Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Date: Saturday, 10/June/2023
9:00am - 6:00pmYoung Investigators Meeting Registration and Information Desk
Location: Bologna Congress Center
10:00am - 6:00pmYoung Investigators Meeting
Location: Bologna Congress Center - Sala Italia
To see the full programme of this Meeting, visit our website on this page.

Date: Sunday, 11/June/2023
10:00am - 6:00pmSlides Center
Location: Slides Center
10:00am - 6:00pmRegistration Desk
Location: Bologna Congress Center
11:00am - 1:00pmE-MIT Assembly
Location: Bologna Congress Center - Sala Europa
1:00pm - 2:00pmLunch
Location: Bologna Congress Center - Sala Europa
2:30pm - 3:00pmOpening Ceremony
Location: Bologna Congress Center - Sala Europa
3:00pm - 3:45pmKeynote Lecture: Doug Turnbull
Location: Bologna Congress Center - Sala Europa
 
Invited
ID: 676
Invited Speakers

Mitochondrial disease: past successes and future challenges

Doug Turnbull

Newcastle University, United Kingdom

 
3:45pm - 4:00pmCoffee Break
Location: Bologna Congress Center
4:00pm - 5:30pmSession 1.1: The impact of mtDNA variation and environment on rare and common diseases
Location: Bologna Congress Center - Sala Europa
Session Chair: Ian Holt
Session Chair: Emanuela Bottani
Invited Speakers: P. Chinnery; A. Enriquez
 
Invited
ID: 679
Invited Speakers

The role of mtDNA variation in common and rare diseases

Patrick F. Chinnery

Cambridge-UK, United Kingdom



Invited
ID: 2107
Invited Speakers

How mtDNA can talk with the complex landscape of nuclear encoded OXPHOS information?

José Antonio Enriquez

Spanish National Center for Cardiovascular Research (CNIC)



Oral presentation
ID: 369
The impact of mtDNA variation and environment on rare and common diseases

Understanding the pathophysiological mechanisms of mitochondrial diseases with MITOMICS through an integrated multi-OMICS approach of Mitomatcher, the French mitochondrial disease database

Sylvie Bannwarth1, Alexandrina Bodrug2, Céline Bris2, MitoDiag Network3, Stéphane Tirard4, Silvia Bottini5, Marie Deprez7, Magalie Barth2, Patrizia Bonneau2, Pascal Reynier2, Dominique Bonneau2, Justine Labory5, Cécile Rouzier1, Annabelle Chaussenot1, Samira Ait-El-Mkadem-Saadi1, Shahram Attarian6, Marco Lorenzi7, Véronique Paquis-Flucklinger1, Anthony Brooks8, Vincent Procaccio2

1Université Côte d’Azur, INSERM U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France; 2Département de Génétique, UMR CNRS 6015 INSERM 1083, CHU et Université d’Angers, Angers, France; 3Réseau français des laboratoires de diagnostic pour les maladies mitochondriales (Bordeaux, Caen, Grenoble, Lille, Lyon, Le Kremlin-Bicêtre, Pitié Salpêtrière, Necker Enfants Malades, Reims), Centres de référence pour les maladies mitochondriales (CALISSON, CARAMMEL), France; 4Université de Nantes, Nantes, France; 5Université Côte d’Azur, MDLab, Nice, France; 6Filière FILNEMUS, CHU La Timone, Marseille, France; 7INRIA, Equipe EPIONE, Nice, France; 8University of Leicester, Dept.Genetics, UK



Oral presentation
ID: 570
The impact of mtDNA variation and environment on rare and common diseases

Generating a complete human panmitogenome

Giulio Formenti1, Alessandro Achilli2, Hansi Weissensteiner3, Anna Olivieri2, Andrea Guarracino4, Walther Parson5,8, Nicola Rambaldi Migliore2, Martin Bodner3, Valerio Carelli6, Leonardo Caporali6, Claudio Fiorini7, Danara Ormanbekova7, Erik Garrison4, Nicole Huber3

1The Rockefeller University, United States of America; 2Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; 3Medical University of Innsbruck, 6020 Innsbruck, Austria; 4Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; 5Medical University of Innsbruck, 6020 Innsbruck, Austria; 6Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy; 7IRCCS Institute of Neurological Sciences of Bologna; 8Forensic Science Program, The Pennsylvania State University, University Park, PA, USA



Oral presentation
ID: 479
The impact of mtDNA variation and environment on rare and common diseases

Negative selection of mitochondrial DNA mutations in the blood

Imogen Grace Franklin1,5, Paul Milne2,5, Jordan Childs1, Isabel Barrow1,3, Róisín M Boggan1, Andrew M Schaefer1,3, Catherine Feeney1,3, Rhys H Thomas1,3, Gráinne S Gorman1,3, Conor Lawless1, Yi Shiau Ng1,3, Matthew Collin2,4, Oliver M Russell1,4, Sarah J Pickett1,4

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne; 2The Human Dendritic Cell Lab, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne; 4Equal Contributions; 5Equal Contributions



Flash Talk
ID: 329
The impact of mtDNA variation and environment on rare and common diseases

Parsing universal heteroplasmy in a large maternal lineage carrying the common LHON variant m.11778G>A/MT-ND4

Danara Ormanbekova1, Claudio Fiorini1, Leonardo Caporali2, Alberto Pasti1, Chiara Giannuzzi2, Francesco Musacchia3, Diego Vozzi3, Milton N Moraes-Filho4, Solange R Salomao5, Adriana Berezovsky5, Alfredo A Sadun6, Stefano Gustincich3, Patrick F Chinnery7, Valerio Carelli1,2

1Azienda USL di Bologna - IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 3Istituto Italiano di Tecnologia – IIT, Genova, Italy; 4Instituto de Olhos de Colatina, Colatina, Espírito Santo, Brazil; 5Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; 6Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 7Medical Research Council Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK



Flash Talk
ID: 441
The impact of mtDNA variation and environment on rare and common diseases

PNPLA3, MBOAT7 and TM6SF2 modify mitochondrial dynamics in NAFLD patients: dissecting the role of cell-free circulating mtDNA and copy number

Miriam Longo1, Erika Paolini1,2, Marica Meroni1, Michela Ripolone1, Laura Napoli1, Giada Tria1, Marco Maggioni1, Maurizio Maggio1, Anna Ludovica Fracanzani1,3, Paola Dongiovanni1

1Fondazione IRCCS Cà Granda Ospedale Policlinico, Italy; 2Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; 3Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy

 
5:30pm - 6:15pmShow
Location: Bologna Congress Center - Sala Europa
6:15pm - 7:00pmTransfer to Cocktail Venue
Location: Bologna Congress Center - Sala Europa
7:00pm - 10:00pmWelcome cocktail
Location: Palazzo Isolani

Date: Monday, 12/June/2023
8:00am - 6:30pmSlides Center
Location: Slides Center
8:00am - 6:30pmRegistration Desk
Location: Bologna Congress Center
9:00am - 10:45amSession 2.1: mtDNA maintenance and expression
Location: Bologna Congress Center - Sala Europa
Session Chair: Zofia Chrzanowska-Lightowers
Session Chair: Massimo Zeviani
Invited Speakers: M. Falkemberg; A. Filipovska
 
Invited
ID: 236
Invited Speakers

Initiation of mitochondrial DNA replication in mammalian cells.

Maria Falkenberg

Gothenburg University, Sweden

Bibliography
Maria Falkenberg defended her Ph.D. thesis (2000) at the University of Gothenburg, Sweden, after spending three years as a visiting student with Prof. I.R. Lehman, Stanford University School of Medicine. After postdoctoral work with Prof. Nils-Göran Larsson (2001-2002), she was appointed assistant professor at the Karolinska Institutet (2003). Since 2011, she is professor of medical biochemistry at the University of Gothenburg. The Falkenberg laboratory studies DNA replication in mammalian mitochondria, using in-vitro biochemistry, structural biology and and cell biology to study the underlying enzymatic processes. The laboratory also investigates the molecular consequences of disease-causing mutations affecting mitochondrial DNA replication and develops new, rational therapeutic approaches.


Invited
ID: 680
Invited Speakers

Regulation of mitochondrial gene expression in disease

Aleksandra Filipovska

University of Western Australia, Australia



Oral presentation
ID: 423
mtDNA maintenance and expression

Mitochondrial translation termination at non-canonical stop codons

Annika Krüger1, Cristina Remes2, Dmitrii Igorevich Shiriaev1, Yong Liu1, Henrik Spåhr1, Rolf Wibom1, Ilian Atanassov3, Minh Duc Nguyen1, Barry S. Cooperman2, Joanna Rorbach1,3

1Karolinska Institutet, Stockholm, Sweden; 2University of Pennsylvania, Pennsylvania, USA; 3Max-Planck-Institute for Biology of Ageing, Cologne, Germany

Bibliography
Krüger A, Remes C, Shiriaev DI, Liu Y, Spåhr H, Wibom R, Atanassov I, Nguyen MD, Cooperman BS, Rorbach J. Human mitochondria require mtRF1 for translation termination at non-canonical stop codons. Nat Commun 14, 30 (2023).


Oral presentation
ID: 268
mtDNA maintenance and expression

Pathological variants in TOP3A cause distinct disorders of mitochondrial and nuclear genome stability

Direnis Erdinc1, Alejandro Rodríguez-Luis2,3, Mahmoud R. Fassad2,4, Sarah Mackenzie5, Christopher M. Watson6,7, Sebastian Valenzuela1, Xie Xie1, Katja E. Menger2,3, Kate Sergeant8, Kate Craig2,9, Sila Hopton2,9, Gavin Falkous2,9, Joanna Poulton10, Hector Garcia-Moreno11, Paola Giunti11, Carlos A. de Moura Aschoff12, Jonas A. Morales Saute12,13,14, Amelia J. Kirby15, Camilo Toro16, Lynne Wolfe16, Danica Novacic16, Lior Greenbaum17,18,19, Aviva Eliyahu17,19, Ortal Barel20, Yair Anikster19,21, Robert McFarland2,4, Gráinne S. Gorman2,4, Andrew M. Schaefer2,9, Claes M. Gustafsson1,22, Robert W. Taylor2,4,9, Maria Falkenberg1, Thomas J Nicholls1

1Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden; 2Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; 3Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; 4Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; 5The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; 6North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK; 7Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK; 8Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 9NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK; 10Nuffield Department of Women’s & Reproductive Health, The Women's Centre, University of Oxford, Oxford, UK; 11Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; 12Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; 13Department of Internal Medicine, Universidade Federal do Rio Grande do Sul - Porto Alegre, Brazil; 14Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul - Porto Alegre, Brazil; 15Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; 16Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; 17The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; 18The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; 19The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; 20Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Israel; 21Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; 22Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden

Bibliography
Menger et al. (2022). Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Research; 50(19):11154-11174.

Tan et al. (2022). The human mitochondrial genome contains a second light strand promoter. Molecular Cell; 82(19): 3646-3660.

Misic et al. (2022). Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion. Nucleic Acids Research; 50(15): 8749-8766.

Menger et al. (2021). Controlling the topology of mammalian mitochondrial DNA. Open Biology; 11(9): 210168.

Jiang et al. (2021). The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Science Advances; 7(27): eabf8631.


Oral presentation
ID: 244
mtDNA maintenance and expression

The role of replicative exonucleases in mitochondrial DNA replication and degradation

Christian D Gonzalez, Nadee Nissanka, Carlos T Moraes

University of Miami Miller School of Medicine, United States of America

Bibliography
S27 of IFNα1 Contributes to Its Low Affinity for IFNAR2 and Weak Antiviral Activity

Nikunj Sharma, Anya J. O'Neal, Christian Gonzalez, Megen Wittling, Erisa Gjinaj, Lisa M. Parsons, Debasis Panda, Alexey Khalenkov, Dorothy Scott, Saurav Misra, and Ronald L. Rabin

Journal of Interferon & Cytokine Research 2019 39:5, 283-292


Flash Talk
ID: 127
mtDNA maintenance and expression

Processing of mitochondrial RNA in health and disease: the role of FASTKD5.

Hana Antonicka1, James B. Gibson2, Eric A. Shoubridge1

1The Neuro & McGill University, Montreal, Quebec, Canada; 2Dell School of Medicine, University of Texas at Austin, Austin, TX, USA

Bibliography
1.Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. (2021) ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 2021 Dec 21;37(12):110139. doi: 10.1016/j.celrep.2021.110139.

2.Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, Youn JY, Samavarchi-Tehrani P, Zhang H, Zhu LY, Popiel E, Lambert JP, Coyaud É, Cheung SWT, Rajendran D, Wong CJ, Antonicka H, Pelletier L, Palazzo AF, Shoubridge EA, Raught B, Gingras AC. (2021) A proximity-dependent biotinylation map of a human cell. Nature. 2021 Jul;595(7865):120-124. doi: 10.1038/s41586-021-03592-2.

3.Antonicka H, Lin ZY, Janer A, Aaltonen MJ, Weraarpachai W, Gingras AC, Shoubridge EA. (2020) A High-Density Human Mitochondrial Proximity Interaction Network. Cell Metab. 2020 Sep 1;32(3):479-497.e9. doi: 10.1016/j.cmet.2020.07.017.

4.Maiti P, Antonicka H, Gingras AC, Shoubridge EA, Barrientos A. (2020) Human GTPBP5 (MTG2) fuels mitoribosome large subunit maturation by facilitating 16S rRNA methylation. Nucleic Acids Res. 2020 Aug 20;48(14):7924-7943. doi: 10.1093/nar/gkaa592.

5.Antonicka H, Choquet K, Lin ZY, Gingras AC, Kleinman CL, Shoubridge EA. (2017) A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 2017 Jan;18(1):28-38. doi: 10.15252/embr.201643391.


Flash Talk
ID: 524
mtDNA maintenance and expression

Mechanisms of mtDNA maintenance and segregation in the female germline

Laura Kremer1, Lyuba Bozhilova2,3, Diana Rubalcava-Garcia1, Roberta Filograna1, Mamta Upadhyay1, Camilla Koolmeister1, Patrick Chinnery2,3, Nils-Göran Larsson1

1Karolinska Institutet, Stockholm, Sweden; 2MRC Mitochondrial Biology Unit, Cambridge, United Kingdom; 3Department of Clinical Neurosciences, University of Cambridge, United Kingdom



Flash Talk
ID: 116
mtDNA maintenance and expression

The human Mitochondrial mRNA Structurome reveals Mechanisms of Gene Expression in Physiology and Pathology

Antoni Barrientos1, Conor Moran1, Amir Brivanlou2, Flavia Fontanesi1, Silvi Rouskin2

1University of Miami, United States of America; 2Harvard Medical School, United States of America

Bibliography
1- Structural basis of LRPPRC-SLIRP-1 dependent translation by the
mitoribosome. Vivek Singh, J. Conor Moran, Yuzuru Itoh, Iliana C. Soto, Flavia Fontanesi, Mary Couvillion, Martijn A. Huynen4, Stirling Churchman, Antoni Barrientos*, Alexey Amunts*. Nat Struct Mol Bill. 2023 (in press)
2-Tissue-specific mitochondrial HIGD1C promotes oxygen sensitivity in carotid body chemoreceptors. Timón-Gómez A, Scharr AL, Wong NY, Ni E, Roy A, Liu M, Chau J, Lampert JL, Hireed H, Kim NS, Jan M, Gupta AR, Day RW, Gardner JM, Wilson RJA, Barrientos A, Chang AJ. Elife. 2022 Oct 18;11:e78915. doi: 10.7554/eLife.78915.
2- Coordination of metal center biogenesis in human cytochrome c oxidase.
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A.
Nat Commun. 2022 Jun 24;13(1):3615. doi: 10.1038/s41467-022-31413-1.
 
10:45am - 11:00amCoffee Break
Location: Bologna Congress Center
11:00am - 12:45pmSession 2.2: Clinical 1: from new genes to old and novel phenotypes
Location: Bologna Congress Center - Sala Europa
Session Chair: Agnes Rotig
Session Chair: Daniele Ghezzi
Invited Speakers: R. Horvath; H. Prokisch
 
Invited
ID: 672
Invited Speakers

The role of mitochondria in neuromuscular diseases

Rita Horvath

Cambridge-UK, United Kingdom

Bibliography
Van Haute L, et al. Nat Commun 2023 Feb 23;14(1):1009


Invited
ID: 696
Invited Speakers

Innovative approaches for the molecular diagnosis of mitochondrial disorders

Holger Prokisch

Technical University Munich Institute of Human Genetics



Oral presentation
ID: 615
Clinical 1: from new genes to old and novel phenotypes

Specialist multidisciplinary input maximises rare disease diagnoses from whole genome sequencing

William L Macken1,2, Micol Falabella1, Caroline McKittrick1, Chiara Pizzamiglio1,2, Rebecca Ellmers3, Kelly Eggleton3, Cathy E. Woodward2,3, Yogen Patel2,3, Robyn Labrum2,3, Genomics England Research Consortium9, Rahul Phadke4, Mary M. Reilly1, Catherine DeVille5, Anna Sarkozy4, Emma Footitt6, James Davison6,7, Shamima Rahman6,8, Henry Houlden1, Enrico Bugiardini1,2, Rosaline Quinlivan1,2,4, Michael G. Hanna1,2, Jana Vandrovcova1, Robert D.S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK; 4Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 5Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 6Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 7National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, London, UK; 8Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; 9Genomics England, One Canada Square London, UK

Bibliography
(1) Riley L.G. et al, The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease Genet Med, 2020 Jul;22(7):1254-1261.
(2) Davis R.L., Use of Whole-Genome Sequencing for Mitochondrial Disease Diagnosis, Neurology. 2022 Aug 16;99(7):e730-e742.


Oral presentation
ID: 553
Clinical 1: from new genes to old and novel phenotypes

Biallelic variants in MCAT in an infant with lactic acidosis, lipoylation disorder, and early death

Melanie T. Achleitner1, Maja Hempel2,3, Konstantinos Tsiakas4, René G. Feichtinger1, Saskia B. Wortmann1,5, René Santer4, Johannes A. Mayr1

1University Children's Hospital, Paracelsus Medical University, Salzburg, Austria; 2Institute of Human Genetics, University Medical Center Eppendorf, Hamburg, Germany; 3Current address: Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany; 4Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany; 5Amalia Children’s Hospital, Radboudumc, Nijmegen, The Netherlands.



Oral presentation
ID: 367
Clinical 1: from new genes to old and novel phenotypes

Biallelic PTPMT1 variants impair cardiolipin metabolism and cause mitochondrial myopathy and developmental regression

Micol Falabella1, Chiara Pizzamiglio1,2, Luis Carlos Tabara3, Ece Sonmezler4, Benjamin Munro5, William L. Macken1,2, Shanti Lu1, Lisa Tilokani3, Padraig J. Flannery6,7, Nina Patel7,8, Simon A. S. Pope7,8, Simon J. R. Heales7,8, Jana Vandrovcova1, Henry Houlden1, Robert W. Taylor9, Cathy E. Woodward6, Robyn Labrum6, Genomics England Research Consortium10, Semra Hiz11, Maha S. Zaki12, Efstathia Chronopoulou13, Germaine Pierre13, Reza Maroofian1, Michael G. Hanna1,2, Yavuz Oktay4,14,15, Rita Horvath5, Julien Prudent3, Robert D. S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge UK; 4Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey; 5Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 6Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK; 7Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; 8Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK; 9Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle upon Tyne, UK; 10Genomics England, London, UK; 11Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; 12Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt; 13Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK; 14Izmir Biomedicine and Genome Center, Izmir, Turkey; 15Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir Turkey



Flash Talk
ID: 201
Clinical 1: from new genes to old and novel phenotypes

Heterozygous missense variants in NUTF2 (nuclear transport factor 2) gene, mapping at the OPA8 locus, cause Dominant Optic Atrophy

Agnese Macaluso1, Alessandra Maresca1, Concetta Valentina Tropeano1, Maria Antonietta Capristo1, Flavia Palombo1, Leonardo Caporali1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1, Piero Barboni2,3, Cristina Villaverde4,5, Carmen Ayuso4,5, Maria Esther Gallardo6,5, Majida Charif7, Sylvie Gerber8, Patrizia Amati-Bonneau7, Guy Lanaers7,9, Jean-Michel Rozet7, Bernd Wissinger10, Valerio Carelli1,11, Valentina Del Dotto11

1IRCCS - Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Studio Oculistico d'Azeglio - Bologna (Italy); 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele - Milano (Italy); 4Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD-UAM) - Madrid (Spain); 5Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Madrid (Spain); 6Grupo de investigación traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain; Centro de Investigación Biomédica en Red (CIBERER) - Madrid (Spain); 7Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc - Angers (France); 8Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University - Paris (France); 9Departments of Biochemistry and Genetics, University Hospital Angers - Angers (France); 10Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany; 11Depart. of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna - Bologna (Italy)



Flash Talk
ID: 348
Clinical 1: from new genes to old and novel phenotypes

Southern African paediatric patients with King Denborough syndrome are exclusively associated with an autosomal recessive STAC3 variant: is this a highly prevalent secondary mitochondrial disease in this African population?

Francois Hendrikus van der Westhuizen1, Maryke Schoonen1, Michelle Bisschoff1, Ronel Human2, Elsa Lubbe2, Malebo Nonyane2, Armand Vorster1, Karin Terburgh1, Robert McFarland3, Robert Taylor3, Mahmoud Fassad3, Krutik Patel3, Wilson Lindsay4, Michael Hanna4, Jana Vandrovcova4, The ICGNMD Consortium5, Izelle Smuts2

1Human Metabolomics, North-West University, Potchefstroom, South Africa; 2Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa; 3Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 4Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; 5https://www.ucl.ac.uk/genomic-medicine-neuromuscular-diseases/global-contributor-list

Bibliography
Schoonen, M., Smuts, I., Louw, R., Elson, J. L., van Dyk, E., Jonck, L. M., Rodenburg, R. J. T., van der Westhuizen, F. H. (2019). Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease. The Journal of molecular diagnostics 21, 503–513.

Meldau, S., Owen, E. P., Khan, K., & Riordan, G. T. (2022). Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings. Journal of clinical pathology 75, 34–38.

Reinecke, C. J., Koekemoer, G., van der Westhuizen, F. H., Louw, R., Lindeque, J. Z., Mienie, L. J., Smuts, I. (2012). Metabolomics of urinary organic acids in respiratory chain deficiencies. Metabolomics 8, 264-283.

Terburgh, K., Coetzer, J., Lindeque, J. Z., van der Westhuizen, F. H., Louw, R. (2021). Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochimica et biophysica acta. Molecular basis of disease 1867, 166082.


