 2011 the terminal value of p∗T is becoming non-negligible share

of p∗t . t-statistics are reported in the second row below each coefficient value. Since Yt+1 are calculated

using non-rolling windows, standard unadjusted t-statistics are reported.

Eq.(4): Yt+1 = β0 + β1r
A
t + β2r

N
t Eq.(5): Yt+1 = δ0 + δ1(r

A
t + rNt ) + δ2(r

A
t − rNt )

β0 β1 β2 Adj.R2 N δ0 δ1 δ2 Adj.R2 N

Panel A: Monthly data 1953 – 2022 Panel A: Monthly data 1953 – 2022

0.000 0.002 -0.002 0.05% 839 0.000 0.000 0.002 0.05% 839

[-2.66] [0.66] [-1.46] [-2.66] [0.03] [1.16]

Panel B: Monthly data 1953 – 2010 Panel B: Monthly data 1953 – 2010

0.000 0.003 -0.002 0.07% 695 0.000 0.001 0.003 0.07% 695

[-4.34] [0.83] [-1.36] [-4.34] [0.24] [1.28]

Panel C: Quarterly data 1953 – 2022 Panel C: Quarterly data 1953 – 2022

0.000 0.006 0.000 -0.21% 279 0.000 0.003 0.003 -0.21% 279

[-3.25] [1.19] [-0.15] [-3.25] [1.11] [1.11]

Panel D: Quarterly data 1953 – 2010 Panel D: Quarterly data 1953 – 2010

-0.001 0.010 -0.001 0.56% 231 -0.001 0.005 0.006 0.56% 231

[-5.47] [1.80] [-0.46] [-5.47] [1.57] [1.78]

Panel E: Annual data 1953 – 2022 Panel E: Annual data 1953 – 2022

-0.002 0.025 -0.005 0.11% 69 -0.002 0.010 0.015 0.11% 69

[-1.66] [1.29] [-0.67] [-1.66] [0.98] [1.43]

Panel F: Annual data 1953 – 2010 Panel F: Annual data 1953 – 2010

-0.004 0.035 -0.009 3.69% 57 -0.004 0.013 0.022 3.69% 57

[-2.81] [1.67] [-1.20] [-2.81] [1.14] [1.97]
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