Session | ||
S13.01: Flow control
| ||
Presentations | ||
8:30am - 9:10am
Machine learning of interpretable nonlinear models for unsteady flow physics 1University of Washington, Seattle, WA, USA; 2Laboratoire DynFluid, Arts et Metiers ParisTech, Paris, France; 3Laboratoire d'Informatique pour la Mecanique et les Sciences de l'Ingenieur, LIMSI-CNRS, Orsay, France 9:10am - 9:30am
Artificial intelligence control applied to drag reduction of the fluidic pinball 1LIMSI-CNRS, France; 2TU Braunschweig, Germany; 3TU Berlin, Germany; 4HIT Shenzen, China; 5PUT, Poland; 6ENSTA ParisTech, France 9:30am - 9:50am
Control of chaotic systems by deep reinforcement learning 1LIMSI-CNRS, Orsay, France; 2PPRIME-CNRS, Poitiers, France 9:50am - 10:10am
Control of transient instabilities by order reduction on optimally time-dependent modes MIT, United States of America |