Flash Talk
ID: 428
Clinical 1: from new genes to old and novel phenotypes

AK3, adenylate kinase isozyme 3, is a new gene associated with PEO and multiple mtDNA deletions

Alessia Nasca1, Andrea Legati1, Teresa Ciavattini1, Nadia Zanetti1, Eleonora Lamantea1, Javier Ramón2, Ramon Martí2, Maria Antonietta Maioli3, Costanza Lamperti1, Holger Prokisch4,5, Daniele Ghezzi1,6

1Fondazione IRCCS Istituto Neurologico Besta, Italy; 2Vall d'Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain; 3Centro Sclerosi Multipla, P.O. Binaghi, ASL Cagliari, Italy; 4Technical University of Munich, School of Medicine, Institute of Human Genetics, 81675 Munich, Germany; 5Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany; 6Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy



Flash Talk
ID: 411
mtDNA maintenance and expression

Guanylate kinase 1 deficiency: a novel and potentially treatable form of mitochondrial DNA depletion/deletions syndrome

Agustin Hidalgo-Gutierrez1, Jonathan Shintaku1, Eliana Barriocanal-Casado1, Russ Saneto2, Javier Ramon4,7, Gloria Garrabou4,5, Frederic Tort3,4, Jose Cesar Milisenda6, Laura Gort3,4, Alba Pesini1, Saba Tadesse1, Mary-Claire King8, Ramon Marti4,7, Antonia Ribes3,4, Michio Hirano1

1Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; 2Seattle Children’s Hospital, Seattle, WA, USA; 3Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS, Barcelona.; 4Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona; 5Muscle Research and Mitochondrial Function Lab, Cellex - IDIBAPS. Faculty of Medicine and Health Science - University of Barcelona (UB), Barcelona.; 6Department of Internal Medicine, Hospital Clínic of Barcelona.; 7Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.; 8Department of Genome Sciences, University of Washington, Seattle, WA, U.S.A.

Bibliography
1DiMauro, S., Schon, E. A., Carelli, V. & Hirano, M. The clinical maze of mitochondrial neurology. Nat Rev Neurol 9, 429-444, doi:10.1038/nrneurol.2013.126 (2013).
2Lopez-Gomez, C., Camara, Y., Hirano, M., Marti, R. & nd, E. W. P. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 32, 609-620, doi:10.1016/j.nmd.2022.05.008 (2022).
3Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43, 2466-2485, doi:10.1093/nar/gkv047 (2015).
4Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S. & Elpeleg, O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29, 342-344, doi:10.1038/ng751 (2001).
5Mandel, H., Szargel, R., Labay, V., Elpeleg, O., Saada, A., Shalata, A., Anbinder, Y., Berkowitz, D., Hartman, C., Barak, M., Eriksson, S. & Cohen, N. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29, 337-341, doi:10.1038/ng746 (2001).
6Ostergaard, E., Christensen, E., Kristensen, E., Mogensen, B., Duno, M., Shoubridge, E. A. & Wibrand, F. Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81, 383-387, doi:10.1086/519222 (2007).
7Besse, A., Wu, P., Bruni, F., Donti, T., Graham, B. H., Craigen, W. J., McFarland, R., Moretti, P., Lalani, S., Scott, K. L., Taylor, R. W. & Bonnen, P. E. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab 21, 417-427, doi:10.1016/j.cmet.2015.02.008 (2015).
8Sommerville, E. W., Dalla Rosa, I., Rosenberg, M. M., Bruni, F., Thompson, K., Rocha, M., Blakely, E. L., He, L., Falkous, G., Schaefer, A. M., Yu-Wai-Man, P., Chinnery, P. F., Hedstrom, L., Spinazzola, A., Taylor, R. W. & Gorman, G. S. Identification of a novel heterozygous guanosine monophosphate reductase (GMPR) variant in a patient with a late-onset disorder of mitochondrial DNA maintenance. Clin Genet 97, 276-286, doi:10.1111/cge.13652 (2020).
9Shintaku, J., Pernice, W. M., Eyaid, W., Gc, J. B., Brown, Z. P., Juanola-Falgarona, M., Torres-Torronteras, J., Sommerville, E. W., Hellebrekers, D. M., Blakely, E. L., Donaldson, A., van de Laar, I., Leu, C. S., Marti, R., Frank, J., Tanji, K., Koolen, D. A., Rodenburg, R. J., Chinnery, P. F., Smeets, H. J. M., Gorman, G. S., Bonnen, P. E., Taylor, R. W. & Hirano, M. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. J Clin Invest 132, doi:10.1172/JCI145660 (2022).
10Bourdon, A., Minai, L., Serre, V., Jais, J. P., Sarzi, E., Aubert, S., Chretien, D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A. & Rotig, A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39, 776-780, doi:10.1038/ng2040 (2007).
11Khan, N., Shah, P. P., Ban, D., Trigo-Mourino, P., Carneiro, M. G., DeLeeuw, L., Dean, W. L., Trent, J. O., Beverly, L. J., Konrad, M., Lee, D. & Sabo, T. M. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J Biol Chem 294, 11920-11933, doi:10.1074/jbc.RA119.009251 (2019).
12Li, Y., Zhang, Y. & Yan, H. Kinetic and thermodynamic characterizations of yeast guanylate kinase. J Biol Chem 271, 28038-28044, doi:10.1074/jbc.271.45.28038 (1996).
13Agarwal, K. C., Miech, R. P. & Parks, R. E., Jr. Guanylate kinases from human erythrocytes, hog brain, and rat liver. Methods Enzymol 51, 483-490, doi:10.1016/s0076-6879(78)51066-5 (1978).
14Dummer, R., Duvic, M., Scarisbrick, J., Olsen, E. A., Rozati, S., Eggmann, N., Goldinger, S. M., Hutchinson, K., Geskin, L., Illidge, T. M., Giuliano, E., Elder, J. & Kim, Y. H. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous T-cell lymphomas (CTCL) (Mycosis fungoides and Sezary syndrome). Ann Oncol 25, 1807-1812, doi:10.1093/annonc/mdu231 (2014).
 
12:45pm - 1:45pmLunch
Location: Bologna Congress Center - Sala Europa
1:45pm - 3:30pmSession 2.3: Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity
Location: Bologna Congress Center - Sala Europa
Session Chair: Cristina Ugalde
Session Chair: Giovanni Manfredi
 
Invited
ID: 176
Invited Speakers

Metabolic adaptations of respiratory chain organization and function

Erika Fernandez-Vizarra1,2

1Department of Biomedical Sciences, University of Padova, Italy; 2Veneto Institute of Molecular Medicine, Padova, Italy

Bibliography
1.Fernandez-Vizarra, E., Lopez-Calcerrada, S., Sierra-Magro, A., Perez-Perez, R., Formosa, L.E., Hock, D.H., Illescas, M., Penas, A., Brischigliaro, M., Ding, S., et al. (2022). Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab 34, 1792-1808. 10.1016/j.cmet.2022.09.005.
2.Fernandez-Vizarra, E., and Ugalde, C. (2022). Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem Sci 47, 999-1008. 10.1016/j.tibs.2022.07.005.
3.Fernandez-Vizarra, E., Lopez-Calcerrada, S., Formosa, L.E., Perez-Perez, R., Ding, S., Fearnley, I.M., Arenas, J., Martin, M.A., Zeviani, M., Ryan, M.T., and Ugalde, C. (2021). SILAC-based complexome profiling dissects the structural organization of the human respiratory supercomplexes in SCAFI(KO) cells. Biochim Biophys Acta Bioenerg 1862, 148414. 10.1016/j.bbabio.2021.148414.
4.Palenikova, P., Harbour, M.E., Prodi, F., Minczuk, M., Zeviani, M., Ghelli, A., and Fernandez-Vizarra, E. (2021). Duplexing complexome profiling with SILAC to study human respiratory chain assembly defects. Biochim Biophys Acta Bioenerg 1862, 148395. 10.1016/j.bbabio.2021.148395.
5.Protasoni, M., Perez-Perez, R., Lobo-Jarne, T., Harbour, M.E., Ding, S., Penas, A., Diaz, F., Moraes, C.T., Fearnley, I.M., Zeviani, M., Ugalde, C., and Fernandez-Vizarra, E. (2020). Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. The EMBO journal 39, e102817. 10.15252/embj.2019102817.


Invited
ID: 403
Invited Speakers

Pluripotent stem cells and brain organoids for drug discovery of mitochondrial diseases

Alessandro Prigione

Heinrich Heine University, Düsseldorf, Germany



Oral presentation
ID: 347
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

High-throughput single cell analysis reveals progressive mitochondrial DNA mosaicism developing throughout life

Angelos Glynos1,2, Lyuba V. Bozhilova1,2, Michele Frison1,2, Stephen P. Burr1,2, James B. Stewart3, Patrick F. Chinnery1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 3Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK

Bibliography
Burr, S. P., et al. (2023). "Cell lineage-specific mitochondrial resilience during mammalian organogenesis." Cell.
Alzaydi, M. M., et al. (2023). "Intracellular Chloride Channels Regulate Endothelial Metabolic Reprogramming in Pulmonary Arterial Hypertension." Am J Respir Cell Mol Biol 68(1): 103-115.
Kayhanian, S., et al. (2022). "Cell-Free Mitochondrial DNA in Acute Brain Injury." Neurotrauma Rep 3(1): 415-420.


Oral presentation
ID: 238
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A coordinated multiorgan metabolic response contributes to human mitochondrial myopathy.

Guido Primiano3, Nneka Southwell1, Viraj Nadkarni1, Emelie Beattie1, Maria Lucia Valentino4, Valerio Carelli4, Serenella Servidei3, Giovanni Manfredi1, Qiuying Chen2, Marilena D'Aurelio1

1Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY; 2Weill Cornell Medicine, Department of Pharmacology, New York, NY; 3Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; 4IRCCS, Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy



Oral presentation
ID: 520
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Succinylation as a novel pathogenic mechanism in a children's mitochondrial brain disease

Pieti Elonkirjo1, Tuomas Kukkonen1, Juan Liu2, Jason W. Locasale2, Sami Jalil1, Birgit Schilling3, Eric Verdin3,4, Marco Reidelbach5, Outi Haapanen5, Vivek Sharma5,6, Elsebet Oestergaard7, Rosalba Carrozzo8, Berge Minassian9,10, Anu Suomalainen1

1STEMM, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; 2Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; 3Buck Institute for Research on Aging, Novato, CA 94945, USA; 4Gladstone Institutes and University of California, San Francisco, CA 94158, USA; 5Department of Physics, University of Helsinki, Finland; 6HiLIFE Institute of Biotechnology, University of Helsinki, Finland; 7Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; 8Unit of Cellular Biology and Mitochondrial Diseases, “Bambino Gesù” Children's Hospital, IRCCS, Rome, Italy; 9Program in Genetics and Genome Biology, The Hospital for Sick Children, Institute of Medical Science University of Toronto, Toronto, Ontario, Canada; 10Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA

Bibliography
Gut, P., Matilainen, S., Meyer, J. G., Pällijeff, P., Richard, J., Carroll, C. J., ... & Verdin, E. (2020). SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nature communications, 11(1), 5927.


Flash Talk
ID: 226
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The levels and activation state of the pyruvate dehydrogenase complex modulate the SCAFI-dependent organization of the mitochondrial respiratory chain

Sandra Lopez-Calcerrada1, Ana Sierra-Magro1, Erika Fernández-Vizarra2, Cristina Ugalde1,3

1Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; 2Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain

Bibliography
Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. 2022 Nov 1;34(11):1792-1808.e6. doi: 10.1016/j.cmet.2022.09.005. PMID: 36198313.


Flash Talk
ID: 301
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oxphos deficiency indicates novel functions for the mitochondrial protein import subunit tim50

Jordan J Crameri1, Catherine S Palmer1, David Coman2, David A Stroud1, David R Thorburn3,4,5, Ann E Frazier3,4, Diana Stojanovski1

1Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia; 2Queensland Children’s Hospital, Department of Metabolic Medicine, South Brisbane, Brisbane, Queensland, 4001, Australia; 3Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia; 4Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia; 5Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia



Flash Talk
ID: 300
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Microproteins in metabolic regulation

Jiemin Nah1, Baptiste Kerouanton1, David Robinson2, Kyle Dunlap3, Pooja Sridnivasan1, Sonia Chothani1, Greg Ducker3, Owen Rackham4, David Stroud2, Lena Ho1

1Duke-NUS Medical School, Singapore; 2University of Melbourne, Australia; 3University of Utah, USA; 4University of Southampton, UK

Bibliography
Lena Ho, PhD (lead PI), is regarded as a pioneer in the field of microprotein research with over 30 primary research articles (5991 citations, H-index of 21) in top-tier journals. With more than 12 years of experience in microprotein discovery, functionalization and therapeutic development, Lena and her team have developed a framework of bioinformatic tools for mining ribo-seq data for disease-relevant small ORF peptides, as well as an extensive range of biochemical tools to validate their function and uncover their molecular mechanism. Lena is an EMBO Young Investigator and HHMI international scholar.
Recent publications :
1) Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity.
Lee CQE, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, Hock DH, Lim R, Nadkarni R, Huynh VT, Lim D, Chew WL, Zhong FL, Stroud DA, Schafer S, Tergaonkar V, St John AL, Rackham OJL, Ho L. Nat Commun. 2021 Apr 9;12(1):2130. doi: 10.1038/s41467-021-22397-5.

2) Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis.
Liang C, Zhang S, Robinson D, Ploeg MV, Wilson R, Nah J, Taylor D, Beh S, Lim R, Sun L, Muoio DM, Stroud DA, Ho L. Cell Rep. 2022 Aug 16;40(7):111204. doi: 10.1016/j.celrep.2022.111204.

3) Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly.
Zhang S, Reljić B, Liang C, Kerouanton B, Francisco JC, Peh JH, Mary C, Jagannathan NS, Olexiouk V, Tang C, Fidelito G, Nama S, Cheng RK, Wee CL, Wang LC, Duek Roggli P, Sampath P, Lane L, Petretto E, Sobota RM, Jesuthasan S, Tucker-Kellogg L, Reversade B, Menschaert G, Sun L, Stroud DA, Ho L.

4) Viral proteases activate the CARD8 inflammasome in the human cardiovascular system.
Nadkarni R, Chu WC, Lee CQE, Mohamud Y, Yap L, Toh GA, Beh S, Lim R, Fan YM, Zhang YL, Robinson K, Tryggvason K, Luo H, Zhong F, Ho L. J Exp Med. 2022 Oct 3;219(10):e20212117. doi: 10.1084/jem.20212117. Epub 2022 Sep 21.
 
3:30pm - 3:50pmIndustry Workshop: Abliva AB
Location: Bologna Congress Center - Sala Europa
3:30pm - 4:30pmTea Break and poster session
Location: Bologna Congress Center
Session topics:
- Clinical 1: from new genes to old and novel phenotypes
- New technological developments and OMICS - Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity
 
ID: 495
Clinical 1: from new genes to old and novel phenotypes

Recessive MECR pathogenic variants cause a LHON-like optic neuropathy

Claudio Fiorini1, Andrea Degiorgi2, Maria Lucia Cascavilla3, Concetta Valentina Tropeano1, Chiara La Morgia1,4, Marco Battista3, Danara Ormanbekova1, Flavia Palombo1, Michele Carbonelli4, Francesco Bandello3, Valerio Carelli1,4, Alessandra Maresca1, Piero Barboni3, Enrico Baruffini2, Leonardo Caporali4

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy; 4Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy



ID: 213
Clinical 1: from new genes to old and novel phenotypes

Variants in ATP5F1B are associated with dominantly inherited dystonia

Alessia Nasca1, Niccolò Mencacci2, Federica Invernizzi1, Michael Zech3, Andrea Legati1, Giovanna Zorzi1, Holger Prokisch3, Steven Lubbe2, Barbara Garavaglia1, Daniele Ghezzi1,4

1Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy; 2Northwestern University, Feinberg School of Medicine, Chicago, USA; 3Helmholtz Zentrum München, Technical University of Munich, Munich, Germany; 4Università di Milano, Milan, Italy



ID: 143
Clinical 1: from new genes to old and novel phenotypes

Toward clinical implementation of quantitative proteomics in the detection of mitochondrial disorders

Daniella H Hock1, Liana N Semcesen1, Nikeisha J Caruana1,2, Sumudu Amarasekera1,3, Teresa Zhao1,3,4, Ann E Frazier1,3, Shabnam Bakhshalizadeh1,3, Megan Ball1,3,4, Tegan Stait3,4, Jessie Jacobsen5,6, Emma Glamuzina5,6, Bryony Ryder5,6, Johan L K Van Hove7, Elena Tucker1,3, Andrew Sinclair1,3,4, Cas Simons8,9, Alison G Compton1,3,4, John Christodoulou1,3,4, David R Thorburn1,3,4, David A Stroud1,3,4

1University of Melbourne, Parkville, Australia; 2Victoria University, Footscray, Australia; 3Murdoch Children’s Research Institute, Melbourne, Australia; 4Victorian Clinical Genetics Services, Melbourne, Australia; 5National Metabolic Service Auckland City Hospital, Auckland, New Zealand; 6Starship Children's Hospital, Auckland, New Zealand; 7University of Colorado, Aurora, United States of America; 8Centre for Population Genomics, Melbourne, Australia; 9Garvan Institute of Medical Research, Sydney, Australia

Bibliography
Amarasekera S.S.C., Hock D.H., Lake N.J., Calvo S.E., Grønborg S.W., Krzesinski E.I., Amor D.J., Fahey M.C., Simons C., Wibrand F., Mootha V.K., Lek M., Lunke S., Stark Z., Østergaard E., Christodoulou J., Thorburn D.R., *Stroud D.A., *Compton A.G. (2023) Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. In revision.

van Bergen N.J., Gunanayagam K., Bournazos A.M., Walvekar A.S., Warmoes M.O., Semcesen L.N., Lunke S., Bommireddipalli S., Sikora T., Jones D.L., Garza D., Sebire D., Gooley S., McLean C.A., Naidoo P., Rajasekaran M., *Stroud D.A., *Linster C.L., *Wallis M., *Cooper S.T., *Christodoulou J. (2023) Severe NAD(P)HX dehydratase (NAXD) neurometabolic syn-drome may present in adulthood after mild head trauma. IJMS 24,4. 10.3390/ijms24043582.

Robinson D.R.L., Hock D.H., Muellner-Wong L., Kugapreethan R., Reljic B., Surgenor E.S., Rodrigues C.H.M., Caruana N.J., *Stroud D.A. (2022) Applying Sodium Carbonate Extraction Mass Spectrometry to Investigate Defects in the Mitochondrial Respiratory Chain. Front. Cell Dev. Biol. 10, 786268.

Hock D.H., Robinson D.R.L., *Stroud D.A. (2020) Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem. J. 477, 4085.

Helman G., Compton A.G., Hock D.H., Walkiewicz M., Brett G.R., Pais L., Tan T.Y., De Paoli-Iseppi R., Clark M.B., Christodoulou J., White S.M., Thorburn D.R., Stroud D.A., Stark Z., Simons C. (2021) Multiomic analysis elucidates Complex I deficiency caused by a deep intronic variant in NDUFB10. Hum. Mutat. 42, 29.

Frazier A.E., Compton A.G., Kishita Y., Hock D.H., Welch A.E., Amarasekera S.S.C., Rius R., Formosa L.E., Imai-Okazaki A., Francis D., Wang M., Lake N.J., Tregoning S., Jabbari J.S., Lucattini A., Nitta K.R., Ohtake A., Murayama K., Amor D.J., McGillivray G., Wong F.Y., van der Knaap M.S., Jeroen Vermeulen R., Wiltshire E.J., Fletcher J.M., Lewis B., Baynam G., Ellaway C., Balasubramaniam S., Bhattacharya K., Freckmann M.L., Arbuckle S., Rodriguez M., Taft R.J., Sadedin S., Cowley M.J., Minoche A.E., Calvo S.E., Mootha V.K., Ryan M.T., Okazaki Y., Stroud D.A., Simons C., Christodoulou J., Thorburn D.R. (2021) Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. Med 2, 49.

Hock D.H., Reljic B., Ang C.S., Muellner-Wong L., Mountford H.S., Compton A.G., Ryan M.T., Thorburn D.R., *Stroud D.A. (2020) HIGD2A Is Required for Assembly of the COX3 Module of Human Mitochondrial Complex IV. Mol. Cell Proteomics. 19, 107541.

*, corresponding author


ID: 611
Clinical 1: from new genes to old and novel phenotypes

A DNM2-related myopathy mimicking a primary mitochondrial disorder

Ignazio Giuseppe Arena1, Rosalba Carrozzo2, Mattia Porcino1, Alba Migliorato3, Carmelo Rodolico1, Olimpia Musumeci1

1Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.; 2Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; 3Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.



ID: 594
Clinical 1: from new genes to old and novel phenotypes

Assessing the association of mitochondrial DNA genes with Primary Mitochondrial Disease using the ClinGen Clinical Validity Framework

Elizabeth M. McCormick1, James T. Peterson1, Julie P. Taylor2, Krista Bluske2, Amanda R. Clause2, Anjana Chandrasekhar2, Josh Lowry2, Alison J. Coffey2, Xiaowu Gai3,4, Marni J. Falk1,5, Zarazuela Zolkipli-Cunningham1,5, Shamima Rahman6

1Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA; 2Illumina Laboratory Services, Illumina Inc., San Diego, CA; 3Center for Personalized Medicine, Department of Pathology & Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA; 4Keck School of Medicine, University of Southern California, Los Angeles, CA; 5Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; 6Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom



ID: 282
Clinical 1: from new genes to old and novel phenotypes

Functional characterisation of the m.8424T>C MT-ATP8 variant using quantitative proteomics

Liana Semcesen1, Nikeisha Caruana1,2, Daniella Hock1, Alison Compton1,3,4, Zornitza Stark1,4,5, John Christodoulou1,3,4, David Thorburn1,3,4, David Stoud1,3,4

1University of Melbourne, Parkville, Australia; 2Victoria University, Footscray, Australia; 3Murdoch Children’s Research Institute, Melbourne, Australia; 4Victorian Clinical Genetics Services, Melbourne, Australia; 5Australian Genomics, Melbourne, Australia



ID: 493
Clinical 1: from new genes to old and novel phenotypes

COX18 variants cause isolated Complex IV deficiency associated with neonatal hypertrophic cardiomyopathy, myopathy and axonal sensory neuropathy

Dario Ronchi1, Megi Meneri1,2, Francesca Magri2, Francesca Menni2, Manuela Garbellini2, Maria Francesca Bedeschi2, Robertino Dilena2, Valeria Cecchetti2, Irene Picciolli2, Francesca Furlan2, Valentina Polimeni2, Sabrina Salani2, Laura Pezzoli2, Francesco Fortunato1, Matteo Bellini3, Sara Antognozzi2, Daniela Piga2, Michela Ripolone2, Simona Zanotti2, Laura Napoli2, Patrizia Ciscato2, Monica Sciacco2, Giovanna Mangili3, Fabio Mosca2, Stefania Corti1,2, Maria Iascone3, Giacomo Pietro Comi1,2

1Dino Ferrari Center, University of Milan, Italy; 2IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy; 3ASST Papa Giovanni XXIII, Bergamo, Italy



ID: 255
Clinical 1: from new genes to old and novel phenotypes

Severe mitochondrial encephalomyopathy caused by de novo variants in OPA1

Daria Diodato1, Michela Di Nottia2, Alessandra Torraco2, Teresa Rizza2, Claudia Nesti3, Enrico Baruffini3, Diego Martinelli4, Margherita Verardo1, Adele D'Amico1, Filippo Maria Santorelli5, Enrico Bertini1, Rosalba Carrozzo2

1Muscular and Neurodegenerative Disorders Unit, Children Hospital Bambino Gesù; 2Cellular biology and mitochondrial diseases diagnostics, Children Hospital Bambino Gesù; 3Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma; 4Metabolism Division, Children Hospital Bambino Gesù, Rome; 5Molecular Medicine, IRCCS Stella Maris, Pisa

Bibliography
1) Hypoventilation and sleep hypercapnia in a case of congenital variant-like Rett syndrome.
Ghirardo S, Sabatini L, Onofri A, Testa MBC, Paglietti MG, Diodato D, Travaglini L, Stregapede F, Ciofi Degli Atti ML, Cherchi C, Cutrera R.
Ital J Pediatr. 2022 Sep 7;48(1):167. doi: 10.1186/s13052-022-01359-7.
PMID: 36071486 Free PMC article.

