Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Session
4.09 3D models in education and outreach - synergy of research, geotourism, conservation and georisk assessment
Time:
Tuesday, 05/Sept/2023:
4:00pm - 5:30pm

Session Chair: Mathias Knaak, Geologischer Dienst NRW
Session Chair: Gösta Hoffmann, Deutsche UNESCO Kommission
Session Chair: Edouard Grigowski, University of Bonn
Session Chair: Valeska Decker, RWTH Aachen University
Location: Wiwi 108

104

Show help for 'Increase or decrease the abstract text size'
Presentations
4:00pm - 4:15pm
Topics: 4.09 3D models in education and outreach - synergy of research, geotourism, conservation and georisk assessment

Mining rock salt – using a 3D model with respect to economic requirements

Anne Engler1, Thomas Kießling1, Marie-Luise Richter1, Anne Baum2

1ERCOSPLAN Ingenieurgesellschaft Geotechnik und Bergbau mbH; 2Glückauf Sondershausen Entwicklungs- und Sicherungsgesellschaft mbH

Intending to improve mining and exploration processes within a rock salt producing mine all available geological information were collected, evaluated and prepared to create a 3D subsurface model. Besides geological information the drifts were visualized in 3D, too. Amongst other data borehole information from above and subsurface were considered to create a block model showing the grade distribution within the deposit and the geological mining boundaries. One challenging aspect was to harmonize the borehole database that grew over several decades. The block sizes of the model were created due to the customers’ needs with respect to dimensioning issues.

Based on the results of the geological model drift planning and excavation processes can be optimized. With respect to the geological exploration program the targets can be outlined in a more distinct way using the 3D model. By precising mine design and exploration targets workflows for short and long term mine planning can be improved. Beyond that reserves and resources of the deposit can be described more precisely. By updating the model on a regular basis thickness, depth and distribution maps as well as profiles can be requested easily from the model considering all available information.

As the geological model was created with the help of SKUA-GOCAD (AspenTech®) and AutoCAD® data exchange can be realized using for example CAD-based formats as well as column-based files. Furthermore, the geological model can be implemented into a mine planning software to improve daily routine at the mine site.



4:15pm - 4:30pm
Topics: 4.09 3D models in education and outreach - synergy of research, geotourism, conservation and georisk assessment

A Technical Approach to 3D Modelling of the Subsurface Geology in the South-Eastern Harz Foreland

Tilman J. Jeske, Melanie Siegburg, Alexander Malz, Olaf-Christian Müller, Ivo Rappsilber

Landesamt für Geologie und Bergwesen Sachsen-Anhalt, Halle (Saale), Germany

The digitization of geological data is becoming increasingly important in the assessment of the subsurface geology, and 3D visualization offers new possibilities. To extend the visualization of the subsurface geology of the State of Saxony-Anhalt, a 3D structural model of Permian to Quaternary stratigraphy of the South-Eastern Harz Foreland has been created. The model is based on pre-existing data consisting of maps from large-scale subsurface exploration, seismic profiles, and c. 5,660 stratigraphic profiles from the extensive borehole database from over 100 years of drilling exploration. Data preparation consisted of extracting borehole data, digitizing and vectorizing maps and seismic profiles, and subsequent processing with ArcGIS. Modelling of the surface mesh of stratigraphic boundaries and faults was performed using SKUA-GOCAD 22 in the 'Structure and Stratigraphy' workflow. In this iterative process, inconsistencies in the topology and geometry of the mesh have to be resolved manually in several steps in order to create a consistent model. Challenges arise from low data density in some areas and conflicting information in data from different sources. The resulting model shows the arrangement and relationship of stratigraphic units and major faults of the area in a refined level of detail. Within the requirements of publication and provision of state geological data by the Geological Survey of Saxony-Anhalt (LAGB), the model was prepared to be published via the GST (Geosciences in Space and Time) framework at the LAGB.



4:30pm - 4:45pm
Topics: 4.09 3D models in education and outreach - synergy of research, geotourism, conservation and georisk assessment

3D geological modelling of the surficial aquitards in the German “Central Oder” sub-catchment.

Klaus Duscher

Federal Institute for Geosciences and Natural Resources, Germany

The „Central Oder“ sub-catchment in Germany is the first of three areas for which structural models of the surficial aquitards down to the latest Elsterian till are being constructed as part of the Geo3D-Oder project. All other areas are interpreted as undifferentiated aquifers. The data base is taken from the "Lithofacies map of the Quaternary 1 : 50,000" (LKQ 50).

The model consists of ten stratigraphic layers, each bounded by a top and base horizon, and the ground surface. The data combines polygons defining the extent of the strata and point data of elevations derived from contour lines and stratigraphic logs. The data was processed and transferred to the SKUA-GOCAD modelling platform.

The geological 3D model contains only a concordant sequence of horizons with no faults. The challenge in constructing 3D models of Quaternary glacial sediments lies in the variable and sometimes very small layer thickness. Especially in the case of unavailable information on the elevation of upper horizons, layers below cannot be correctly reproduced. A new method has been developed to avoid this. For each horizon, the uppermost proven elevations of all underlying strata were identified in search quadrants. This data was used to interpolate 'virtual horizons', which are constraints on the maximum depth for each horizon. The resulting horizons were finalised using automated routines and manual post-processing.