2) Neuropsychological and behavioral profile in a cohort of Becker muscular dystrophy pediatric patients.
Cumbo F, Tosi M, Catteruccia M, Diodato D, Nicita F, Capitello TG, Alfieri P, Vicari S, Bertini E, D'Amico A.
Neuromuscul Disord. 2022 Sep;32(9):736-742. doi: 10.1016/j.nmd.2022.07.402. Epub 2022 Jul 27.
PMID: 35953344

4) Response to: Phenotypic heterogeneity of Leigh syndrome due to NDUFA12 variants is multicausal.
Torraco A, Maroofian R, Rötig A, Bertini E, Ghezzi D, Carrozzo R, Diodato D.
Hum Mutat. 2022 Jan;43(1):99-100. doi: 10.1002/humu.24303. Epub 2021 Dec 9.
PMID: 34888984 No abstract available.

5) Clinical, imaging, biochemical and molecular features in Leigh syndrome: a study from the Italian network of mitochondrial diseases.
Ardissone A, Bruno C, Diodato D, Donati A, Ghezzi D, Lamantea E, Lamperti C, Mancuso M, Martinelli D, Primiano G, Procopio E, Rubegni A, Santorelli F, Schiaffino MC, Servidei S, Tubili F, Bertini E, Moroni I.
Orphanet J Rare Dis. 2021 Oct 9;16(1):413. doi: 10.1186/s13023-021-02029-3.
PMID: 34627336 Free PMC article.

6) Elucidating the molecular mechanisms associated with TARS2-related mitochondrial disease.
Zheng WQ, Pedersen SV, Thompson K, Bellacchio E, French CE, Munro B, Pearson TS, Vogt J, Diodato D, Diemer T, Ernst A, Horvath R, Chitre M, Ek J, Wibrand F, Grange DK, Raymond L, Zhou XL, Taylor RW, Ostergaard E.
Hum Mol Genet. 2022 Feb 21;31(4):523-534. doi: 10.1093/hmg/ddab257.
PMID: 34508595

7) Age-related sensory neuropathy in patients with spinal muscular atrophy type 1.
Pro S, Tozzi AE, D'Amico A, Catteruccia M, Cherchi C, De Luca M, Nicita F, Diodato D, Cutrera R, Bertini E, Valeriani M.
Muscle Nerve. 2021 Nov;64(5):599-603. doi: 10.1002/mus.27389. Epub 2021 Aug 23.
PMID: 34368972

8) Antenatal Membranous Nephropathy and Type 2 (Axonal) Charcot-Marie-Tooth With Mutations in the Metallo-Membrane Endopeptidase Gene: A Call for Family Screening and Pharmacovigilance.
Nortier JL, Remiche G, Delrée P, Nauta J, Notermans NC, Vivarelli M, Diodato D, Solé G, Debiec H, Ronco P.
Kidney Int Rep. 2021 May 12;6(7):1981-1986. doi: 10.1016/j.ekir.2021.04.034. eCollection 2021 Jul.
PMID: 34307994 Free PMC article. No abstract available.

9) Movement Disorders in Children with a Mitochondrial Disease: A Cross-Sectional Survey from the Nationwide Italian Collaborative Network of Mitochondrial Diseases.
Ticci C, Orsucci D, Ardissone A, Bello L, Bertini E, Bonato I, Bruno C, Carelli V, Diodato D, Doccini S, Donati MA, Dosi C, Filosto M, Fiorillo C, La Morgia C, Lamperti C, Marchet S, Martinelli D, Minetti C, Moggio M, Mongini TE, Montano V, Moroni I, Musumeci O, Pancheri E, Pegoraro E, Primiano G, Procopio E, Rubegni A, Scalise R, Sciacco M, Servidei S, Siciliano G, Simoncini C, Tolomeo D, Tonin P, Toscano A, Tubili F, Mancuso M, Battini R, Santorelli FM.
J Clin Med. 2021 May 12;10(10):2063. doi: 10.3390/jcm10102063.
PMID: 34065803 Free PMC article.

10) Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation.
Torraco A, Nasca A, Verrigni D, Pennisi A, Zaki MS, Olivieri G, Assouline Z, Martinelli D, Maroofian R, Rizza T, Di Nottia M, Invernizzi F, Lamantea E, Longo D, Houlden H, Prokisch H, Rötig A, Dionisi-Vici C, Bertini E, Ghezzi D, Carrozzo R, Diodato D.
Hum Mutat. 2021 Jun;42(6):699-710. doi: 10.1002/humu.24195. Epub 2021 Mar 25.
PMID: 33715266


ID: 438
Clinical 1: from new genes to old and novel phenotypes

Bi-allelic TEFM variants are associated with a treatable mitochondrial myopathy

Alessandra Torraco1, Guido Primiano2,3, Anastasia Altobelli1, Teresa Rizza1, Michela Di Nottia1, Rosalba Carrozzo1, Serenella Servidei2,3

1Unit of Cellular Biology and Diagnosis of Mitochondrial Disease, Bambino Gesù Children’s Hospital, IRCCS, Rome Italy.; 2Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.; 3Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.

Bibliography
1-Torraco A, Morlino S, Rizza T, Di Nottia M, Bottaro G, Bisceglia L, Montanari A, Cappa M, Castori M, Bertini E, Carrozzo R. A novel homozygous variant in COX5A causes an attenuated phenotype with failure to thrive, lactic acidosis, hypoglycemia, and short stature. Clin Genet. 2022 Jul;102(1):56-60.
2-Torraco A, Nasca A, Verrigni D, Pennisi A, Zaki MS, Olivieri G, Assouline Z, Martinelli D, Maroofian R, Rizza T, Di Nottia M, Invernizzi F, Lamantea E, Longo D, Houlden H, Prokisch H, Rötig A, Dionisi-Vici C, Bertini E, Ghezzi D, Carrozzo R, Diodato D. Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation. Hum Mutat. 2021 Jun;42(6):699-710.
3-Torraco A, Stehling O, Stümpfig C, Rösser R, De Rasmo D, Fiermonte G, Verrigni D, Rizza T, Vozza A, Di Nottia M, Diodato D, Martinelli D, Piemonte F, Dionisi-Vici C, Bertini E, Lill R, Carrozzo R. ISCA1 mutation in a patient with infantile-onset leukodystrophy causes defects in mitochondrial [4Fe-4S] proteins. Hum Mol Genet. 2018 Oct 15;27(20):3650.


ID: 486
Clinical 1: from new genes to old and novel phenotypes

TOMM40L as a new causative gene for autosomal recessive mitochondrial disease.

Francisco Javier Cotrina Vinagre1, María Elena Rodríguez García1, Lucía Del Pozo Filiú1, Elena Martín Hernández2,3, Francisco Martínez Azorín1,3

1Laboratorio de Enfermedades Mitocondriales. Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain.; 2Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain.; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain.

Bibliography
Rodríguez-García, M. E., Cotrina-Vinagre, F. J., et al., (2022). First splicing variant in HECW2 with an autosomal recessive pattern of inheritance and associated with NDHSAL. Human mutation, 43(10), 1361–1367. https://doi.org/10.1002/humu.24426

Lopes Abath Neto, O., Medne, L., Donkervoort, S., Rodríguez-García, M. E., Bolduc, V., Hu, Y., Guadagnin, E., Foley, A. R., Brandsema, J. F., Glanzman, A. M., Tennekoon, G. I., Santi, M., Berger, J. H., Megeney, L. A., Komaki, H., Inoue, M., Cotrina-Vinagre, F. J.,et al., (2021). MLIP causes recessive myopathy with rhabdomyolysis, myalgia and baseline elevated serum creatine kinase. Brain : a journal of neurology, 144(9), 2722–2731. https://doi.org/10.1093/brain/awab275

Cotrina-Vinagre, F. J., et al., (2021). Characterization of a complex phenotype (fever-dependent recurrent acute liver failure and osteogenesis imperfecta) due to NBAS and P4HB variants. Molecular genetics and metabolism, 133(2), 201–210. https://doi.org/10.1016/j.ymgme.2021.02.007

Rodríguez-García, M. E., Cotrina-Vinagre, F. J., et al., (2021). New subtype of PCH1C caused by novel EXOSC8 variants in a 16-year-old Spanish patient. Neuromuscular disorders : NMD, 31(8), 773–782. https://doi.org/10.1016/j.nmd.2021.05.008

Rodríguez-García, M. E., Cotrina-Vinagre, F. J., et al., (2019). A novel de novo MTOR gain-of-function variant in a patient with Smith-Kingsmore syndrome and Antiphospholipid syndrome. European journal of human genetics : EJHG, 27(9), 1369–1378. https://doi.org/10.1038/s41431-019-0418-1


ID: 528
Clinical 1: from new genes to old and novel phenotypes

A primary cardiological phenotype caused by an inherited mtDNA single deletion: a case report from an Italian pedigree

Piervito Lopriore1, Christiane Neuhofer2,3, Vincenzo Montano1, Adriana Meli1, Annalisa Lo Gerfo4, Giulia Cecchi4, Maria Adelaide Caligo4, Riccardo Berutti2,3, Robert Kopajtich2,3, Gabriele Siciliano1, Holger Prokisch2,3, Michelangelo Mancuso1

1Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy; 2Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; 3Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany; 4Laboratory of Molecular Genetics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy

Bibliography
1) Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Donati MA, Federico A, Minetti C, Moggio M, Mongini T, Santorelli FM, Servidei S, Tonin P, Toscano A, Bruno C, Bello L, Caldarazzo Ienco E, Cardaioli E, Catteruccia M, Da Pozzo P, Filosto M, Lamperti C, Moroni I, Musumeci O, Pegoraro E, Ronchi D, Sauchelli D, Scarpelli M, Sciacco M, Valentino ML, Vercelli L, Zeviani M, Siciliano G. Redefining phenotypes associated with mitochondrial DNA single deletion. J Neurol. 20
2) Grady JP, Campbell G, Ratnaike T, Blakely EL, Falkous G, Nesbitt V, Schaefer AM, McNally RJ, Gorman GS, Taylor RW, Turnbull DM, McFarland R (2014) Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 137:323–334
3) Yamashita S, Nishino I, Nonaka I, Goto Y (2008) Genotype and phenotype analyses in 136 patients with single large-scale mitochondrial DNA deletions. J Hum Genet 53:598–606 15 May;262(5):1301-9. doi: 10.1007/s00415-015-7710-y. Epub 2015 Mar 26. Erratum in: J Neurol. 2015 Dec;262(12):2800. PMID: 25808502.
4) Chinnery PF, DiMauro S, Shanske S, Schon EA, Zeviani M, Mariotti C, Carrara F, Lombes A, Laforet P, Ogier H, Jaksch M, Lochmüller H, Horvath R, Deschauer M, Thorburn DR, Bindoff LA, Poulton J, Taylor RW, Matthews JN, Turnbull DM. Risk of developing a mitochondrial DNA deletion disorder. Lancet. 2004 Aug 14-20;364(9434):592-6. doi: 10.1016/S0140-6736(04)16851-7. PMID: 15313359.


ID: 150
Clinical 1: from new genes to old and novel phenotypes

Genetic characterization of a large cohort of Spanish patients with TK2 deficiency. A founder effect of two TK2 variants partially contributes to a higher prevalence of the disorder in Spain.

Cristina Domínguez-González1,2, Pablo Serrano-Lorenzo1,2, Alberto Blázquez1,2, Juan Francisco Quesada-Espinosa1, Jorge Amigo Lechuga3, Pablo Mínguez2,4, Carmen Ayuso2,4, Elena García-Arumí5, Nuria Muelas2,6, Teresa Jaijo6, Andrés Nascimento7, Beatriz Galán-Rodriguez8, Carmen Paradas8,9, Joaquín Arenas1,2, Ángel Carracedo2,3, Ramon Martí2,5, Miguel A. Martin1,2

1Hospital Universitario 12 de Octubre, imas12 Research Institute, Madrid, Spain; 2Spanish Network for Biomedical Research in Rare Diseases (CIBERER); 3Fundación Galega de Medicina Xenómica, Santiago de Compostela, Spain; 4Instituto de Investigación Sanitaria, Hospital Universitario FundaciónJiménez Díaz, Madrid, Spain; 5Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona; 6Hospital Universitari I Politècnic La Fe, Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia; 7Sant Joan de Déu Research Institute, Sant Joan de Déu Hospital, Barcelona, Spain.; 8Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío, Sevilla, Spain.; 9Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED)

Bibliography
1.Domínguez-González C, Fernández-Torrón R, Moore U, de Fuenmayor-Fernández de la Hoz CP, Vélez-Gómez B, Cabezas JA, Alonso-Pérez J, González-Mera L, Olivé M, García-García J, Moris G, León Hernández JC, Muelas N, Servian-Morilla E, Martin MA, Díaz-Manera J, Paradas C. Muscle MRI characteristic pattern for late-onset TK2 deficiency diagnosis. J Neurol. 2022 Jul;269(7):3550-3562. doi: 10.1007/s00415-021-10957-0. Epub 2022 Mar 14. PMID: 35286480; PMCID: PMC9217784.
2.Berardo A, Domínguez-González C, Engelstad K, Hirano M. Advances in Thymidine Kinase 2 Deficiency: Clinical Aspects, Translational Progress, and Emerging Therapies. J Neuromuscul Dis. 2022;9(2):225-235. doi: 10.3233/JND-210786. PMID: 35094997; PMCID: PMC9028656.
3.Domínguez-González C, Madruga-Garrido M, Hirano M, Martí I, Martín MA, Munell F, Nascimento A, Olivé M, Quan J, Sardina MD, Martí R, Paradas C. Collaborative model for diagnosis and treatment of very rare diseases: experience in Spain with thymidine kinase 2 deficiency. Orphanet J Rare Dis. 2021 Oct 2;16(1):407. doi: 10.1186/s13023-021-02030-w. PMID: 34600563; PMCID: PMC8487573.
4.Domínguez-González C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodríguez FJ, Donati MA, Kleinsteuber K, Martí I, Martín-Hernández E, Morealejo-Aycinena JP, Munell F, Nascimento A, Kalko SG, Sardina MD, Álvarez Del Vayo C, Serrano O, Long Y, Tu Y, Levin B, Thompson JLP, Engelstad K, Uddin J, Torres-Torronteras J, Jimenez-Mallebrera C, Martí R, Paradas C, Hirano M. Deoxynucleoside Therapy for Thymidine Kinase 2-Deficient Myopathy. Ann Neurol. 2019 Aug;86(2):293-303. doi: 10.1002/ana.25506. Epub 2019 Jun 17. PMID: 31125140; PMCID: PMC7586249.
5.Domínguez-González C, Hernández-Laín A, Rivas E, Hernández-Voth A, Sayas Catalán J, Fernández-Torrón R, Fuiza-Luces C, García García J, Morís G, Olivé M, Miralles F, Díaz-Manera J, Caballero C, Méndez-Ferrer B, Martí R, García Arumi E, Badosa MC, Esteban J, Jimenez-Mallebrera C, Encinar AB, Arenas J, Hirano M, Martin MÁ, Paradas C. Late-onset thymidine kinase 2 deficiency: a review of 18 cases. Orphanet J Rare Dis. 2019 May 6;14(1):100. doi: 10.1186/s13023-019-1071-z. PMID: 31060578; PMCID: PMC6501326.
6.Domínguez-González C, Hernández-Voth A, de Fuenmayor-Fernández de la Hoz CP, Guerrero LB, Morís G, García-García J, Muelas N, León Hernández JC, Rabasa M, Lora D, Blázquez A, Arenas J, Martin MÁ. Metrics of progression and prognosis in untreated adults with thymidine kinase 2 deficiency: An observational study. Neuromuscul Disord. 2022 Sep;32(9):728-735. doi: 10.1016/j.nmd.2022.07.399. Epub 2022 Jul 16. PMID: 35907766.


ID: 198
Clinical 1: from new genes to old and novel phenotypes

HSD17B10 interacts with CBR4 to form human mitochondrial 3-ketoacyl-acyl carrier protein reductase 2 (KAR2) in the mitochondrial fatty acid synthesis pathway

Ali Julfiker Md Masud, Guangyu Jiang, Kaija J Autio, J Kalervo Hiltunen, Alexander J Kastaniotis

Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland

Bibliography
I.Shvetsova, A., Masud, A. J., Schneider, L., Bergmann, U., Monteuuis, G., Miinalainen, I. J., ... & Kastaniotis, A. J. (2021). A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. MicrobiologyOpen, 10(5), e1238. doi.org/10.1002/mbo3.1238
II.Masud, A. J., Kastaniotis, A. J., Rahman, M. T., Autio, K. J., & Hiltunen, J. K. (2019). Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 118540. doi.org/10.1016/j.bbamcr.2019.118540

III.Monteuuis, G., Suomi, F., Kerätär, J. M., Masud, A. J. & Kastaniotis, A. J. (2017). A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3. Biochemical Journal, 474(22), 3783-3797. doi.org/10.1042/BCJ20170416
IV.Nair, R. R., Kerätär, J. M., Autio, K. J., Masud, A. J., Finnilä, M. A., Autio-Harmainen, H. I., Miinalainen, I. J., Nieminen, P. A., Hiltunen, J. K. & Kastaniotis, A. J. (2017). Genetic modifications of Mecr reveal a role for mitochondrial 2-enoyl-CoA/ACP reductase in placental development in mice. Human Molecular Genetics, 26(11), 2104-2117. doi.org/10.1093/hmg/ddx105
V.Masud, A. J. M., Mia, M. A., Islam, M. M., Begum, S. N., & Prodhan, S. H. (2014). Morpho-Molecular Screening of Rice (Oryza Sativa L.) Genotypes At Seedling Stage for Salt Tolerance. The Journal of Microbiology, Biotechnology and Food Sciences, 4(2), 164. doi.org/10.15414/jmbfs.2014.4.2.164-169


ID: 668
Clinical 1: from new genes to old and novel phenotypes

Novel atypical variants causing pyruvate dehydrogenase complex deficiency

Helene Bruhn1,2, Karin Naess1,2, Sofia Ygberg2,3, Nicole Lesko2,4, Rolf Wibom1,2, Anna Wedell2,4, Anna Wredenberg1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Centre of inherited metabolic diseases, Karolinska University Hospital, Stockholm, Sweden; 3Neuropediatric Unit, Dept of Women’s, and Children's Health, Karolinska Institutet, Stockholm, Sweden; 4Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden



ID: 492
Clinical 1: from new genes to old and novel phenotypes

Novel genetic discoveries detected using diagnostic OMICSs in patients suspected to suffer from multiple acyl-CoA dehydrogenation deficiency

Signe Mosegaard1,11, Mirjana Gusic2,3, Yasuhiko Ago4, Xiao Yue4, Vincente Yépez3,5, Julien Gagneur3,5, Robert Kopajtich3, Dmitrii Smirnov3, Sarah Stenton2, Robert Barski6, Mark Sharrard7, Stanley H. Korman8, Jolanta Sykut-Cegielska9, Anibh M. Das10, Helle H. Nygaard11, Margrethe Kjeldsen11, Yusof Rahman12, Skadi Beblo13, Mirian C. H. Janssen14, Eva Morava15, Leo A. J. Kluijtmans16, Alexander Asamoah17, Emma Buckley18, Isaque Qureshi18, Godfrey T. Gillett19, Ole H. Larsen20, Niels Gregersen11, Toshiyuki Fukao4,21, Hideo Sasai4, Simon Olpin22, Holger Prokisch2,3, Rikke K. J. Olsen11

1Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; 2Institute of Neurogenomics, Helmholtz Zentrum München, Germany; 3Institute of Human Genetics, School of Medicine, Technical University Munich, München, Germany.; 4Department of Pediatrics, Graduate School of Medicine, Gifu University Hospital, Gifu, Japan.; 5Department of Informatics, Technical University of Munich, Garching, Germany.; 6Department of Biochemical Genetics, St James's University Hospital, Leeds, UK.; 7Department of Pediatrics, Sheffield Children's Hospital, Sheffield, UK.; 8Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel.; 9Department of Inborn Errors of Metabolism and Paediatrics, The Institute of Mother and Child, Warsaw, Poland.; 10Department of Pediatrics, Hannover Medical School, Hannover, Germany.; 11Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark.; 12Center for Inherited Metabolic Disorders, Guy’s & St Thomas’ Hospital NHS Foundation Trust, London, UK.; 13University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany.; 14Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.; 15Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA; 16Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.; 17UofL Physicians Novak Center for Children's Health, Louisville, USA.; 18Nottingham Children’s Hospital, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK; 19Sheffield Teaching Hospitals NHS Trust, University of Sheffield, Sheffield, UK; 20Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.; 21Clinical Genetics Center, Gifu University Hospital, Gifu, Japan.; 22Department of Clinical Chemistry, Sheffield Children’s Hospital, Sheffield, UK.

Bibliography
First and shared first (3):
Mosegaard S*, Dipace G*, Bross P, Carlsen J, Gregersen N, Olsen RKJ. 2020. ”Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism”. International Journal of Molecular Sciences;21(11):3847. doi: 10.3390/ijms21113847.

Mosegaard S*, Bruun GH*, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. 2017. “An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency”. Molecular Genetics and Metabolism;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014.

Olsen RKJ*, Koňaříková E*, Giancaspero TA*, Mosegaard S*, Boczonadi V*, Mataković L*, ….. Barile M, Prokisch H. 2016. ”Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency”. American Journal of Human Genetics;98(6):1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

Co-author (5):

V.A. Yépez, M. Gusic, R. Kopajtich, C. Mertes, N.H. Smith, C.L. Alston, R. Ban, S. Beblo, R. Berutti, H. Blessing, E. Ciara, F. Distelmaier, P. Freisinger, J. Häberle, S.J. Hayflick, M. Hempel, Y.S. Itkis, Y. Kishita, T. Klopstock, T.D. Krylova, C. Lamperti, D. Lenz, C. Makowski, S. Mosegaard, M.F. Müller, G. Muñoz-Pujol, A. Nadel, A. Ohtake, Y. Okazaki, E. Procopio, T. Schwarzmayr, J. Smet, C. Staufner, S.L. Stenton, T.M. Strom, C. Terrile, F. Tort, R. Van Coster, A. Vanlander, M. Wagner, M. Xu, F. Fang, D. Ghezzi, J.A. Mayr, D. Piekutowska-Abramczuk, A. Ribes, A. Rötig, R.W. Taylor, S.B. Wortmann, K. Murayama, T. Meitinger, J. Gagneur, H. Prokisch, Clinical implementation of RNA sequencing for Mendelian disease diagnostics, Genome Med. 14 (2022) 38. https://doi.org/10.1186/s13073-022-01019-9.

Fogh S, Dipace G, Bie A, Veiga-da-Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. “Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria?” J Inherit Metab Dis. 2021 Sep;44(5):1215-1225. doi: 10.1002/jimd.12394.

Muru K., Reinson K., Künnapas K., Lilleväli H., Nochi Z., Mosegaard S., Pajusalu S., Olsen R. and Õunap K. “FLAD1 Asso-ciated Multiple Acyl-CoA Dehydrogenase Deficiency Identified by Newborn Screening.”. Molecular Genetics & Genomic Medicine;7(9). doi: 10.1002/mgg3.915.


García-Villoria J., de Azua B., Tort F., Mosegaard S., Matalonga L., Ugarteburu O., Teixidó L., Olsen R. and Ribes A. “FLAD1, a recently described gene associated to multiple acyl-CoA dehydrogenase deficiency (MADD) is mutated in a patient with myopathy, scoliosis and cataracts.”. Clinical Genetics;94(6):592-593. doi: 10.1111/cge.13452.

Auranen M., Paetau A., Piirilä P., Pohju A., Salmi T., Lamminen A., Thure H., Löfberg M., Mosegaard S., Olsen R., Tyni T. “FLAD1 gene mutation causes riboflavin responsive MADD disease”. Neuromuscular Disorders;27(6):581-584. doi: 10.1016/j.nmd.2017.03.003.


ID: 439
Clinical 1: from new genes to old and novel phenotypes

The Australian genomics mitochondrial flagship: a national program delivering mitochondrial diagnoses

David Thorburn1,2,3, Naomi Baker2,3, Shanti Balasubramaniam4, Stephanie Best5, Kaustuv Bhattacharya4, Kristen Boggs4, Sarah Borrie6, Drago Bratkovic6, Jeffrey Braithwaite5, Alessandra Bray4, Jo Burke7, David Coman8,9, Alison Compton1,2, Mark Cowley10, Martin Delatycki2,3, Michelle de Silva1,2,3, Carolyn Ellaway4, Michael Fahey11, Janice Fletcher12, Leah Frajman1,2, Ann Frazier1,2, Velimer Gayeskiv9, Roula Ghaoui12, Himanshu Goel13, Ilias Goranitis2, Daniella Hock2, Denise Howting14, Matilda Jackson6, Maina Kava15, Sarah King-SMith6, Nicole Lake1,16, Phillipa Lamont15,17, Joy Lee2,18, Janet Long5, Mandi MacShane15, Ellenore Martin4, Jim McGill8, Sean Murray19, Julie Panetta11, Liza Phillips20, Michael Quinn21, Rocio Rius1,2, Michael Ryan22, Nicholas Smith6, David Stroud1,2,3, Michel Tchan23, Melanie Tom21, Matthew Wallis7, Tyson Ware24, AnneMarie Welch1, Christine Wools11, Eunice Wu2, John Christodoulou1,2,3

1Murdoch Children's Research Institute, Melbourne, Australia; 2University of Melbourne, Melbourne, Australia; 3Victorian Clinical Genetics Services, Melbourne,; 4Sydney Children’s Hospitals Network, Westmead, Australia; 5Macquarie University, Sydney, Australia; 6Women’s and Children’s Hospital, Adelaide, Australia; 7Tasmanian Clinical Genetics Service, Hobart, Australia; 8Queensland Children’s Hospital, Brisbane, Australia; 9Wesley Hospital, Brisbane, Australia; 10Garvan Institute, Sydney, Australia; 11Royal Melbourne Hospital, Melbourne, Australia; 12Royal Adelaide Hospital, Adelaide, Australia; 13John Hunter Hospital, Newcastle, Australia; 14Harry Perkins Institute of Medical Research, Perth, Australia; 15Perth Children’s Hospital, Perth, Australia; 16Yale School of Medicine, New Haven, CT, USA; 17Royal Perth Hospital, Perth, Australia; 18Royal Children’s Hospital, Melbourne, Australia; 19Mito Foundation, Sydney, Australia; 20Mater Hospital, Brisbane, Australia; 21Genetic Health Queensland, Brisbane, Australia; 22Monash University, Melbourne, Australia; 23Westmead Hospital, Westmead, Australia; 24Royal Hobart Hospital, Hobart, Australia

Bibliography
Granata C, Caruana NJ, Botella J, Jamnick NA, Huynh K, Kuang J, Janssen HA, Reljic B, Mellett NA, Laskowski A, Stait TL, Frazier AE, Coughlan MT, Meikle PJ, Thorburn DR, Stroud DA and Bishop DJ (2021) Training-induced bioenergetic improvement in human skeletal muscle is associated with non-stoichiometric changes in the mitochondrial proteome without reorganisation of respiratory chain content. Nat Commun 12:7056

Wu Y, Balasubramaniam S, Rius R, Thorburn DR, Christodoulou J & Goranitis I (2021) Genomic sequencing for the diagnosis of childhood mitochondrial disorders: a health economic evaluation. Eur J Hum Genet 30:577-586

Frazier AE, Compton AG, Kishita Y, Hock DH, Welch AME, Amarasekera SS, Rius R, Formosa LE, Imai-Okazaki A, Francis D, Wang N, Lake NJ, Tregoning S, Jabbari JS, Lucattini A, Nitta KR, Ohtake A, Murayama K, Amor DJ, McGillivray G, Wong FY, van der Knaap MS, Vermeulen RJ, Wiltshire EJ, Fletcher JM, Lewis B, Baynam G, Ellaway C, Balasubramaniam S, Bhattacharya K, Freckmann ML, Arbuckle S, Rodriguez M, Taft RJ, Sadedin S, Cowley MJ, Minoche AE, Calvo SE, Mootha VK, Ryan MT, Okazaki V, Stroud DA, Simons C, Christodoulou J and Thorburn DR (2021) Fatal Perinatal Mitochondrial Cardiac Failure Caused by Recurrent De Novo Duplications in the ATAD3 Locus. Med 2:49-73

Riley LG, Cowley MJ, Gayevskiy V, Minoche AE, Puttick C, Thorburn DR, Rius, Compton AG, Menezes MJ, Battacharya K, Coman D, Ellaway C, Alexander IE, Adams L, Kava M, Robinson J, Sue CM, Balasubramaniam S and Christodoulou J (2020) The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet Med 22:1254-1261


ID: 649
Clinical 1: from new genes to old and novel phenotypes

A new family with a case of severe early-onset muscle fatigue and a peculiar maternally inherited painful swelling in chewing muscles associated with homoplasmic m.15992A>T mutation in mitochondrial tRNAPro

Irene Bruno1, Elena Ghirigato2, Mirko Baglivo3, Francesca Terenzi2, Nadia Zanetti3, Massimo Zeviani1, Eleonora Lamantea3

1Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy; 2Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy; 3Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Bibliography
1. Auré K, Fayet G, Chicherin I, Rucheton B, Filaut S, Heckel AM, Eichler J, Caillon F, Péréon Y, Entelis N, Tarassov I, Lombès A. Homoplasmic mitochondrial tRNAPro mutation causing exercise-induced muscle swelling and fatigue. Neurol Genet. 2020 Jul 15;6(4):e480.


ID: 358
Clinical 1: from new genes to old and novel phenotypes

A novel MT-ATP6 variant associated with complicated ataxia in two unrelated Italian patients: case report and functional studies. 

Daniele Sala1, Silvia Marchet1, Lorenzo Nanetti1, Andrea Legati1, Caterina Mariotti1, Eleonora Lamantea1, Daniele Ghezzi1,2, Alessia Catania1, Costanza Lamperti1

1Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta; 2Department of Pathophysiology and Transplantation (DEPT), University of Milan



ID: 618
Clinical 1: from new genes to old and novel phenotypes

Biallelic pathogenic variants of PARS2 cause Developmental and Epileptic Encephalopathy with Spike-and-Wave Activation in Sleep

Laura Licchetta1, Carlotta Stipa1, Raffaella Minardi1, Margherita Santucci1,2, Lucia Di Giorgi2,3, Martina Soldà1, Valerio Carelli1,2, Francesca Bisulli1,2

1IRCCS, Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; 3Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy.



ID: 548
Clinical 1: from new genes to old and novel phenotypes

Novel KARS1 mutation causes early-onset lethal cardiomyopathy

Sara Casalini1, Silvia Buratti1, Chiara Panicucci1, Maria Elena Derchi1, Marco Scaglione1, Claudia Nesti2, Monica Traverso1, Francesca Madia1, Michela Di Nottia3, Chiara Fiorillo1, Valeria Capra1, Filippo Maria Santorelli2, Andrea Moscatelli1, Rosalba Carrozzo3, Claudio Bruno1

1IRCCS Istituto Giannina Gaslini, Genoa; 2IRCCS Fondazione Stella Maris, Calambrone (PI); 3IRCCS Ospedale Bambin Gesù, Rome



ID: 277
Clinical 1: from new genes to old and novel phenotypes

The ER-MITO (Emilia Romagna-Mitochondrial) project: prevalence and genetics of Chronic Progressive External Ophthalmoplegia (CPEO) in an Italian region

Maria Lucia Valentino1,2, Leonardo Caporali1, Chiara La Morgia1,2, Flavia Palombo1, Martina Romagnoli1, Cristina Fonti1, Alessandra Maresca1, Rocco Liguori1,2, Corrado Zenesini1, Roberto D'Alessandro1, Valerio Carelli1,2

1IRCCS Institute of Neurological Sciences of Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy

Bibliography
Primary mitochondrial myopathy: 12-month follow-up results of an Italian cohort. J Neurol. 2022; 269(12): 6555–6565.
Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion. Nucleic Acids Res. 2022 Aug 26; 50(15): 8749–8766
Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNALys. Mol Med. 2022; 28: 90. Published online 2022 Aug 3. doi: 10.1186/s10020-022-00519-z


ID: 504
Clinical 1: from new genes to old and novel phenotypes

UCHL1 missense and loss-of-function variants as an emerging cause of autosomal dominant optic atrophy (ADOA)

Claudio Fiorini1, Giada Capirossi1,2, Eleonora Pizzi1, Federico Sadun3, Maria Lucia Cascavilla4, Chiara La Morgia1,2, Marco Battista4, Piero Barboni4, Danara Ormanbekova1, Valentina Del Dotto2, Flavia Palombo1, Valerio Carelli1,2, Alessandra Maresca1, Leonardo Caporali2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; 3Ospedale Oftalmico Roma, Rome, Italy; 4Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy



ID: 345
Clinical 1: from new genes to old and novel phenotypes

Mitochondrial dysfunction in patients with early-onset UFM1-linked encephalopathy

Samira Ait El Mkadem - Saadi1,2, Cécile Rouzier1,2, Annabelle Chaussenot1,2, Konstantina Fragaki1,2, Sylvie Bannwarth1,2, Julien Neveu3, Aline Cano3, Brigitte Chabrol3, Véronique Paquis-Flucklinger1,2

1National Centre for Mitochondrial Diseases, Nice Teaching Hospital (CHU de Nice), Department of Medical Genetics, Nice, France; 2Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, France; 3APHM, La Timone Hospital, Department of Neuropediatrics, Marseille, France

Bibliography
UQCRC2-related mitochondrial complex III deficiency, about 7 patients. Bansept C, Gaignard P, Lebigot E, Eyer D, Delplancq G, Hoebeke C, Mazodier K, Ledoyen A, Rouzier C, Fragaki K, Ait-El-Mkadem Saadi S, Philippe C, Bruel AL, Faivre L, Feillet F, Abi Warde MT. Mitochondrion. 2022 Dec 9;68:138-144. doi: 10.1016/j.mito.2022.12.001.

ABEILLE: a novel method for ABerrant Expression Identification empLoying machine LEarning from RNA-sequencing data. Labory J, Le Bideau G, Pratella D, Yao JE, Ait-El-Mkadem Saadi S, Bannwarth S, El-Hami L, Paquis-Fluckinger V, Bottini S. Bioinformatics. 2022 Oct 14;38(20):4754-4761. doi: 10.1093/bioinformatics/btac603.

Splicing variants in NARS2 are associated with milder phenotypes and intra-familial variability. Ait-El-Mkadem Saadi S, Kaphan E, Morales Jaurrieta A, Fragaki K, Chaussenot A, Bannwarth S, Maues De Paula A, Paquis-Flucklinger V, Rouzier C. Eur J Med Genet. 2022 Dec;65(12):104643. doi: 10.1016/j.ejmg.2022.104643.

A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare Diseases. Pratella D, Ait-El-Mkadem Saadi S, Bannwarth S, Paquis-Fluckinger V, Bottini S. Int J Mol Sci. 2021 Oct 8;22(19):10891. doi: 10.3390/ijms221910891.

Improved detection of mitochondrial DNA instability in mitochondrial genome maintenance disorders. Bris C, Goudenège D, Desquiret-Dumas V, Gueguen N, Bannwarth S, Gaignard P, Rucheton B, Trimouille A, Allouche S, Rouzier C, Saadi S, Jardel C, Slama A, Barth M, Verny C, Spinazzi M, Cassereau J, Colin E, Armelle M, Pereon Y, Martin-Negrier ML, Paquis-Flucklinger V, Letournel F, Lenaers G, Bonneau D, Reynier P, Amati-Bonneau P, Procaccio V. Genet Med. 2021 Sep;23(9):1769-1778. doi: 10.1038/s41436-021-01206-w.

CHCHD10-Related Disorders. Ait-El-Mkadem Saadi S, Chaussenot A, Bannwarth S, Rouzier C, Paquis-Flucklinger V. 2015 Jul 1 [updated 2021 May 27]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2021.

Multi-Omics Approaches to Improve Mitochondrial Disease Diagnosis: Challenges, Advances, and Perspectives. Labory J, Fierville M, Ait-El-Mkadem S, Bannwarth S, Paquis-Flucklinger V, Bottini S. Front Mol Biosci. 2020 Nov 2;7:590842. doi: 10.3389/fmolb.2020.590842.

Single-fiber studies for assigning pathogenicity of eight mitochondrial DNA variants associated with mitochondrial diseases. Zereg E, Chaussenot A, Morel G, Bannwarth S, Sacconi S, Soriani MH, Attarian S, Cano A, Pouget J, Bellance R, Tranchant C, Lannes B, de Paula AM, Saadi Ait-El-Mkadem S, Chafino B, Berthet M, Fragaki K, Paquis-Flucklinger V, Rouzier C. Hum Mutat. 2020 Aug;41(8):1394-1406. doi: 10.1002/humu.24037.

NDUFS6 related Leigh syndrome: a case report and review of the literature. Rouzier C, Chaussenot A, Fragaki K, Serre V, Ait-El-Mkadem S, Richelme C, Paquis-Flucklinger V, Bannwarth S. J Hum Genet. 2019 Jul;64(7):637-645. doi: 10.1038/s10038-019-0594-4.

MT-CYB deletion in an encephalomyopathy with hyperintensity of middle cerebellar peduncles. Chaussenot A, Rouzier C, Fragaki K, Sacconi S, Ait-El-Mkadem S, Paquis-Flucklinger V, Bannwarth S. Neurol Genet. 2018 Sep 19;4(5):e268. doi: 10.1212/NXG.0000000000000268. eCollection 2018 Oct. PMID: 30294674

Targeted next generation sequencing with an extended gene panel does not impact variant detection in mitochondrial diseases. Plutino M, Chaussenot A, Rouzier C, Ait-El-Mkadem S, Fragaki K, Paquis-Flucklinger V, Bannwarth S. BMC Med Genet. 2018 Apr 7;19(1):57. doi: 10.1186/s12881-018-0568-y. PMID: 29625556


ID: 580
Clinical 1: from new genes to old and novel phenotypes

A novel dominant variant in the ISCU gene is associated with mitochondrial myopathy

Joanna Rusecka1,2, Dominika Szczęśniak2,3, Magdalena Kacprzak2, Damian Loska2, Kamila Czerska2, Agnieszka Sobczyńska-Tomaszewska2

1Maria Sklodowska-Curie, Medical Academy in Warsaw, Poland; 2MedGen Medical Center, Warsaw, Poland; 3Institute of Psychiatry and Neurology, Warsaw, Poland

Bibliography
1. Mochel F, Knight MA, Tong WH, Hernandez D, Ayyad K, Taivassalo T, Andersen PM, Singleton A, Rouault TA, Fischbeck KH, Haller RG. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet 2008;82:652–60.
2. Olsson A, Lind L, Thornell LE, Holmberg M. Myopathy with lactic acidosis is linked to chromosome 12q23.3-24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum Mol Genet 2008;17:1666–72.
3. Legati A., Reyes A., Ceccatelli Berti C., Stehling O., Marchet S., Lamperti C., Ferrari A., Robinson A.J., Mühlenhoff U., Lill R., et al. A Novel de Novo Dominant Mutation in ISCU Associated with Mitochondrial Myopathy. J. Med. Genet. 2017;54:815–824.


ID: 499
Clinical 1: from new genes to old and novel phenotypes

Expanding the spectrum of clinical presentations associated with COA8 pathogenic

Sara Antognozzi1, Magi Meneri1,2, Francesca Magri1, Manuela Garbellini1, Sabrina Salani1, Francesco Fortunato2, Michela Ripolone1, Simona Zanotti1, Patrizia Ciscato1, Monica Sciacco1, Stefania Corti1,2, Giacomo Pietro Comi1,2, Dario Ronchi2

1IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; 2Dino Ferrari Center, University of Milan, Milan, Italy



ID: 332
Clinical 1: from new genes to old and novel phenotypes

A novel mitochondrial DNA variant, m.14430A>C, in MT-ND6 as the likely cause of Leigh syndrome with mitochondrial complex I deficiency.

Surita Meldau1,2, Gillian T M Riordan1,3, Sally Ackermann4, Sharika Raga1,3,6, Careni Spencer1,5, George F Van der Watt1,2, Kashief Khan2, Francois H Van der Westhuizen7

1University of Cape Town, Cape Town, South Africa; 2National Health Laboratory Sevices, South Africa; 3Red Cross War Memorial Children's Hospital, Cape Town, South Africa; 4Constantiaberg Mediclinic, Cape Town, South Africa; 5Grootte Schuur Hospital, Cape Town, South Africa; 6Neuroscience Institute, University of Cape Town, Cape Town, South Africa; 7Human Metabolomics, North-West University, Potchefstroom, South Africa

Bibliography
Meldau S, Owen EP, Khan K, Riordan GT. “Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings.” J Clin Pathol. 2022 [https://doi.org/10.1136/jclinpath-2020-207026]

A.C. Muller-Nedebock, S. Meldau, C. Lombard, S. Abrahams, F.H. van der Westhuizen, S. Bardien, Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson's disease Parkinsonism Relat Disord 101 (2022) 1-5. DOI: 10.1016/j.parkreldis.2022.06.003

Meldau S, Fratter C, Bhengu LN, et al. Pitfalls of relying on genetic testing only to diagnose inherited metabolic disorders in non-western populations - 5 cases of pyruvate dehydrogenase deficiency from South Africa. Mol Genet Metab Rep 2020;24:100629 doi: 10.1016/j.ymgmr.2020.100629.

Roberts L, Julius S, Dawlat S, Yildiz S, Rebello G, Meldau S, Pillay K, Esterhuizen A, Vorster A, Benefeld G, Da Rocha J, Beighton P, Sellars SL, Thandrayen K, Pettifor JM, Ramesar RS. Renal dysfunction, rod-cone dystrophy, and sensorineural hearing loss caused by a mutation in RRM2B. Hum Mutat 2020 doi: 10.1002/humu.24094

Meldau, S., De Lacy R, Riordan G, Goddard L, Pillay K, Fieggen K, Marais D, Van der Watt G, “Identification of a single MPV17 nonsense-associated altered splice variant in 24 South African infants with mitochondrial neurohepatopathy.” Clin Genet, 2018 [PMID:29318572 DOI:10.1111/cge.13208]

O’Keefe, H., Queen, R.A., Meldau, S., Lord, P., Elson, J.L. (2018) “Haplogroup context is less important in the penetrance of Mitochondrial DNA complex I mutations compared to mt-tRNA mutations.” J Mol Evol 86:395-403.

Ng, Y. S., Lax, N. Z., Maddison, P., Alston, C. L., Blakely, E. L., Hepplewhite, P. D., Riordan, G., Meldau, S., Chinnery, P. F., Pierre, G., Chronopoulou, E., Du, A., Hughes, I., Morris, A. A., Kamakari, S., Chrousos, G., Rodenburg, R. J., Saris, C. G. J., Feeney, C., Hardy, S. A., Sakakibara, T., Sudo, A., Okazaki, Y., Murayama, K., Mundy, H., Hanna, M. G., Ohtake, A., Schaefer, A. M., Champion, M. P., Turnbull, D. M., Taylor, R. W., Pitceathly, R. D. S., McFarland, R. and Gorman, G. S., MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. EBioMedicine 2018.

Meldau, S., G. Riordan, F. Van der Westhuizen, J. L. Elson, I. Smuts, M. S. Pepper and H. Soodyall (2016). "Could we offer mitochondrial donation or similar assisted reproductive technology to South African patients with mitochondrial DNA disease?" S Afr Med J 106(3): 234-236. (Invited editorial)

Van der Westhuizen, F. H., P. Z. Sinxadi, C. Dandara, I. Smuts, G. Riordan, S. Meldau, A. N. Malik, M. G. Sweeney, Y. Tsai, G. W. Towers, R. Louw, G. S. Gorman, B. A. Payne, H. Soodyall, M. S. Pepper and J. L. Elson (2015). "Understanding the Implications of Mitochondrial DNA Variation in the Health of Black Southern African Populations: The 2014 Workshop." Hum Mutat 36(5): 569-571.


ID: 379
Clinical 1: from new genes to old and novel phenotypes

Leigh syndrome and Fanconi renotubular syndrome are the main clinical phenotype due to mutations in NDUFAF6 gene.