4:45pm - 5:00pm
Topics: 4.09 3D models in education and outreach - synergy of research, geotourism, conservation and georisk assessment

Digital educational content in geosciences

Mandy Duda, Julia Godlewska, Marc Sören Ogan, Alexander-Dean Seiling, Tobias Backers

Ruhr-Universität Bochum, Germany

Fieldwork represents a highlight for most students in geosciences but is associated with challenges related to diversity. Due to long periods of absence, high costs, remote destinations, and physical and mental stresses, not all students can equally benefit from the offer, for example, people with care obligations, challenges due to sociocultural status, insufficient financial resources, or illnesses. Some outcrops are generally inaccessible.

The Engineering Geology and Rock Mass Mechanics Group at Ruhr-University Bochum realizes projects towards a more diversity-friendly education in geosciences.

Within Digifit, the geological mapping course in the Bachelor’s curriculum was digitized. With 360° tours and 3D models of outcrops and rock samples, the course can be offered digitally and provides high-quality teaching material for the preparation and postprocessing of fieldwork.

DRAGON Ruhr.nrw develops digital teaching material for geosciences and civil engineering. By content relating to climate change and geohazards, such as 3D models of outcrops in the Ahr valley, students are faced with the significance of their future roles.

As part of research-based learning projects, students are currently working on a comparison between manual mapping of discontinuity orientations and the derivation of orientations from digital models.

We highlight limitations of digital fieldwork and ways to counteract them. The resulting educational material offers a diversity-open access to fieldwork. The media competence of the graduates is strengthened and the attractiveness of geosciences is increased. In addition, digital teaching content offers great potential for interdisciplinary collaborations and can be used by third parties, for example in the context of ESD.



5:00pm - 5:15pm
Topics: 4.09 3D models in education and outreach - synergy of research, geotourism, conservation and georisk assessment

Enabling virtual teaching with Unreal Engine 5 (3D/XR): The 30 Geotope³ virtual museum

Pascal Michael Woiton, Edouard Grigowski

University of Bonn, Germany

Fieldwork and outcrops are an essential component of geoscience education, providing students with a hands-on learning experience that enhances their understanding of geological processes. This is reflected by the importance personal field experience has in the teaching of geology. While classic fieldwork remains the best way to grasp the extent and underlying processes of geological structures, 3D and VR teaching applications offer a unique opportunity to explore and visualize geological features that may be difficult to access or too large from a human’s perspective. However, state-of-the-art virtualising technology is sparsely used in geoscientific education. The commonly used toolkits to handle three-dimensional geological data are not able to process large amounts of polygons, as well as their accompanying texture-sets, derived from detailed photogrammetry datasets in real-time or VR. Here we present our current digitising workflow within the 30 Geotope³ project and how we visualise highly detailed, large- and small-scale outcrops with the use of Unreal Engine 5s Nanite and Virtual Texturing technologies. This virtual museum enables students to experience a variety of geological features in an immersive and interactive way, bridging the gap between theory and practice and enabling collaborative and remote learning. We understand the virtual museum as a starting point for interactive educational environments covering outcrops from all around the world, thus making geoscience more accessible and preserving outcrops for future research.



5:15pm - 5:30pm
Topics: 4.09 3D models in education and outreach - synergy of research, geotourism, conservation and georisk assessment

Observing a century of volcanic morphodynamics using photogrammetric analysis of recent and archive data

Alina V. Shevchenko, Thomas R. Walter

GFZ, Germany

Volcanoes are the most dynamic landforms, capable of changing their shape and environment in a matter of minutes, posing a significant threat to the environment and populations. While modern monitoring approaches can detect short-term changes, the long-term evolution is not well understood. Through the collection and photogrammetric processing of optical data, we can now reconstruct the precise topographies of volcanic edifices during the last decades to study different stages of volcanic development. By comparing the obtained topographies, we calculate volume flows, including eruptive and eroded materials, and evaluate the resulting geomorphic changes. Recent advances in technology and algorithms have opened unique opportunities for the collection and processing of photogrammetric data, allowing quantitative analysis of aerial photographs from the mid-last century to modern satellite and drone data. Here, we present ultra-high-resolution point clouds and digital elevation models to study long-term morphological and structural changes at volcanoes. In particular, the availability of archive ground and aerial stereo imagery from the last century allows us to look into the past and reconstruct volcanic activity in glaciated regions, and explore the complex interactions and geomorphic changes these regions undergo. We illustrate volcano-cryosphere interactions in Kamchatka and Iceland, highlighting the use of the method by pioneers since the beginning of the last century. We describe the main features of the use of photogrammetry in volcanological research and discuss possible further developments in terms of improved visualization and virtual reality application for educational purposes.



 
Contact and Legal Notice · Contact Address:
Privacy Statement · Conference: GeoBerlin 2023
Conference Software: ConfTool Pro 2.8.101
© 2001–2024 by Dr. H. Weinreich, Hamburg, Germany