Teresa Rizza1, Alessandra Torraco1, Michela Di Nottia1, Daniela Verrigni1, Anastasia Altobelli1, Diego Martinelli1, Daria Diodato1, Stephanie Efthymiou2, Carlo Dionisi-Vici1, Enrico Bertini1, Reza Maroofian2, Agnes Rotig3, Rosalba Carrozzo1

1Bambino Gesù Children Hospital, Italy; 2UCL Queen Square Institute of Neurology; 3Université Paris Descartes, Sorbonne Paris Cité



ID: 544
Clinical 1: from new genes to old and novel phenotypes

Mitochondrial encephalomyopathy associated with the m.618T>C in MT-TF

Aryane Silva Coutinho2, Tainara Zappia Tessaro1, Rodrigo Fonseca Vilanova1, Celia Harumi Tengan2

1Hospital Municipal Dr. José de Carvalho, Brazil; 2Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil



ID: 296
Clinical 1: from new genes to old and novel phenotypes

TWNK in Parkinson's disease: a Movement Disorder and Mitochondrial Disease Center perspective study

Marco Percetti1,2,3, Giulia Franco3,4, Edoardo Monfrini3,4, Leonardo Caporali5, Raffaella Minardi5, Chiara La Morgia5, Maria Lucia Valentino5,6, Rocco Liguori5,6, Ilaria Palmieri7, Donatella Ottaviani8, Maria Vizziello3, Dario Ronchi3, Federica Di Berardino9, Antoniangela Cocco10,11, Bertil Macao12, Maria Falkenberg12, Giacomo Pietro Comi3,4, Alberto Albanese11, Bruno Giometto8, Enza Maria Valente7,13, Valerio Carelli5,6, Alessio Di Fonzo3,4

1School of Medicine and Surgery and Milan Center for Neuroscience, University of Milan-Bicocca.; 2Foundation IRCCS San Gerardo dei Tintori, Monza; 3Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy; 4Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; 5IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; 6Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 7Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy; 8Neurology Unit, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy; 9Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Audiology Unit, Milan, Italy; 10University of Milan, Milan, Italy; 11Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Research Hospital, Milan, Italy; 12Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE 405 30 Gothenburg, Sweden; 13Department of Molecular Medicine, University of Pavia, Pavia, Italy.



ID: 394
Clinical 1: from new genes to old and novel phenotypes

Novel pathogenic MT-ND3 variant causing a particular MELAS phenotype

Lucile Riera-Navarro1, Cécile Rouzier1, Samira Saadi Ait-El-Mkadem1, Konstantina Fragaki1,2, Sylvie Bannwarth1,2, Pierre Thomas3, Luisa Villa4, Véronique Paquis Flucklinger1,2, Annabelle Chaussenot1

1CHU de Nice, France; 2Université Côte d'Azur, CNRS, INSERM, IRCAN; 3Service de Neurologie- Hôpital Pasteur 2, CHU de Nice; 4Centre de référence des Maladies neuromusculaires



ID: 474
Clinical 1: from new genes to old and novel phenotypes

Mitochondrial molecular genetic findings in the South African diagnostic setting

Surita Meldau1,2, Elizabeth Patricia Owen1,2, Kashief Khan2, Gillian Tracy Riordan3

1University of Cape Town, Cape Town, South Africa; 2National Health Laboratory Sevices, South Africa; 3Red Cross War Memorial Children's Hospital, Cape Town, South Africa

Bibliography
Meldau S, Owen EP, Khan K, Riordan GT. “Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings.” J Clin Pathol. 2022 [https://doi.org/10.1136/jclinpath-2020-207026]

A.C. Muller-Nedebock, S. Meldau, C. Lombard, S. Abrahams, F.H. van der Westhuizen, S. Bardien, Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson's disease Parkinsonism Relat Disord 101 (2022) 1-5. DOI: 10.1016/j.parkreldis.2022.06.003

Meldau S, Fratter C, Bhengu LN, et al. Pitfalls of relying on genetic testing only to diagnose inherited metabolic disorders in non-western populations - 5 cases of pyruvate dehydrogenase deficiency from South Africa. Mol Genet Metab Rep 2020;24:100629 doi: 10.1016/j.ymgmr.2020.100629.

Roberts L, Julius S, Dawlat S, Yildiz S, Rebello G, Meldau S, Pillay K, Esterhuizen A, Vorster A, Benefeld G, Da Rocha J, Beighton P, Sellars SL, Thandrayen K, Pettifor JM, Ramesar RS. Renal dysfunction, rod-cone dystrophy, and sensorineural hearing loss caused by a mutation in RRM2B. Hum Mutat 2020 doi: 10.1002/humu.24094

Meldau, S., De Lacy R, Riordan G, Goddard L, Pillay K, Fieggen K, Marais D, Van der Watt G, “Identification of a single MPV17 nonsense-associated altered splice variant in 24 South African infants with mitochondrial neurohepatopathy.” Clin Genet, 2018 [PMID:29318572 DOI:10.1111/cge.13208]

O’Keefe, H., Queen, R.A., Meldau, S., Lord, P., Elson, J.L. (2018) “Haplogroup context is less important in the penetrance of Mitochondrial DNA complex I mutations compared to mt-tRNA mutations.” J Mol Evol 86:395-403.

Ng, Y. S., Lax, N. Z., Maddison, P., Alston, C. L., Blakely, E. L., Hepplewhite, P. D., Riordan, G., Meldau, S., Chinnery, P. F., Pierre, G., Chronopoulou, E., Du, A., Hughes, I., Morris, A. A., Kamakari, S., Chrousos, G., Rodenburg, R. J., Saris, C. G. J., Feeney, C., Hardy, S. A., Sakakibara, T., Sudo, A., Okazaki, Y., Murayama, K., Mundy, H., Hanna, M. G., Ohtake, A., Schaefer, A. M., Champion, M. P., Turnbull, D. M., Taylor, R. W., Pitceathly, R. D. S., McFarland, R. and Gorman, G. S., MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. EBioMedicine 2018.

Meldau, S., G. Riordan, F. Van der Westhuizen, J. L. Elson, I. Smuts, M. S. Pepper and H. Soodyall (2016). "Could we offer mitochondrial donation or similar assisted reproductive technology to South African patients with mitochondrial DNA disease?" S Afr Med J 106(3): 234-236. (Invited editorial)

Van der Westhuizen, F. H., P. Z. Sinxadi, C. Dandara, I. Smuts, G. Riordan, S. Meldau, A. N. Malik, M. G. Sweeney, Y. Tsai, G. W. Towers, R. Louw, G. S. Gorman, B. A. Payne, H. Soodyall, M. S. Pepper and J. L. Elson (2015). "Understanding the Implications of Mitochondrial DNA Variation in the Health of Black Southern African Populations: The 2014 Workshop." Hum Mutat 36(5): 569-571.


ID: 183
Clinical 1: from new genes to old and novel phenotypes

Known genes, new genes and new phenotypes in inherited mitochondrial eye diseases

Neringa Jurkute1,2,3, Gavin Arno1,2,4, Patrick Yu-Wai-Man1,2,5,6, Andrew R Webster1,2

1Moorfields Eye Hospital NHS Foundation Trust, London, UK; 2Institute of Ophthalmology, University College London, London, UK; 3The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK; 4North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 5John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 6Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK

Bibliography
Jurkute N et al. Clinical utility gene card for: inherited optic neuropathies including next-generation sequencing-based approaches. Eur J Hum Genet. 2018. doi:10.1038/s41431-018-0235-y. PMID: 30143805.

Jurkute N et al. SSBP1 mutations in dominant optic atrophy with variable retinal degeneration. Ann Neurol. 2019 Sep;86(3):368-383. doi: 10.1002/ana.25550. Epub 2019 Jul 31. PMID: 31298765.

Jurkute N et al. SSBP1-Disease Update: Expanding the Genetic and Clinical Spectrum, Reporting Variable Penetrance and Confirming Recessive Inheritance. Invest Ophthalmol Vis Sci. 2021 Dec 1;62(15):12. doi: 10.1167/iovs.62.15.12. PMID: 34905022.

Jurkute N et al. Expanding the FDXR-Associated Disease Phenotype: Retinal Dystrophy Is a Recurrent Ocular Feature. Invest Ophthalmol Vis Sci. 2021 May 3;62(6):2. doi: 10.1167/iovs.62.6.2. PMID: 33938912.

Jurkute N et al. Whole Genome Sequencing Identifies a Partial Deletion of RTN4IP1 in a Patient With Isolated Optic Atrophy. J Neuroophthalmol. 2022 Apr 19. doi: 10.1097/WNO.0000000000001589. PMID: 35439212.

Jurkute N et al. Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model. Brain Commun. 2021 Jul 20;3(3):fcab162. doi: 10.1093/braincomms/fcab162. PMID: 34466801.

Jurkute N et al. Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype. NPJ Genom Med. 2022 Oct 20;7(1):60. doi: 10.1038/s41525-022-00330-z. PMID: 36266294; PMCID: PMC9581764.

Other publications available at: https://pubmed.ncbi.nlm.nih.gov/?term=jurkute.


ID: 652
Clinical 1: from new genes to old and novel phenotypes

LHON spectrum disorder: new phenotypes and genotypes

Marco Battista1, Leonardo Caporali2, Enrico Borrelli1, Giorgio Lari1, Alice Galzignato3, Claudio Fiorini2, Paolo Nucci4, Francesco Bandello1, Maria Lucia Cascavilla1, Valerio Carelli2,5, Piero Barboni1

1San Raffaele Hospital, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica (Bologna, Italy); 3Studio Oculistico d’Azeglio (Bologna, Italy); 4Department of Clinical Science and Community Health, University of Milan, (Milan, Italy); 5Unit of Neurology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna (Bologna, Italy)



ID: 218
Clinical 1: from new genes to old and novel phenotypes

Chronic asymmetric progressive external ophthalmoplegia without eyelid weakness

Jae Ho Jung

Seoul National University Hospital, Korea, Republic of (South Korea)



ID: 586
New technological developments and OMICS

Bayesian inference enables discovery of functional effects of heteroplasmic mitochondrial mutations in the developing brain

Aidan Scott Marshall, Yue Nie, Nick.S Jones, Patrick.F Chinnery

Imperial College London, United Kingdom



ID: 337
New technological developments and OMICS

Cell lineage-specific mitochondrial gene expression is established in the early embryo, prior to organ maturation

Stephen P. Burr1,2, Florian Klimm1,2,3, Angelos Glynos1,2, Malwina Prater1,2,4, James B. Stewart5,6, Patrick F. Chinnery1,2, Michele Frison1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 3Novo Nordisk Research Centre Oxford, Innovation Building, University of Oxford, Old Road Campus, Oxford, UK; 4Functional Genomics Centre, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK; 5Max Planck Institute for Biology of Ageing, Cologne, Germany; 6Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK

Bibliography
1. Burr et al., Cell, 2023, DOI: 10.1016/j.cell.2023.01.034


ID: 563
New technological developments and OMICS

Identifying mitochondrial methyltransferases using unbiased proteome-ligand profiling

Alissa Wilhalm1, David Moore1, Florian Rosenberger1, Anna Wedell2, Christoph Freyer1, Anna Wredenberg1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden, Sweden; 2Centre of Inherited metabolic diseases, Karolinska University Hospital, Stockholm, Sweden



ID: 185
New technological developments and OMICS

Engineering mitochondrial aminoacyl-tRNA synthetases as a tool to investigate mitochondrial protein synthesis

Christin A Albus, Ellyn N Willsher, Syeda Z Akthar, Robert N Lightowlers, Zofia MA Chrzanowska-Lightowlers

Newcastle University, United Kingdom

Bibliography
Albus CA, Berlinguer-Palmini R, Hewison C, McFarlane F, Savu EA, Lightowlers RN, Chrzanowska-Lightowlers ZM, Zorkau M. Mitochondrial Translation Occurs Preferentially in the Peri-Nuclear Mitochondrial Network of Cultured Human Cells. Biology (Basel). 2021 Oct 15; 10 (10):1050.

Zorkau M, Albus CA, Berlinguer-Palmini R, Chrzanowska-Lightowlers ZMA, Lightowlers RN. High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cells. Proc Natl Acad Sci U S A.2021 Feb 9; 118(6):e2008778118.


ID: 405
New technological developments and OMICS

Short-read NGS for the screening of structural and copy number alterations in mtDNA as powerful diagnostic tool.

Christiane Neuhofer1,2, Rossella Izzo3, Riccardo Berutti1,2, Martin Pavlov2, Eleonora Lamantea3, Elisabeth Graf1, Costanza Lamperti3, Thomas Klopstock4, Holger Prokisch1,2, Daniele Ghezzi3,5, Andrea Legati3

1Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, (Munich, Germany); 2Institute of Neurogenomics, Helmholtz Zentrum München (Neuherberg, Germany); 3Fondazione IRCCS Istituto Neurologico Carlo Besta (Milan, Italy); 4Department of Neurology, Friedrich-Baur-Institute, LMU Hospital, Ludwig Maximilians University (Munich, Germany); 5Department of Pathophysiology and Transplantation, University of Milan (Milan, Italy)



ID: 613
New technological developments and OMICS

Ethical dilemmas and diagnostic uplifts; primary mitochondrial disease the era of first line whole genome sequencing

William L. Macken1,2, Rachel L. Horton3,4, Michael G. Hanna1,2, Anneke M. Lucassen3,4, Robert D.S. Pitceathly1,2

1UCL Queen Square Institute of Neurology, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK.; 3Centre for Personalised Medicine, and Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; 4Clinical Ethics, Law and Society, Faculty of Medicine, University of Southampton, Southampton, UK

Bibliography
(1) Raymond, F. L., Horvath, R. & Chinnery, P. F. First-line genomic diagnosis of mitochondrial disorders. Nat. Rev. Genet. 19, 399–400 (2018).
(2) Macken, W. L., Vandrovcova, J., Hanna, M. G. & Pitceathly, R. D. S. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat. Rev. Neurol. 0123456789, (2021).
(3) Macken WL et al Mitochondrial DNA variants in genomic data: diagnostic uplifts and predictive implications. Nat Rev Genet. 2021 Sep;22(9):547-548.


ID: 506
New technological developments and OMICS

Analysis of mitochondrial metabolism using 13C-labeled mass isotopologue analysis and mass spectrometry as a new approach for the diagnostics of mitochondrial disorders

Liesbeth T. Wintjes1, Arno van Rooij1, Sacha Hendriks1, Coby M. Laarakkers1, Richard J.T. Rodenburg1,2

1Department of Genetics, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands.; 2Department of Pediatrics, Radboud Centre for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands

Bibliography
Barbosa-Gouveia S, Vázquez-Mosquera ME, Gonzalez-Vioque E, Hermida-Ameijeiras Á, Valverde LL, Armstrong-Moron J, Fons-Estupiña MDC, Wintjes LT, Kappen A, Rodenburg RJ, Couce ML. Characterization of a Novel Splicing Variant in Acylglycerol Kinase (AGK) Associated with Fatal Sengers Syndrome. Int J Mol Sci. 2021 Dec 15;22(24):13484. doi: 10.3390/ijms222413484. PMID: 34948281; PMCID: PMC8708263.
Wintjes LTM, Kava M, van den Brandt FA, van den Brand MAM, Lapina O, Bliksrud YT, Kulseth MA, Amundsen SS, Selberg TR, Ybema-Antoine M, Tutakhel OAZ, Greed L, Thorburn DR, Tangeraas T, Balasubramaniam S, Rodenburg RJT. A novel variant in COX16 causes cytochrome c oxidase deficiency, severe fatal neonatal lactic acidosis, encephalopathy, cardiomyopathy, and liver dysfunction. Hum Mutat. 2021 Feb;42(2):135-141. doi: 10.1002/humu.24137. Epub 2020 Nov 30. PMID: 33169484; PMCID: PMC7898715.


ID: 421
New technological developments and OMICS

Subcellular metabolomics: a pipeline for compartment-specific metabolic investigations in a mouse model of Leigh syndrome

Gunter van der Walt, Jason Elferink, Zander Lindeque, Shayne Mason, Roan Louw

North-West University, South Africa

Bibliography
Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R (2021) Cross‑comparison of systemic and tissue‑specific metabolomes in a mouse model of Leigh syndrome. Metabolomics. 17:101 (IF 4.290

Van der Walt G, Lindeque JZ, Mason S, Louw R (2021) Sub-cellular metabolomics contributes mitochondria-specific metabolic insights to a mouse model of Leigh syndrome. Metabolites 11, 658 (IF 4.932).

Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R (2021) Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. BBA Molecular Basis of Disease. 1867 (5) 166082 (IF 4.352).


ID: 480
New technological developments and OMICS

High‐content screening for modulators of mitochondria‐ER contact sites and identification of their protein targets

Tomas Knedlik1, Federica Dal Bello1, Marta Giacomello1,2

1Department of Biology, University of Padova, Italy; 2Department of Biomedical Sciences, University of Padova, Italy



ID: 617
New technological developments and OMICS

A novel Approach to assess the pathogenicity of mtDNA Variants

Omar Tutakhel, Frans van den Brandt, Kai Francke, Hatice Nur Ozhan, Frans Maas, Daan Panneman, Liesbeth Wintjes, Roel Smeets, Dirk Lefeber, Bert van den Heuvel, Richard J. Rodenburg

RadboudUMC, Translational Metabolic Laboratory, Dept of Pediatrics, Nijmegen, The Netherlands



ID: 508
New technological developments and OMICS

At the core of the apoptotic foci

Hector Flores-Romero, Aida Peña Blanco, Lisa Hohorst, Jonas Aufdermauer, Shashank Dadsena, Cristiana Zollo, Rodrigo Cuevas-Arenas, Ana J. Garcia-Saez.

CECAD, Germany



ID: 167
New technological developments and OMICS

Clinical utility of ultra-rapid genomic testing for infants and children with a suspected mitochondrial disorder

John Christodoulou1,2,3,4, Sophie Bouffler5, Chirag Patel6, Sarah Sandaradura4,7, Meredith Wilson4,7,8, Jason Pinner8,9, Matthew Hunter10,11, Christopher Barnett12,13,14, Mathew Wallis15,16, Benjamin Kamien17, Tiong Tan1,2,3, Mary-Louise Freckmann18, Karin Kassahn13,14, Tony Roscioli19,20,21, Alison Compton1,2,3, David Thorburn1,2,3, Sebastian Lunke1,2,3,5, Zornitza Stark1,2,3,5

1Murdoch Children's Research Institute, Melbourne, Australia; 2University of Melbourne, Melbourne, Australia; 3Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; 4University of Sydney, Sydney, Australia; 5Australian Genomics, Melbourne, Australia; 6Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia; 7Sydney Children’s Hospitals Network – Westmead, Sydney, Australia; 8Sydney Children’s Hospitals Network – Randwick, Sydney, Australia; 9University of New South Wales, Sydney, Australia; 10Monash Genetics, Monash Health, Melbourne, Australia; 11Department of Paediatrics, Monash University, Melbourne, Australia; 12Paediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, North Adelaide, Australia; 13Adelaide Medical School, The University of Adelaide, Adelaide, Australia; 14Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; 15Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; 16School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; 17Genetic Services of Western Australia, Perth, Australia; 18Department of Clinical Genetics, The Canberra Hospital, Canberra, Australia; 19Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; 20Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia; 21Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, UNSW, Sydney, Australia

Bibliography
1.Van Bergen, N.J., Walvekar, A.S., Linster, C.L., Christodoulou, J. Reply: Niacin therapy improves outcome and normalizes metabolic abnormalities in an NAXD-deficient patient. Editorial in Brain accepted 3 June 2022, 145 (5); e41-e42, doi: https://doi.org/10.1093/brain/awac066. PMID 35254397
2.Horton, A., Hong, K.M., Pandithan, D., Allen, M., Killick, C., Goergen, S., Springer, A., Phelan, D., Marty, M., Halligan, R., Lee, J., Pitt, J., Chong, B., Christodoulou, J., Lunke, S., Stark, Z., Fahey, M. Ethylmalonic encephalopathy masquerading as meningococcemia. Cold Spring Harb Mol Case Stud 2022: 8 (2); a006193.
3.Stephenson, S.E.M., Costain, G., Silk, M., Nguyen T.B., Alhuzaimi, D.E., Blok. L., Dong, X., Pais, L., Dowling, J.J., Walker, S., Ambergey, K., Hayeems, R.Z., Roday L.H., Lynch, S., Gupta, A., Rasmussen, K.J., Schimmenti, L., Klee, E.W., Niu, Z., Agre, K.E., Chilton, I., Politi, A., Chung, W.K., Au, P.Y.B., Griffith, C., Racobaldo, M., Raas-Rothschild, A., Ben Zeev, B., Barel, O., Moutton, O., Morice-Picard, F., Carmignac, V., Marle, N., Devinsky, O., Stimach, C., Wechsler, S.B., Hainline, B.E., Sapp, K., Willems, M., Bruel, A., Buckley, M., Dias, K-R., Evans, C-A., Roscioli, T., Sachdev, R., Lindsey-Temple, S., Zhu, Y., Baer, J.J., Scheffer, I., Gardiner, F., Schneider, A.L., Muir, A.M., Mefford, H.C., Torti, E., Isidor, B., Nizon, M., Thomas, B., Piton, A., Marcelis, C., Kato, K., Koyama, N., Ogi, T., Richmond, C., Lim, S.C., Amor, D.J., Boyce, J., Morgan, A., Hildebrand, M., Kaspi, A., Bahlo, M., Sadedin, S., Ascher, D.B., Schenck, A., White, S.M., Lockhart, P.J., Christodoulou, J., Tan, T.Y. Germline variants in tumour suppressor FBXW7 lead to impaired ubiquitination and a novel neurodevelopmental syndrome. Amer J Hum Genet 2022: 109 (4); 601-617.
4.Akesson, L.S., Rius, R., Brown, N.J., Rosenbaum, J., Donoghue, S., Stormon, M., Borador, E., Guo, Y., Hakonarson, H., Compton, A.G., Thorburn, D.R., Amarasekera, S., Marum, J., Monaco, A., Lee, C., Chong, B., Lunke, S., Stark Z, Christodoulou, J. Distinct diagnostic trajectories in NBAS-associated acute liver failure highlights the need for timely functional studies. J Inher Metab Rep 2022: 63 (3); 240-249.
5.Steinkellner, H., Kempaiah, P., Beribisky, A.V., Pferschy, A., Etzler, J., Huber, A., Sarne, V., Neuhous, W., Kuttke, M., Bauer, J., Arunachalam, J.P., Christodoulou, J., Dressel, R., Mildner, A., Prinz, M., Laccone, F. Protein therapy for Rett Syndrome. TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett Syndrome. Int J Biol Macromol 1 June 2022: 209 (Part A); 973-983.

6.Beribisky, A.V., Steinkellner, H., Geislberger, S., Huber, A., Sarne, V., Christodoulou, J., Laccone, F. Expression, purification, characterization and cellular uptake of MeCP2 variants. Protein J. 2022: 41 (2); 345-359.

7.Davis R. L., Kumar, K.R., Puttick, C., Liang, C., Ahmad, K., Edema-Hildebrand, F., Park, J-S., Minoche, A., Gayevskiy, V., Mallawaarachchi, A., Christodoulou, J., Schofield, D., Dinger, M., Cowley, M., and Sue, C. Use of whole genome sequencing for mitochondrial disease diagnosis. Neurology. 2022: 99(7):e730-e742.
8.Karaa, A., MacMullen, L.E., Campbell, J.C., Christodoulou, J., Cohen, B.H., Klopstock, T., Koga, Y., Lamperti, C., van Maanen, R., McFarland, R., Parikh, S., Rahman, S., Scaglia, F., Sherman A., Yeske, P., Falk, M.J. Community consensus guidelines to support FAIR data sharing standards for clinical research studies in primary mitochondrial disease. Adv Genet 2022: 3(1):2100047. doi: 10.1002/ggn2.202100047.
9.Andzelm, M.M., Balasubramaniam, S., Yang, E., Compton, A.G., Millington, K., Zhu, J., Anselm, I., Rodan, L.H., Thorburn, D.R., Christodoulou, J., Srivastava, S. Expansion of the clinical and neuroimaging spectrum associated with NDUFS8-related disorder. J Inher Metab Dis Reports 2022: 63 (5); 391-399.
10.Van Bergen, N.J., Walvekar, A.S., Patraskaki, M., Sikora, T., Linster, C.L., Christodoulou, J. Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency. J Inher Metab Dis. 2022: 45(6); 1028-1038., doi: 10.1002/jimd.12541
11.Van Bergen, N., Massey, S., Quigley, A., Rollo, B., Harris, A., Kapsa, R., Christodoulou J. CDKL5 Deficiency Disorder: Molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans. 2022: 50(4); 1207-1224
12.Levy, M., Relator, R., McConkey, H., Prankeviciene, E., Kerkhof, J., Barat-Houari, M., Bargiacchi, S., Biamino, E., Bralo M.P., Cappuccio, G., Ciolfi, A., Clarke, A., DuPont, B.R., Elting, M.W., Faivre, L., Fee, T., Fletcher, R.S., Florian, C., Foroutan, A., Friez, M. J., Gervasini, C., Haghshenas, S., Hilton, B.A., Jenkins, Z., Kaur, S., Lewis, S., Louie, R.J., Maitz, S., Milani, D., Morgan, A.T., Oegema, R., Ostergaard, E., Pallares, N.R., Piccione, M., Simone, P., Plomp, A.S., Poulton, C., Reilly, J., Rius, R., Robertson, S., Rooney, K., Rousseau, J., Santen, G.W.E., Santos-Simarro, R., Schijns, J., Squeo, G.M. St John, M., Thauvin-Robinet, C., Traficante, G., van der Sluijs, P.J., Vergano, S.A., Vos N., Walden, K.K., Azmanov, D., Balci, T., Banka, S., Gecz, J., Henneman, P., Lee, J.A., Mannens, M.M.A.M., Roscioli, T., Siu, V., Amor, D.J., Baynam, G., Bend, E.G., Boycott, K., Brunetti-Pierri, N., Campeau, P.M., Christodoulou, J., Dyment, D., Esber, N. Fahrner, J.A., Fleming M.D., Genevieve, D., Kerrnohan, K.D., McNeill, A., Menke, L.A., Merla, G., Prontera, P., Rockman-Greenberg, C., Schwartz, C., Skinner, S.A., Stevenson, R.E., Vitobello, A., Tartaglia, M., Tedder, M.L., Alders, M., Sadikovic, B. Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders. Human Mutation. 2022: 43(11); 1609-1628.
13.Rius R., Bennett, N.K., Bhattacharya, K., Riley. L.G., Yüksel, Z., Formosa. L.E., Compton, A.G., Dale, R.C., Cowley, M.J., Gayevskiy, V., Al Tala, S., Almehery, A.A., Ryan, M.T., Thorburn, D.R., Nakamura, K., Christodoulou, J. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Human Mut. 2022: 43 (12); 1970-1978.
14.Long, J., Best, S., Nic Giolla Easpaig, B., Hatem, S., Fehlberg, Z., Christodoulou, J., Braithwaite, J. Needs of people with rare diseases that can be supported by electronic resources: a scoping review. Published by BMJ Open 2022 Sep 1;12(9):e060394. doi: 10.1136/bmjopen-2021-060394.
15.Temple, S.E.L., Ho, G., Bennetts, B., Gayagay, T., Boggs, K., Buckley, M., Roscioli, T., Zhu, Y., Mowat, D., Christodoulou, J., Schultz, A., Vidic, N., Lunke, S., Stark, Z., Jaffe,A. The role of exome sequencing in interstitial or diffuse lung disease of childhood. Orphanet J Rare Dis. 2022: 17(1); 350
16.Tudini E, Andrews J, Lawrence D, King-Smith SL, Baker N, Baxter L, Beilby J, Bennetts B, Beshay V, Black M, Boughtwood TF, Brion K, Cheong PL, Christie M, Christodoulou J, Chong B, Cox K, Davis MR, Dejong L, Dinger ME, Doig KD, Douglas E, Dubowsky A, Ellul M, Fellowes A, Fisk K, Fortuno C, Friend K, Gallagher RL, Gao S, Hackett E, Hadler J, Hipwell M, Ho G, Hollway G, Hooper AJ, Kassahn K, Krishnaraj R, Lau C, Le H, Leong HS, Lundie B, Lunke S, Marty A, McPhillips M, Nguyen LT, Nones K, Palmer K, Pearson JV, Quinn MCJ, Rawlings LH, Sadedin S, Sanchez L, Schreiber AW, Sigalas E, Simsek A, Soubrier J, Stark Z, Thompson BA, James U J, Vakulin CG, Wells AV,Wise CA, Woods R, Ziolkowski A, Brion M-J, Scott HS,Thorne NP, Spurdle AB, on behalf of the Shariant Consortium. Shariant platform: enabling evidence sharing across Australian clinical genetic testing laboratories to support variant interpretation. Amer J Human Genet 2022: 109(11); 1960-197.
17.Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Brennenstuhl H, Pechlaner A, Baker JJ, Morrison K, Marina AD, Khan A, Burnyte B, Coman D, Soler-Alfonso C, Scaglia F, Ciara E, M Das AM, Teles EL, Nicastro E, Distelmaier F, Gaignard P, Gonzales E, Baric I, Margolis MG, Christodoulou J, Thorburn DR, Murayama K, Darin N, Pennisi A, Schiff M, Rötig A, Ganetzky RD, Santer R, Konstantopoulou V, Fang W, Wang J-S, McFarland R, Taylor RW, Shagrani MA, Alkuraya FS, Braverman N, Ersoy M Kose M, Feichtinger R, Mayr J, Weghuber D, Wortmann S. Genotypic diversity and phenotypic spectrum of infantile liver failure due to variants in TRMU. Genet Med accepted 26th September 2022.
18.Kline BL, Sylvie Jaillard S, Bell KM, Bakhshalizadeh S, 1 Robevska G, van den Bergen J, Dulon J, Ayers KL, Christodoulou J, Tchan MC, Touraine P, Sinclair AH, Tucker EJ. Integral role of the mitochondrial ribosome in supporting ovarian function: MRPS7 variants in syndromic premature ovarian insufficiency. Genes, accepted 11th November 2022.
19.Neyroud, A.S., Rudinger-Thirion, J., Frugier, M., Riley, L.G., Bidet, M., Akloul, L., Gilot, D., Christodoulou, J., Ravel, C., Sinclair, A.H., Belaud-Rotureau, M-A., Tucker, E.J., Jaillard, S. LARS2 variants can present as isolated premature ovarian insufficiency in the absence of overt hearing loss. Eur J Human Genet, 1 December 2022, Online ahead of print doi: 10.1038/s41431-022-01252-1


ID: 511
New technological developments and OMICS

Contribution of RNA-seq to diagnosis and determination of functional impact of candidate variants in 45 patients suspected of mitochondrial disease.

Gerard Muñoz-Pujol1, Olatz Ugarteburu1, Blai Morales1, Judit García-Villoria1, Laura Gort1, Vicente A. Yépez2, Julien Gagneur2, Mirjana Gusic2, Holger Prokisch2, Marc Dabad3, Anna Esteve-Codina3, Antonia Ribes1, Frederic Tort1

1Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain; 2Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; 3CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain



ID: 560
New technological developments and OMICS

Dynamics of NAD and glutathione metabolites in blood during aging, in disease and upon supplementation with NAD-booster

Liliya Euro1,2, Kimmo Haimilahti1, Sonja Jansson1,2, Jana Buzkova1,2, Anu Suomalainen-Wartiovaara1,3

1University of Helsinki, Finland; 2NADMED Ltd, Finland; 3HUS Diagnostic Centre, Finland



ID: 446
New technological developments and OMICS

Enzymatic assay for UDP-GlcNAc and its application in the parallel assessment of substrate availability and protein O-GlcNAcylation

Marc Sunden1,2, Divya Upadhyay1,2, Rishi Banerjee1,2, Nina Sipari3, Vineta Fellman1,2,4, Jukka Kallijarvi1,2, Janne Purhonen1,2

1Folkhalsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; 3Viikki Metabolomics Unit, University of Helsinki, Finland; 4Children’s Hospital, Helsinki University Hospital, Finland



ID: 307
New technological developments and OMICS

Genetic testing for mitochondrial disease: The United Kingdom best practice guidelines

Eleni Mavraki1,2, Robyn Labrum3, Kate Sergeant4, Charlotte L Alston1,2, Cathy Woodward3, Conrad Smith4, Charlotte V Y Knowles1,2, Yogen Patel3, Philip Hodsdon4, Jack P Baines1,2, Emma L Blakely1,2, James Polke3, Robert W Taylor1,2, Carl Fratter4

1NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 2Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 3Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; 4Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK

Bibliography
PMID: 36513735
PMID: 35700042
PMID: 34732400


ID: 432
New technological developments and OMICS

Identification of uncharacterized genes involved in mitochondrial OXPHOS function and integrity.

Marcos Javier Zamora Dorta, Sara Laine Menéndez, David Abia Holgado, Eduardo Balsa Martínez

Centro de Biología Molecular Severo Ochoa, Spain



ID: 388
New technological developments and OMICS

Investigating the role of mito-nuclear genetic variation in determining m.3243A>G variant heteroplasmy

Alia K. Saeed1, Róisín M. Boggan1, Imogen G. Franklin1, Charlotte L. Alston1,2, Emma L. Blakely1,2, Boriana Büchner3, Enrico Bugiardini4, Kevin Colclough5, Gráinne S. Gorman1, Catherine Feeney1, Michael G. Hanna4, Andrew T. Hattersley6, Thomas Klopstock3,7,8, Cornelia Kornblum9, Michelangelo Mancuso10, Yi Shiau Ng1, Kashyap A. Patel6, Robert D. S. Pitceathly4, Chiara Pizzamiglio4, Holger Prokisch11,12, Jochen Schäfer13, Andrew M. Schaefer1, Maggie H. Shepherd6, Annemarie Thaele14, Doug M. Turnbull1, Cathy E. Woodward15, Heather J. Cordell16, Robert McFarland1, Robert W. Taylor1,2, Gavin H. Hudson1, Sarah J. Pickett1

1Wellcome Centre for Mitochondrial Research and Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK; 2NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University (LMU Klinikum), Munich, Germany; 4Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 5Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK; 6Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; 7Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 8German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 9Department of Neurology, University Hospital Bonn, Bonn, Germany; 10Neurological Institute of Pisa, Italy; 11Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany; 12Institute of Neurogenomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; 13Department of Neurology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 14Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; 15Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London, UK; 16Population Health Sciences Institute, Newcastle University, UK



ID: 424
New technological developments and OMICS

Mitochondrial DNA depletion and deletion analysis using smMIPs

Maaike Brink1,2, Sanne van Kraaij1,2, Sanne Sweegers1,2, Roel Smeets1,2, Richard Rodenburg1,2,3

1Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands; 2Radboud Center for Mitochondrial Medicine (RCMM), Radboudumc, Nijmegen, The Netherlands; 3Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands



ID: 513
New technological developments and OMICS

Ultrastructure of mitochondria in 3D from volume electron microscopy

Chenhao Wang1,2, Leif Østergaard3,4, Stine Hasselholt3,4, Jon Sporring1,2

1Department of Computer Science, University of Copenhagen, Denmark; 2Center for Quantification of Imaging Data from MAX IV; 3Department of Clinical Medicine, Aarhus University, Denmark; 4Center of Functionally Integrative Neuroscience



ID: 304
New technological developments and OMICS

Visualizing ATP dynamics in living mice

Masamichi Yamamoto, Jungmi Choi

National Cerebral and Cardiovascular Center, Japan



ID: 184
New technological developments and OMICS

Applying sodium carbonate extraction mass spectrometry to investigate defects in the mitochondrial respiratory chain

David Robert Lindsay Robinson1, Daniella Hock1, Linden Muellner-Wong1,2, Roopingsam Kugapreethan1, Boris Reljic1,3, Elliot Surgenor3,4, Carlos Rodrigues1,5, Nikeisha Caruana1,6, David Stroud1,2

1Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; 2Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia; 3Department of Biochemistry and Molecular Biology, Monash University, Melbourne,Australia; 4The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; 5Baker Heart and Diabetes Institute, Melbourne, Australia; 6Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia

Bibliography
[1]Hock D, Robinson D and Stroud D (2020), “Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome”, Biochemical Journal, 477(21):4085-4132.
[2]Robinson D, Hock D, Muellner-Wong L, Kugapreethan R, Reljic B, Surgenor E, Rodrigues C, Caruana N and Stroud D (2022), “Applying Sodium Carbonate Extraction Mass Spectrometry to Investigate Defects in the Mitochondrial Respiratory Chain”, Front Cell Dev Biol, 10:786268


ID: 587
New technological developments and OMICS

Global analysis of protein methylation in the mitochondrial compartment of cancer cells: a proteomic approach

Ayusi Mondal1,2, Alessandro Vai1,2, Silvia Pedretti1,3, Marianna Maniaci1, Nico Mitro1,3, Tiziana Bonaldi1,4

1Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS Milano, Italy; 2European School of Molecular Medicine (SEMM); 3Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; 4Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy

Bibliography
[1]S.C. Larsen, K.B. Sylvestersen, A. Mund, D. Lyon, M. Mullari, M. V. Madsen, J.A. Daniel, L.J. Jensen, M.L. Nielsen, Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells, Sci. Signal. 9 (2016). https://doi.org/10.1126/SCISIGNAL.AAF7329/SUPPL_FILE/9_RS9_TABLES_S1_TO_S5.ZIP.
[2]J.M. Małecki, E. Davydova, P. Falnes, Protein methylation in mitochondria, J. Biol. Chem. 298 (2022). https://doi.org/10.1016/J.JBC.2022.101791.
[3]M. Maniaci, F.L. Boffo, E. Massignani, T. Bonaldi, Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach, Front. Mol. Biosci. 8 (2021) 818. https://doi.org/10.3389/FMOLB.2021.688973/BIBTEX.
[4]W. juan Li, Y. hui He, J. jing Yang, G. sheng Hu, Y. an Lin, T. Ran, B. ling Peng, B. lan Xie, M. feng Huang, X. Gao, H. hua Huang, H.H. Zhu, F. Ye, W. Liu, Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth, Nat. Commun. 2021 121. 12 (2021) 1–20. https://doi.org/10.1038/s41467-021-21963-1.
[5]V. Spadotto, R. Giambruno, E. Massignani, M. Mihailovich, M. Maniaci, F. Patuzzo, F. Ghini, F. Nicassio, T. Bonaldi, PRMT1-mediated methylation of the microprocessor-associated proteins regulates microRNA biogenesis, Nucleic Acids Res. 48 (2020) 96–115. https://doi.org/10.1093/NAR/GKZ1051.
[6]D. Musiani, R. Giambruno, E. Massignani, M.R. Ippolito, M. Maniaci, S. Jammula, D. Manganaro, A. Cuomo, L. Nicosia, D. Pasini, T. Bonaldi, PRMT1 Is Recruited via DNA-PK to Chromatin Where It Sustains the Senescence-Associated Secretory Phenotype in Response to Cisplatin, Cell Rep. 30 (2020) 1208-1222.e9. https://doi.org/10.1016/J.CELREP.2019.12.061/ATTACHMENT/17FA0EA5-8E2C-4786-AFA1-3008203E27DB/MMC5.XLSX.
[7]Q. Wu, M. Schapira, C.H. Arrowsmith, D. Barsyte-Lovejoy, Protein arginine methylation: from enigmatic functions to therapeutic targeting, Nat. Rev. Drug Discov. 20 (2021). https://doi.org/10.1038/s41573-021-00159-8.
[8]M. Bremang, A. Cuomo, A.M. Agresta, M. Stugiewicz, V. Spadotto, T. Bonaldi, Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome, Mol. Biosyst. 9 (2013) 2231–2247. https://doi.org/10.1039/C3MB00009E.
[9]E. Massignani, A. Cuomo, D. Musiani, S.G. Jammula, G. Pavesi, T. Bonaldi, hmSEEKER: Identification of hmSILAC Doublets in MaxQuant Output Data, Proteomics. 19 (2019). https://doi.org/10.1002/PMIC.201800300.
[10]E. Massignani, M. Maniaci, T. Bonaldi, Heavy Methyl SILAC Metabolic Labeling of Human Cell Lines for High-Confidence Identification of R/K-Methylated Peptides by High-Resolution Mass Spectrometry, Methods Mol. Biol. 2603 (2023) 173–186. https://doi.org/10.1007/978-1-0716-2863-8_14.


ID: 344
New technological developments and OMICS

MITODIAG : The French network of diagnostic laboratories for mitochondrial diseases

Cécile Rouzier1, Emmanuelle Pion2, Céline Bris3, Patrizia Bonneau3, Valérie Desquiret3, Jean-Paul Bonnefont4, Pauline Gaignard5, Elise Lebigot5, Samira Ait-El-Mkadem Saadi1, Sylvie Bannwarth1, Konstantina Fragaki1, Benoit Rucheton6, Marie-Laure Martin-Negrier7, Aurélien Trimouille7, Cécile Acquaviva-Bourdain8, Cécile Pagan8, Anne-Sophie Lebre9, Gaelle Hardy10, Stéphane Allouche11, Pascal Reynier3, Mireille Cossee12, Sharam Attarian13, Véronique Paquis-Flucklinger1, Vincent Procaccio3

1Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Cote d’Azur, CNRS, INSERM, IRCAN, Nice; 2Filnemus, laboratoire de génétique moléculaire, CHU Montpellier; 3Service de génétique, Institut de Biologie en santé, Centre National de référence Maladies Neurodégénératives et Mitochondriales, CHU Angers; 4Fédération de génétique médicale, Service de génétique moléculaire du GH Necker-enfants malades, Hôpital Necker-Enfants Malades, Paris; 5Laboratoire de Biochimie, Pôle BPP, CHU Paris Sud, Hôpital Bicêtre-le Kremlin Bicêtre, Paris; 6Pôle de biologie et pathologie, CHU Bordeaux; 7Unité fonctionnelle d’histologie moléculaire, Service de pathologie, CHU Bordeaux-GU Pellegrin, Bordeaux; 8Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie Est, CHU Lyon HCL, GH Est, Lyon; 9Laboratoire de génétique, Hématologie et Immunologie, CHU Reims; 10Laboratoire de génétique moléculaire: maladies héréditaires et oncologie, Service de biochimie, biologie moléculaire et toxicologie environnementale, CHU Grenoble et des Alpes, Institut de biologie et pathologie, Grenoble; 11Service de biochimie, Pôle Biologie, Pharmacie et Hygiène, CHU Caen, Hôpital de la Côte de Nacre, Caen; 12Laboratoire de Génétique Moléculaire, CHU Montpellier, PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier; 13Filnemus, Assistance Publique Hôpitaux Marseille, Service de Neurologie, Hôpital La Timone, Marseille

Bibliography
Claire B, Pauline G, Elise L, Didier E, Geoffroy D, Célia H, Karin M, Anaïs L, Cécile R, Konstantina F, Saadi Samira AE, Christophe P, Ange-Line Christophe B, Laurence F, François F, Warde Marie-Thérèse A.UQCRC2-related mitochondrial complex III deficiency, about 7 patients. Mitochondrion. 2022 Dec 9:S1567-7249(22)00105-2. doi: 10.1016/j.mito.2022.12.001.
Ait-El-Mkadem Saadi S., Kaphan E., Jaurrieta A., Fragaki K., Chaussenot A., Bannwarth S., Maues De Paula A., Paquis-Flucklinger V., Rouzier C. Splicing variants in NARS2 are associated with milder phenotypes and intra-familial variability. Eur J Med Genet. 2022 Dec;65(12):104643. doi: 10.1016/j.ejmg.2022.104643. Epub 2022 Oct 14.
Bris C, Goudenège D, Desquiret-Dumas V, Gueguen N, Bannwarth S, Gaignard P, Rucheton B, Trimouille A, Allouche S, Rouzier C, Saadi S, Jardel C, Slama A, Barth M, Verny C, Spinazzi M, Cassereau J, Colin E, Armelle M, Pereon Y, Martin-Negrier ML, Paquis-Flucklinger V, Letournel F, Lenaers G, Bonneau D, Reynier P, Amati-Bonneau P, Procaccio V. Improved detection of mitochondrial DNA instability in mitochondrial genome maintenance disorders. Genet Med. 2021 Sep;23(9):1769-1778
Elamine Zereg, Annabelle Chaussenot, Godelieve Morel, Sylvie Bannwarth, Sabrina Sacconi , Marie-Hélène Soriani, Shahram Attarian, Aline Cano, Jean Pouget, Rémi Bellance, Christine Tranchant, Béatrice Lannes, André Maues de Paula, Samira Saadi Ait-El-Mkadem, Bernadette Chafino, Mathieu Berthet, Konstantina Fragaki, Véronique Paquis-Flucklinger, Cécile Rouzier. Single-fiber studies for assigning pathogenicity of eight mitochondrial DNA variants associated with mitochondrial diseases. Hum Mutat . 2020 Aug;41(8):1394-1406. doi: 10.1002/humu.24037. Epub 2020 Jun 12.


ID: 331
New technological developments and OMICS

Multiomic mitochondrial and metabolic screening reveals potential biomarkers in inclusion body myositis

Judith Cantó Santos1,2,3, Laura Valls Roca1,2,3, Ester Tobías1,2,3, Clara Oliva4, Francesc Josep García-García1,2,3, Mariona Guitart Mampel1,2,3, Félix Andújar Sánchez1,2,3, Laia Farré Tarrats1,2,3, Joan Padrosa1,2,3, Raquel Aránega1,2,3, Pedro J. Moreno Lozano1,2,3, José César Milisenda1,2,3, Rafael Artuch4, Josep M. Grau Junyent1,2,3, Glòria Garrabou1,2,3

1Hereditary Metabolic Diseases and Muscular Diseases Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; 2Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain; 3CIBERER— Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain; 4Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain



ID: 465
New technological developments and OMICS

Network analysis of protein-protein interactions identifies intermediate filaments as a novel mitochondrial dynamics related structure

Irene M.G.M. Hemel, Carlijn Steen, Michiel Adriaens, Mike Gerards

Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, The Netherlands



ID: 170
New technological developments and OMICS

Establishment of mitochondrial proline metabolic disorder patient-derived induced pluripotent stem cells as a new cellular model for aging associated disease study

Yu-Wen Huang, Tsung-Han Lee, Dar-Shong Lin

Mackay Memorial Hospital, Taiwan

Bibliography
Huang YW, Chiang MF, Ho CS, Hung PL, Hsu MH, Lee TH, Chu LJ, Liu H, Tang P, Victor Ng W*, Lin DS*. A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. Aging Dis 2018;9(6),1043-1057.


ID: 659
New technological developments and OMICS

Mitochondrial disorders unraveled by NGS technologies

Yulia Itkis1, Tatiana Krylova1, Natalia Pechatnikova2, Ekaterina Zakharova1

1Research centre for medical genetics, Russian Federation; 2Morozov's Moscow City Child Clinical Hospital, Moscow, Russia

Bibliography
Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106(1):135-59. doi: 10.1093/bmb/ldt017. Epub 2013 May 22. PMID: 23704099; PMCID: PMC3675899.
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018 Jun 23;391(10139):2560-2574. doi: 10.1016/S0140-6736(18)30727-X. Epub 2018 Jun 18. PMID: 29903433.
Legati A, Reyes A, Nasca A, Invernizzi F, Lamantea E, Tiranti V, Garavaglia B, Lamperti C, Ardissone A, Moroni I, Robinson A, Ghezzi D, Zeviani M. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. Biochim Biophys Acta. 2016 Aug;1857(8):1326-1335. doi: 10.1016
/j.bbabio.2016.02.022. Epub 2016 Mar 8. PMID: 26968897.


ID: 427
New technological developments and OMICS

Incorporation of exogenous mitochondria into cells and their effects on the cells

Hisashi Ohta1,2, Yosif El-Darawish1,2, Masae Takeda1,2, Takahiro Shibata1,2, Keiichi Sakakibara1,2, Rick Tsai1, Masashi Suganuma1

1LUCA Science, Japan; 2Biological Drug Development based DDS technology, Hokkaido Univ.

Bibliography
Tateno M., Enami, A., Fujinami K., Ohta H. Polymorphisms in Cha o 1 and Cha o 2, major allergens of Japanese cypress (Chamaecyparis obtuse) pollen from a restricted region in Japan. PLos One 16: e0261327, 2021
Fujimura T, Fujinami K, Ishikawa R, Tateno M, Tahara Y, Okumura Y, Ohta H, Miyazaki H, Taniguchi M. Recombinant Fusion Allergens, Cry j 1 and Cry j 2 from Japanese Cedar Pollen, Conjugated with Polyethylene Glycol Potentiate the Attenuation of Cry j 1-Specific IgE Production in Cry j 1-Sensitized Mice and Japanese Cedar Pollen Allergen-Sensitized Monkeys. Int Arch Allergy Immunol.;168:32-43, 2015


ID: 336
New technological developments and OMICS

Mitochondrial encapsulation technology for mitochondrial transplantation therapy

Yonghui Wang1,2, Oliver Koivisto1,2, Chang Liu1,2, Hongbo Zhang1,2

1Pharmaceutical Sciences Laboratory, Åbo Akademi University, Finland; 2Turku Bioscience Centre, University of Turku and Åbo Akademi University



ID: 130
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Inhibition of mtDNA transcription in liver reverses diet-induced obesity and hepatosteatosis in the mouse

Shan Jiang1, Taolin Yuan1, Laura Kremer1, Florian Schober2, Fynn Hansen2, Diana Rubalcava-Gracia1, Mara Mennuni1, Roberta Filograna1, David Alsina1, Jelena Misic1, Patrick Giavalisco3, Matthias Mann2, Nils-Göran Larsson1

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden; 2Max-Planck Institute of Biochemistry, Martinsried, Germany; 3Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany



ID: 126
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The mitochondrial phenotype of Leigh syndrome SURF1 mutant patient-derived fibroblasts and recovery using small molecules

Rachel M Hughes1, Laura M Ellis1, Naomi Hartopp1, Emily Mossman1, Gauri Bhosale2, Annachiara Gandini2, Alessandro Pristera2, Christopher Doe2, Scott P Allen1, Oliver Bandmann1, Laura Ferraiuolo1, Pamela J Shaw1, Heather J Mortiboys1

1Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom; 2Nanna Therapeutics, Cambridge, United Kingdom



ID: 133
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Knockout of Complex III subunit Uqcrh decreases respiratory capacity and impairs cardiac contractile function independent of mitochondrial ROS production

Nadine Spielmann1,9, Christina Schenkl2,9, Tímea Komlódi3,4, Patricia da Silva-Buttkus1, Estelle Heyne2, Jana Rohde1, Oana V. Amarie1, Birgit Rathkolb1,5,6, Erich Gnaiger3, Torsten Doenst2, Helmut Fuchs1, Valérie Gailus-Durner1, Martin Hrabě de Angelis1,6,7,9, Marten Szibor2,8,9

1Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Germany; 2Jena University Hospital, Friedrich-Schiller University of Jena, Germany; 3Oroboros Instruments, Innsbruck, Austria; 4Department of Biochemistry and Molecular Biology, Semmelweis University Budapest, Hungary; 5Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Germany; 6Member of German Center for Diabetes Research (DZD), Germany; 7Chair of Experimental Genetics Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Germany; 8BioMediTech & Tampere University Hospital, Faculty of Medicine and Health Technology, Tampere University, Finland; 9Contributed equally



ID: 134
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Molecular insights into the role of complex V deficiency in heart development, function and disease

Mario Pavez-Giani1,2, Karen an der Brügge1, Till Stephan4, Felix Lange4, Jakob Fell1,2, Alessandro Prigione3, Stefan Jakobs4, Lukas Cyganek1,2

1Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; 2German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany; 3Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; 4Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany

Bibliography
1. Pavez-Giani MG and Cyganek L. Recent Advances in Modeling Mitochondrial Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Front Cell Dev Biol. 2022 Jan 10;9:800529.

2. Bomer N*, Pavez-Giani MG*, Grote Beverborg N, Cleland J, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med. 2022 Jun;291(6):713-731.

3. Bomer N*, Pavez-Giani MG*, Hoes MF, Deiman FE, Piek A, Simonides W, Boer RA, Berezikov E, Westenbrink D, Silljé HWH, van der Meer P. Identification of DIO2 as a regulator of metabolic reprogramming and mitochondrial function in heart failure. Int J Mol Sci. 2021 Nov 2;22(21):11906.

4. Pavez-Giani MG, Sánchez-Aguilera PI, Bomer N, Miyamoto S, Booij HG, Giraldo P, Oberdorf-Maass SU, Nijholt KT, Yurista SR, Milting H, van der Meer P, Boer RA de, Heller Brown J, Sillje HWH, Westenbrink BD. ATPase Inhibitory Factor-1 Disrupts Mitochondrial Ca2+ Handling and Promotes Pathological Cardiac Hypertrophy through CaMKIIδ. Int J Mol Sci 2021;22.


ID: 147
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Establishing mammalian cell models for research of NDUFS1-associated diseases

Lena Jentsch1, Laura Schröter2, Natascia Ventura1,2

1Heinrich Heine University Düsseldorf, Germany; 2IUF- Leibniz Research Institute for Environmental Medicine



ID: 149
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A neuronal model of mtDNA disease reveals a compensatory reprogramming of the electron transfer chain during neuronal maturation

Shane Thomas Bell1, Rebeca Acín-Pérez2, Iffath Ghouri1, Orian Shirihai2, Robert Lightowlers1, Oliver Russell1

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, USA

Bibliography
Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Annals of Neurology 77, 753–759 (2015).

Russell, O.M., Fruh, I., Rai, P.K. et al. Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Sci Rep 8, 1799 (2018).


ID: 156
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Development of mutant mtDNA-targeted TALENs and their application to iPSC-based mitochondrial disease model.

Naoki Yahata, Ryuji Hata

Fujita Health University School of Medicine, Japan

Bibliography
Yahata, N., Boda, H. and Hata, R. Elimination of Mutant mtDNA by an Optimized mpTALEN Restores Differentiation Capacities of Heteroplasmic MELAS-iPSCs (2021) Mol Ther Methods Clin Dev. 20, 54-68


ID: 165
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Deficits in mitochondrial oxidative phosphorylation enhance SARS-CoV-2 replication

Yentli E. Soto Albrecht1,2, Ryan Morrow1, Arnold Olali1, Devin Kenney3,4, Prasanth Potluri1, Deborah Murdock1, Alessia Angelin1, Florian Douam3,4, Douglas C. Wallace1,2

1Children's Hospital of Philadelphia, USA; 2University of Pennsylvania, USA; 3Boston University, USA; 4National Emerging Infectious Diseases Laboratories, Boston, USA



ID: 175
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic analysis of mouse sarcopenic skeletal muscle identifies new strategies to increase lifespan in C. elegans

Steffi M Jonk1, Vicki Chrysostomou2, James R Tribble1, Jonathan G Crowston2,3,4, Peter Swoboda1, Pete A Williams1

1Karolinska Institutet, Sweden; 2Centre for Vision Research Duke-NUS & Singapore National Eye Centre, Singapore; 3Save Sight Institute at the University of Sydney, Australia; 4The University of Melbourne, Australia.



ID: 181
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Delineating mitochondrial pathology using a genome-wide CRISPR/Cas9 activation screen

Yasmin Tang1, Angela Pyle1, Krutik Patel1, Robert McFarland1,2, Robert W. Taylor1,2, Monika Oláhová1

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH; 2NHS Highly Specialised Rare Mitochondrial Disorders Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH



ID: 188
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Cancer and cellular senescence – two complementary stress models to study turnover and quality control of mitochondrial respiratory complexes.

Hanna Salmonowicz1,2, Mahdi S Mahdi1,2, Deepti Mudartha1, Szymon Gorgon1,2, Stadnik Dorota1,2, Remigiusz Serwa1,2, Karolina Szczepanowska1,2

1IMol Polish Academy of Sciences, Poland; 2ReMedy International Research Agenda



ID: 189
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Proteotoxicity induced mitochondrial integrated stress response in CHCHD10-linked adult-onset spinal muscular atrophy

Sandra Harjuhaahto1, Bowen Hu1, Jouni Kvist1, Fuping Zhang2,3, Tomas Zárybnický2, Kimmo Haimilahti4, Eija Pirinen4, Emilia Kuuluvainen2, Ville Hietakangas2,5, Satu Kuure2,3, Manu Jokela6,7, Emil Ylikallio1,8, Henna Tyynismaa1

1Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki; 2Helsinki Institute of Life Science HiLIFE, University of Helsinki; 3Genetically Modified Rodents Unit, Laboratory Animal Center, University of Helsinki; 4Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki; 5Faculty of Biological and Environmental Sciences, University of Helsinki; 6Division of Clinical Neurosciences, Turku University Hospital and University of Turku; 7Department of Neurology, Neuromuscular Research Center, Tampere University Hospital and Tampere University; 8Clinical Neurosciences, Neurology, Helsinki University Hospital

Bibliography
1. Harjuhaahto S, Rasila TS, Molchanova SM, Woldegebriel R, Kvist J, Konovalova S, Sainio MT, Pennonen J, Torregrosa-Muñumer R, Ibrahim H, Otonkoski T, Taira T, Ylikallio E, Tyynismaa H (2020) ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons. Neurobiol Dis. 2020 Jul;141:104940. doi: 10.1016/j.nbd.2020.104940. Epub 2020 May 11. PMID: 32437855. Cover story.

2. Järvilehto J, Harjuhaahto S, Palu E, Auranen M, Kvist J, Zetterberg H, Koskivuori J, Lehtonen M, Saukkonen AM, Jokela M, Ylikallio E, Tyynismaa H (2022) Serum creatine but not neurofilament light is elevated in CHCHD10-linked spinal muscular atrophy. Front. Neurology, 2022. https://doi.org/10.3389/FNEUR.2022.793937

3. Sainio MT, Rasila T, Molchanova SM, Järvilehto J, Torregrosa-Muñumer R, Harjuhaahto S, Pennonen J, Huber N, Herukka S-K Haapasalo A, Zetterberg H, Taira T, Palmio J, Ylikallio E and Tyynismaa H (2022) Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons. Front. Cell Dev. Biol. 2022, 9:820105. doi: 10.3389/fcell.2021.820105

4. Neupane N, Rajendran J, Kvist J, Harjuhaahto S, Hu B, Kinnunen V, Yang Y, Nieminen A I, Tyynismaa H. (2022) Inter-organellar and systemic survival responses to impaired mitochondrial matrix protein import in skeletal muscle. Commun Biol. 2022 Oct 5;5(1):1060. doi: 10.1038/s42003-022-04034-z.

5. Woldegebriel R, Kvist J, White M, Sinkko M, Hänninen S, Sainio MT, Torregrosa-Munumer R, Harjuhaahto S, Huber N, Herukka K, Haapasalo A, Carpen O, Bassett A, Ylikallio E, Sreedharan J, Tyynismaa H. (2021) Peripheral neuropathy linked mRNA export factor GANP 1 reshapes gene regulation in human motor neurons. bioRxiv 2021.05.18.444636. https://doi.org/10.1101/2021.05.18.444636


ID: 190
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Protective role of mitochondrial stress signaling and fragmentation in mitochondrial cardiomyopathy

Sofia Ahola, Lilli Pazurek, Fiona Mayer, Hendrik Nolte, Thomas Langer

Max Planck Institute for Biology of Ageing, Cologne, Germany



ID: 591
Clinical 1: from new genes to old and novel phenotypes

The Italian reappraisal on the most frequent genetic defects in hereditary optic neuropathies and the global top 10

Claudio Fiorini1, Danara Ormanbekova1, Flavia Palombo1, Alberto Pasti1, Michele Carbonelli2, Giulia Amore2, Martina Romagnoli2, Pietro D'Agati2, Maria Lucia Valentino1,2, Piero Barboni3, Maria Lucia Cascavilla3, Anna Maria De Negri4, Federico Sadun5, Arturo Carta6, Francesco Testa7, Vittoria Petruzzella8, Silvana Guerriero8, Stefania Bianchi Marzoli9, Valerio Carelli1,2, Chiara La Morgia1,2, Leonardo Caporali2

1IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy; 4Azienda Ospedaliera San Camillo-Forlanini, Rome, Italy; 5Ospedale Oftalmico Roma, Rome, Italy; 6Ophthalmology Unit, University Hospital of Parma, Parma, Italy; 7Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy; 8Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy; 9Neuroophthalmology Service and Ocular Electrophysiology laboratory, Department of Ophthalmology, IRCCS Istituto Auxologico Italiano, Milan, Italy

Bibliography
Rocatcher, Aude et al. “The top 10 most frequently involved genes in hereditary optic neuropathies in 2186 probands.” Brain : a journal of neurology vol. 146,2 (2023): 455-460. doi:10.1093/brain/awac395


ID: 117
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Aberrant ER-mitochondria communication in human mitochondrial disease

Eric A. Schon1, Khushbu Kabra1, Patricia Morcillo1, Delfina Larrea1, Estela Area-Gomez1,2, Orhan Akman1

1Columbia University, USA; 2Centro de Investigaciones Biológicas “Margarita Salas”, Madrid, Spain

Bibliography
Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E (2017). Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J. 36, 3356-3371.


ID: 161
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial F0F1-ATP synthase conditions the responsiveness of mitochondria to fission

Charlène Lhuissier1, Julien Cassereau3, Valérie Desquiret-Dumas2, Guy Lenaers1, Naïg Gueguen2, Arnaud Chevrollier1

1MITOVASC Université d'Angers, France; 2Departments of Biochemistry and Molecular Biology, University Hospital Angers, Angers, France; 3Laboratoire de Neurobiologie et Neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France

Bibliography
Thirty-year progression of an EMPF1 encephalopathy due to defective mitochondrial and peroxisomal fission caused by a novel de novo heterozygous DNM1L variant 2022 Frontiers neurology PMID: 36212643 DOI: 10.3389/fneur.2022.937885

Glutamate-Induced Deregulation of Krebs Cycle in Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-Like Episodes (MELAS) Syndrome Is Alleviated by Ketone Body Exposure 2022 Biomedicines PMID: 35884972 DOI: 10.3390/biomedicines10071665

STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain 2020 Neuropathology and Applied Neurobiology PMID: 32688444 DOI: 10.1111/nan.12646

Autophagy controls the pathogenicity of OPA1 mutations in dominant optic
atrophy 2017 Journal of Cellular and Molecular Medicine PMID: 28378518 DOI: 10.1111/jcmm.13149


ID: 199
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A screening method for mitochondrial disorders by high-resolution respirometry

Kersti Tepp1, Kairit Joost2, Natalja Timohhina1, Marju Puurand1, Tuuli Kaambre1

1National Institute of Chemical Physics and Biophysics, Estonia; 2Clinic of Internal Medicine, East-Tallinn Central Hospital, Estonia

Bibliography
1.Tepp, Kersti; Aid-Vanakova, Jekaterina; Puurand, Marju; Timohhina, Natalja; Reinsalu, Leenu; Tein, Karin; Plaas, Mario; Shevchuk, Igor; Terasmaa, Anton; Kaambre, Tuuli; (2022). Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles. Biochemistry and Biophysics Reports, 30, 101250. DOI: 10.1016/j.bbrep.2022.101250.
2. Tepp, Kersti; Puurand, Marju; Timohhina, Natalja; Aid-Vanakova, Jekaterina; Reile, Indrek; Shevchuk, Igor; Chekulayev, Vladimir; Eimre, Margus; Peet, Nadežda; Kadaja, Lumme; Paju, Kalju; Kaambre, Tuuli (2020). Adaptation of mice striated muscles to wolframin deficiency: alterations in cellular bioenergetics. Biochemica et Biophysica Acta. DOI: 10.1016/j.bbagen.2020.129523.
3. Kaup, Karl Kristjan; Toom, Lauri; Truu, Laura; Miller,Sten; Puurand, Marju; Tepp, Kersti; Kaambre Tuuli; Reile, Indrek (2021). A line-broadening free real-time 31P Pure Shift NMR method for phosphometabolomic analysis. The Analyst, 1−5. DOI: 10.1039/D1AN01198G.
4. Rebane-Klemm, Egle; Truu, Laura; Reinsalu, Leenu; Puurand, Marju; Shevchuk, Igor; Chekulayev, Vladimir; Timohhina, Natalja; Tepp, Kersti; Bogovskaja, Jelena; Afanasjev, Vladimir; Suurmaa, Külliki; Valvere, Vahur; Kaambre, Tuuli (2020). Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps. Cancers, 12 (4), ARTN 815. DOI: 10.3390/cancers12040815.


ID: 1428
Clinical 1: from new genes to old and novel phenotypes

AK3, adenylate kinase isozyme 3, is a new gene associated with PEO and multiple mtDNA deletions

Alessia Nasca1, Andrea Legati1, Teresa Ciavattini1, Nadia Zanetti1, Eleonora Lamantea1, Javier Ramón2, Ramon Martí2, Maria Antonietta Maioli3, Costanza Lamperti1, Holger Prokisch4,5, Daniele Ghezzi1,6

1Fondazione IRCCS Istituto Neurologico Besta, Italy; 2Vall d'Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain; 3Centro Sclerosi Multipla, P.O. Binaghi, ASL Cagliari, Italy; 4Technical University of Munich, School of Medicine, Institute of Human Genetics, 81675 Munich, Germany; 5Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany; 6Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy



ID: 1201
Clinical 1: from new genes to old and novel phenotypes

Heterozygous missense variants in NUTF2 (nuclear transport factor 2) gene, mapping at the OPA8 locus, cause Dominant Optic Atrophy

Agnese Macaluso1, Alessandra Maresca1, Concetta Valentina Tropeano1, Maria Antonietta Capristo1, Flavia Palombo1, Leonardo Caporali1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1, Piero Barboni2,3, Cristina Villaverde4,5, Carmen Ayuso4,5, Maria Esther Gallardo6,5, Majida Charif7, Sylvie Gerber8, Patrizia Amati-Bonneau7, Guy Lanaers7,9, Jean-Michel Rozet7, Bernd Wissinger10, Valerio Carelli1,11, Valentina Del Dotto11

1IRCCS - Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Studio Oculistico d'Azeglio - Bologna (Italy); 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele - Milano (Italy); 4Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD-UAM) - Madrid (Spain); 5Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Madrid (Spain); 6Grupo de investigación traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain; Centro de Investigación Biomédica en Red (CIBERER) - Madrid (Spain); 7Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc - Angers (France); 8Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University - Paris (France); 9Departments of Biochemistry and Genetics, University Hospital Angers - Angers (France); 10Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany; 11Depart. of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna - Bologna (Italy)



ID: 1348
Clinical 1: from new genes to old and novel phenotypes

Southern African paediatric patients with King Denborough syndrome are exclusively associated with an autosomal recessive STAC3 variant: is this a highly prevalent secondary mitochondrial disease in this African population?

Francois Hendrikus van der Westhuizen1, Maryke Schoonen1, Michelle Bisschoff1, Ronel Human2, Elsa Lubbe2, Malebo Nonyane2, Armand Vorster1, Karin Terburgh1, Robert McFarland3, Robert Taylor3, Mahmoud Fassad3, Krutik Patel3, Wilson Lindsay4, Michael Hanna4, Jana Vandrovcova4, The ICGNMD Consortium5, Izelle Smuts2

1Human Metabolomics, North-West University, Potchefstroom, South Africa; 2Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa; 3Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 4Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; 5https://www.ucl.ac.uk/genomic-medicine-neuromuscular-diseases/global-contributor-list

Bibliography
Schoonen, M., Smuts, I., Louw, R., Elson, J. L., van Dyk, E., Jonck, L. M., Rodenburg, R. J. T., van der Westhuizen, F. H. (2019). Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease. The Journal of molecular diagnostics 21, 503–513.

Meldau, S., Owen, E. P., Khan, K., & Riordan, G. T. (2022). Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings. Journal of clinical pathology 75, 34–38.

Reinecke, C. J., Koekemoer, G., van der Westhuizen, F. H., Louw, R., Lindeque, J. Z., Mienie, L. J., Smuts, I. (2012). Metabolomics of urinary organic acids in respiratory chain deficiencies. Metabolomics 8, 264-283.

Terburgh, K., Coetzer, J., Lindeque, J. Z., van der Westhuizen, F. H., Louw, R. (2021). Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochimica et biophysica acta. Molecular basis of disease 1867, 166082.


ID: 1356
New technological developments and OMICS

Long-read NGS for detection of mitochondrial DNA large-scale deletions and complex rearrangements

Chiara Frascarelli1, Nadia Zanetti1, Alessia Nasca1, Rossella Izzo1, Costanza Lamperti1, Eleonora Lamantea1, Daniele Ghezzi1,2, Andrea Legati1

1Fondazione IRCCS Istituto Neurologico Carlo Besta (Milan, Italy); 2University of Milan (Milan, Italy)



ID: 1374
New technological developments and OMICS

Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription

Janne Purhonen1,2, Jukka Kallijarvi1,2

1Folkhalsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki

Bibliography
1. Banerjee R, Purhonen J, Kallijärvi J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. FEBS J (2021)
2. Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Res 48(15), e87 (2020)
3. Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 11:322 (2020)


ID: 1125
New technological developments and OMICS

Quantifying mitochondrial proteome remodeling during macrophage polarization

Joan Blanco-Fernandez, Manfredo Quadroni, Alexis A. Jourdain

University of Lausanne, Switzerland

Bibliography
1. C. L. Strelko, et al. J Am Chem Soc. 2011, 133, 16386-16389
2. A. K. Jha, et al. Immunity. 2015, 42, 419-430
3. P. S. Liu, et al. Nat Immunol. 2017, 18, 985-994
4. D. Vats, et al. Cell Metab. 2006, 4, 13-24
5. S. Rath, et al. Nucleic Acids Res. 2021, 49, D1541-D1547
6. A. Michelucci, et al. Proc Natl Acad Sci U S A. 2013, 110, 7820-7825
7. Z. Zhong, et al. Nature. 2018, 560, 198-203
8. S. A. Clayton, et al. Sci Adv. 2021, 7, eabl5182


ID: 158
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial injury in warm ischemia studied by high-resolution respirometry

Alba Timón-Gómez, Luiza HD Cardoso, Eleonora Baglivo, Carolina Doerrier, Erich Gnaiger

Oroboros Instruments GmBH, Austria



ID: 648
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

MitoCluster: integrated phenotyping and mouse model generation platform for mitochondrial disease and dysfunction

Micol Falabella1, Patrick F. Chinnery2, Laura C. Greaves3, Michael G. Hanna1,4, Thomas M. Keane5, Robert McFarland3, Michal Minczuk2, Owen J. Sansom6,7, James B. Stewart3, Michelle Stewart8, Lydia Teboul8, Keira Turner2, Jelle van den Ameele2, Carlo Viscomi9, Sara Wells8, Alexander J. Whitworth2, Robert D. S. Pitceathly1,4

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge UK; 3Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, UK; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 5European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; 6Cancer Research UK Beatson Institute, Glasgow, UK; 7Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; 8Mary Lyon Centre MRC Harwell, UK; 9University of Padua, Italy

 
4:30pm - 6:00pmSession 2.4: New technological developments and OMICS
Location: Bologna Congress Center - Sala Europa
Session Chair: Holger Prokisch
Session Chair: Leonid Sazanov
Invited Speaker: :S. Churchman; :H. Hillen
 
Invited
ID: 683
Invited Speakers

Decoding the regulatory principles of mitochondrial DNA: packaging, expression, and impact on cellular metabolism

L. Stirling Churchman

Harvard Medical School, United States of America



Invited
ID: 705
Invited Speakers

Mechanisms of mitochondrial RNA biogenesis in health and disease

Hauke Hillen1,2

1Department of Cellular Biochemistry, University Medical Center Göttingen, Germany; 2Research Group Structure and Function of Molecular Machines, Max-Planck-Institute for Multidisciplinary Sciences Göttingen, Germany

Bibliography
Bhatta A, Dienemann C, Cramer P, Hillen HS (2021) Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural & Molecular Biology 28, 713-723.
Bonekamp NA, Peter B, Hillen HS, Felser A, Bergbrede T, Choidas A, Horn M, Unger A, Di Lucrezia R, Atanassov I, Li X, Koch U, Menninger S, Boros J, Habenberger P, Giavalisco P, Cramer P, Denzel MS, Nussbaumer P, Klebl B, Falkenberg M, Gustafsson CM, Larsson N-G (2020) Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712-716
Hillen HS, Temiakov D, Cramer P (2018) Structural basis of mitochondrial transcription. Nature Structural & Molecular Biology 25, 754–765
Hillen HS, Parshin AV, Agaronyan K, Morozov YI, Graber JJ, Chernev A, Schwinghammer K, Urlaub H, Anikin M, Cramer P, Temiakov D (2017) Mechanism of Transcription Anti-termination in Human Mitochondria. Cell 171, 1082-1093.e13
Hillen HS, Morozov YI, Sarfallah A, Temiakov D, Cramer P (2017) Structural Basis of Mitochondrial Transcription Initiation. Cell 171, 1072-1081.e10


Oral presentation
ID: 338
New technological developments and OMICS

Disruption of mitochondrial function induces cell lineage-specific compensatory transcriptional responses during early embryonic development

Stephen P. Burr1,2, Florian Klimm1,2,3, Angelos Glynos1,2, Malwina Prater1,2,4, Maria Falkenberg5, Michal Minczuk2, James B. Stewart6,7, Patrick F Chinnery1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 3Novo Nordisk Research Centre Oxford, Innovation Building, University of Oxford, Old Road Campus, Oxford, UK; 4Functional Genomics Centre, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK; 5Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden; 6Max Planck Institute for Biology of Ageing, Cologne, Germany; 7Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK

Bibliography
1. Burr et al., Cell, 2023, DOI: 10.1016/j.cell.2023.01.034


Oral presentation
ID: 120
New technological developments and OMICS

Single-cell multi-omics reveals dynamics of purifying selection of pathogenic mitochondrial DNA across human immune cells

Caleb A. Lareau1,2,3,4,5, Sonia M. Dubois5, Frank A. Buquicchio1, Yu-Hsin Hsieh6,7, Kopal Garg4,5, Pauline Kautz6,7,8, Lena Nitsch6,7,9, Samantha D. Praktiknjo6,7, Patrick Maschmeyer6,7, Jeffrey M. Verboon4,5, Jacob C. Gutierrez1, Yajie Yin1, Evgenij Fiskin4, Wendy Luo4, Eleni Mimitou10,17, Christoph Muus4,11, Rhea Malhotra4, Sumit Parikh12, Mark D. Fleming13, Lena Oevermann14, Johannes Schulte14, Cornelia Eckert14, Anshul Kundaje3,15, Peter Smibert10,18, Ansuman T. Satpathy1,2, Aviv Regev4,16,19, Vijay Sankaran4,5, Suneet Agarwal5, Leif S. Ludwig4,5,6,7

1Department of Pathology, Stanford University, Stanford, CA 94305, USA; 2Parker Institute of Cancer Immunotherapy, San Francisco, CA 94129, USA; 3Department of Genetics, Stanford University, Stanford, CA 94305, USA; 4Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; 5Division of Hematology / Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; 6Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; 7Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany; 8Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany; 9Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; 10Technology Innovation Lab, New York Genome Center, New York, NY 10013, USA; 11Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; 12Center for Pediatric Neurosciences, Mitochondrial Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; 13Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; 14Department of Pediatric Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, 13353 Berlin, Germany; 15Department of Computer Science, Stanford University, Stanford, CA 94305, USA; 16Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; 17Current address: Immunai, New York, NY 10114, USA; 18Current address: 10x Genomics, San Francisco, CA 94111, USA; 19Current address: Genentech, San Francisco, CA 94080, USA



Flash Talk
ID: 125
New technological developments and OMICS

Quantifying mitochondrial proteome remodeling during macrophage polarization

Joan Blanco-Fernandez, Manfredo Quadroni, Alexis A. Jourdain

University of Lausanne, Switzerland

Bibliography
1. C. L. Strelko, et al. J Am Chem Soc. 2011, 133, 16386-16389
2. A. K. Jha, et al. Immunity. 2015, 42, 419-430
3. P. S. Liu, et al. Nat Immunol. 2017, 18, 985-994
4. D. Vats, et al. Cell Metab. 2006, 4, 13-24
5. S. Rath, et al. Nucleic Acids Res. 2021, 49, D1541-D1547
6. A. Michelucci, et al. Proc Natl Acad Sci U S A. 2013, 110, 7820-7825
7. Z. Zhong, et al. Nature. 2018, 560, 198-203
8. S. A. Clayton, et al. Sci Adv. 2021, 7, eabl5182


Flash Talk
ID: 374
New technological developments and OMICS

Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription

Janne Purhonen1,2, Jukka Kallijarvi1,2

1Folkhalsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki

Bibliography
1. Banerjee R, Purhonen J, Kallijärvi J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. FEBS J (2021)
2. Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Res 48(15), e87 (2020)
3. Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 11:322 (2020)


Flash Talk
ID: 356
New technological developments and OMICS

Long-read NGS for detection of mitochondrial DNA large-scale deletions and complex rearrangements

Chiara Frascarelli1, Nadia Zanetti1, Alessia Nasca1, Rossella Izzo1, Costanza Lamperti1, Eleonora Lamantea1, Daniele Ghezzi1,2, Andrea Legati1

1Fondazione IRCCS Istituto Neurologico Carlo Besta (Milan, Italy); 2University of Milan (Milan, Italy)

 
6:00pm - 7:00pmPoster session
Location: Bologna Congress Center
Session topics:
- Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity
 
ID: 564
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Maintenance on mitochondrial complexes ensures bioenergetic function in differentiated cells

Ilka Wittig1, Julian Heidler1, Heiko Giese2, Ralf P. Brandes1

1Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; 2Molecular Bioinformatics, Goethe University, Frankfurt, Germany

Bibliography
[1] H. Heide, L. Bleier, M. Steger, J. Ackermann, S. Dröse, B. Schwamb, M. Zörnig, A.S. Reichert, I. Koch, I. Wittig, U.Brandt, Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex, Cell Metab. 16 (2012) 538–549.
[2] B. Schwanhäusser, M. Gossen, G. Dittmar, M. Selbach, Global analysis of cellular protein translation by pulsed SILAC, Proteomics 9 (2009) 205–209.


ID: 462
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating pathogenicity and tissue-specificity of mitochondrial aminoacyl-tRNA synthetase defects AARS2, EARS2 and RARS2 in neurons

Oliver Podmanicky, Fei Gao, Denisa Hathazi, Rita Horvath

Department of Clinical Neurosciences, University of Cambridge, United Kingdom



ID: 253
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mutations in Coq2 leads to severe developmental delay and early death in both zebrafish and mouse

Julia Corral-Sarasa1, Sergio López-Herrador2, Juan M. Martínez-Gálvez1,3, Pilar González-García2, Laura Jiménez-Sánchez1, Mª Elena Díaz-Casado1,2, Luis C. López1,2

1Ibs.Granada, Granada, Spain; 2Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 3Biofisika Institute (CSIC,UPV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain

Bibliography
1.Alcázar-Fabra, M., Rodríguez-Sánchez, F., Trevisson, E., & Brea-Calvo, G. (2021). Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radical Biology and Medicine, 167, 141-180. https://doi.org/10.1016/j.freeradbiomed.2021.02.046
2.Mutations in COQ2 in Familial and Sporadic Multiple-System Atrophy. (2013). New England Journal of Medicine, 369(3), 233-244. https://doi.org/10.1056/nejmoa1212115
3.Jakobs, B. S., Van Den Heuvel, L. P., Smeets, R., De Vries, M., Hien, S., Schaible, T., Smeitink, J. A., Wevers, R. A., Wortmann, S. B., & Rodenburg, R. J. (2013). A novel mutation in COQ2 leading to fatal infantile multisystem disease. Journal of the Neurological Sciences, 326(1-2), 24-28. https://doi.org/10.1016/j.jns.2013.01.004
4.Herebian, D., Seibt, A., Smits, S. H. J., Rodenburg, R. J., & Mayatepek, E. (2017). 4-Hydroxybenzoic acid restores CoQ10biosynthesis in human COQ2 deficiency. Annals of clinical and translational neurology, 4(12), 902-908. https://doi.org/10.1002/acn3.486


ID: 297
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Pathogenic variants of the mitochondrial metallochaperone SCO1 result in a severe, combined COX and copper deficiency that causes a dilated cardiomyopathy in the murine heart.

Sampurna Ghosh1, Scot C. Leary1, Paul A. Cobine2

1University of Saskatchewan, Canada; 2Auburn University

Bibliography
Glerum DM, Shtanko A, Tzagoloff A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem. 1996 Jun 14;271(24):14504-9. doi: 10.1074/jbc.271.24.14504. PMID: 8662933.

Srinivasan C, Posewitz MC, George GN, Winge DR. Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry. 1998 May 19;37(20):7572-7. doi: 10.1021/bi980418y. PMID: 9585572.

Hlynialuk CJ, Ling B, Baker ZN, Cobine PA, Yu LD, Boulet A, Wai T, Hossain A, El Zawily AM, McFie PJ, Stone SJ, Diaz F, Moraes CT, Viswanathan D, Petris MJ, Leary SC. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis. Cell Rep. 2015 Feb 17;10(6):933-943. doi: 10.1016/j.celrep.2015.01.019. Epub 2015 Feb 13. PMID: 25683716.

Baker ZN, Jett K, Boulet A, et al. The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart. Hum Mol Genet. 2017;26(23):4617-4628. doi:10.1093/hmg/ddx344

Leary, S.C., Antonicka, H., Sasarman, F., Weraarpachai, W., Cobine, P.A., Pan, M., Brown, G.K., Brown, R., Majewski, J., Ha, K.C.H., et al. (2013a). Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis. Hum. Mutat. 34, 1366–1370.


ID: 196
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Tissue-specific adaptation of stress responses upon COX10 deficiency

Lea Isermann1,2, Milica Popovic1,2, Ming Yang1,2, Christian Frezza1,2, Aleksandra Trifunovic1,2

1CECAD Research Center, Germany; 2Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne



ID: 269
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Using iPSC-derived neurons to unravel the pathomechanisms of Leber’s hereditary optic neuropathy

Camille Peron1, Alessandra Maresca2, Angelo Iannielli3,4, Alberto Danese5, Simone Patergnani5, Danara Ormanbekova2, Andrea Cavaliere1, Carlotta Giorgi5, Paolo Pinton5,6, Vania Broccoli3,4, Valerio Carelli2,7, Valeria Tiranti1

1Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy; 4National Research Council (CNR), Institute of Neuroscience, Milan, Italy; 5Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; 6Maria Cecilia Hospital, GVM Care & Research, 48033, Cotignola, Ravenna, Italy; 7Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy

Bibliography
Danese A, Patergnani S, Maresca A, Peron C, Raimondi A, Caporali L, Marchi S, La Morgia C, Del Dotto V, Zanna C, Iannielli A, Segnali A, Di Meo I, Cavaliere A, Lebiedzinska-Arciszewska M, Wieckowski MR, Martinuzzi A, Moraes-Filho MN, Salomao SR, Berezovsky A, Belfort R Jr, Buser C, Ross-Cisneros FN, Sadun AA, Tacchetti C, Broccoli V, Giorgi C, Tiranti V, Carelli V, Pinton P. Pathological mitophagy disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. Cell Rep. 2022 Jul 19;40(3):111124. doi: 10.1016/j.celrep.2022.111124. PMID: 35858578; PMCID: PMC9314546.

Peron C, Maresca A, Cavaliere A, Iannielli A, Broccoli V, Carelli V, Di Meo I, Tiranti V. Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Front Neurol. 2021 Jun 8;12:648916. doi: 10.3389/fneur.2021.648916. PMID: 34168607; PMCID: PMC8217617.

Peron C, Mauceri R, Cabassi T, Segnali A, Maresca A, Iannielli A, Rizzo A, Sciacca FL, Broccoli V, Carelli V, Tiranti V. Generation of a human iPSC line, FINCBi001-A, carrying a homoplasmic m.G3460A mutation in MT-ND1 associated with Leber's Hereditary optic Neuropathy (LHON). Stem Cell Res. 2020 Oct;48:101939. doi: 10.1016/j.scr.2020.101939. Epub 2020 Aug 3. PMID: 32771908.


ID: 418
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Stem cell modelling of mitochondrial disease-linked cardiomyopathy

Ann E. Frazier1,2, Yau Chung Low1,2, Cameron L. McKnight1,2, Linden Muellner-Wong1,3, Hayley L. Pointer1, Nikeisha Caruana3, Jordan J. Crameri3, Luke E. Formosa4, Yilin Kang3, Thomas D. Jackson3, Alison G. Compton1,2,5, Michael T. Ryan4, Andrew G. Elefanty1,2,6, Enzo R. Porrello1,6,7,8, David A. Stroud1,3,5, David A. Elliott1,2,6,7, Diana Stojanovski3, David R. Thorburn1,2,5

1Murdoch Children’s Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; 2Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; 3Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; 4Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; 5Victorian Clinical Genetics Services, The Royal Children’s Hospital, Melbourne, VIC, Australia; 6The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; 7Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia; 8Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia



ID: 316
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Biochemical and computational approaches to dissect the effect of MT-CYB pathogenic mutations on respiratory chain activity and assembly

Gaia Tioli, Francesco Musiani, Luisa Iommarini, Anna Maria Porcelli, Anna Maria Ghelli

Department of Pharmacy and Biotechnology, University of Bologna, Italy

Bibliography
1 Fernández-Vizarra E, Ugalde C. Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem Sci. 2022
2 Rugolo M, Zanna C, Ghelli AM. Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel). 2021
3 Mishra SK. PSP-GNM: Predicting Protein Stability Changes upon Point Mutations with a Gaussian Network Model. Int J Mol Sci. 2022


ID: 565
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Exploring the assembly and maintenance of mitochondrial complex I by complexome profiling-based approaches

Alfredo Cabrera-Orefice1,2, Ilka Wittig1

1Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; 2Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands

Bibliography
[1] S. Guerrero-Castillo, F. Baertling, D. Kownatzki, H.J. Wessels, S. Arnold, U. Brandt, L. Nijtmans, The Assembly Pathway of Mitochondrial Respiratory Chain Complex I, Cell metabolism, 25 (2017) 128-139.
[2] H. Heide, L. Bleier, M. Steger, J. Ackermann, S. Drose, B. Schwamb, M. Zornig, A.S. Reichert, I. Koch, I. Wittig, U. Brandt, Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex, Cell metabolism, 16 (2012) 538-549.
[3] A. Cabrera-Orefice, A. Potter, F. Evers, J.F. Hevler, S. Guerrero-Castillo, Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease, Front Cell Dev Biol, 9 (2022) 796128.


ID: 225
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Functional involvement of actin-binding Gelsolin on mitochondrial Oxphos dysfunction

María Illescas, Ana Peñas, Cristina Ugalde

Fundación Hospital 12 de Octubre, Spain

Bibliography
García-Bartolomé, A., Peñas, A., Illescas, M., Bermejo, V., López-Calcerrada, S., Pérez-Pérez, R., et al. (2020). Altered Expression Ratio of Actin-Binding Gelsolin Isoforms Is a Novel Hallmark of Mitochondrial OXPHOS
Dysfunction. Cells 9, 1922–21. doi:10.3390/cells9091922

Peñas, A., Fernández-De la Torre, M., Laine-Menéndez, S., Lora, D., Illescas, M., García-Bartolomé, A., et al. (2021). Plasma Gelsolin Reinforces the Diagnostic Value of FGF-21 and GDF-15 for Mitochondrial Disorders. Ijms 22, 6396. doi:10.3390/ijms22126396

Illescas M, Peñas A, Arenas J, Martín MA and Ugalde C. 2021. Regulation of Mitochondrial Function by the Actin Cytoskeleton. Front. Cell Dev. Biol. 9:795838. doi: 10.3389/fcell.2021.795838.

Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. 2022 Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. doi: 10.1016/j.cmet.2022.09.005


ID: 472
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

In vivo role of respiratory complex I NDUFA10 subunit in dNTP homeostasis

Andrea Férriz Gordillo1, David Molina-Granada1,2, Javier Ramón1,2, Izaskun Izagirre-Urizar1, Marina Singla-Manau1, Maria Jesús Melià1,2, Antoni Ruiz-Vicaria1, Javier Torres-Torronteras1,2, Mònica Zamora3, Michael T. Ryan4, Cristina Ugalde2,5, Josep Antoni Villena6, Ramon Martí1,2, Yolanda Cámara1,2

1Research Group on Neuromuscular and Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; 2Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; 3BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona 08028, Spain. and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.; 4Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; 5Instituto de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain.; 6Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Barcelona, Spain

Bibliography
Molina-Granada D, González-Vioque E, Dibley MG, Cabrera-Pérez R, Vallbona-Garcia A, Torres-Torronteras J, Sazanov LA, Ryan MT, Cámara Y, Martí R. Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit. Commun Biol. 2022 Jun 23;5(1):620. doi: 10.1038/s42003-022-03568-6. PMID: 35739187; PMCID: PMC9226000.


ID: 247
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Modeling POLRMT pathogenic variants in the mouse

David Alsina1,2, Roberta Filograna1,2, Rodolfo García-Villegas1,2, Camilla Koolmeister1,2, Nils-Göran Larsson1,2,3

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden; 3Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden



ID: 425
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The role of the CCR4 family member ANGEL1 in the expression of mitochondrial-targeted proteins

Kai Chang1, Paula Clemente1, Joyce Noble1, Björn Reinius1, Anna Wedell1,2, Christoph Freyer1,2, Anna Wredenberg1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden

Bibliography
Chang, K§., Liu, P§., Requejo, G & Bai, H. (2022). mTORC2 protects the heart from high-fat diet-induced cardiomyopathy through mitochondrial fission in Drosophila. Front. Cell Dev. Biol., 2022. https://doi.org/10.3389/fcell.2022.866210
§These authors contributed equally to this work

Birnbaum, A., Chang, K., & Bai, H. (2020). FOXO regulates neuromuscular junction homeostasis during Drosophila aging. Front Aging Neurosci, 2021 Jan 27; 12:567861. DOI: 10.3389/fnagi.2020.567861.

Huang, K., Miao, T., Chang, K. et al. Impaired peroxisomal import in Drosophila oenocytes causes cardiac dysfunction by inducing upd3 as a peroxikine. Nat Commun 11, 2943 (2020). https://doi.org/10.1038/s41467-020-16781-w

Kai Chang§, Ping Kang§, Ying Liu, Kerui Huang, Ting Miao, Antonia P. Sagona, Ioannis P. Nezis, Rolf Bodmer, Karen Ocorr & Hua Bai (2019) TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2, Autophagy, DOI: 10.1080/15548627.2019.1704117
§These authors contributed equally to this work

Kang, P., Chang, K., Liu, Y. et al. Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci Rep 7, 16369 (2017) doi:10.1038/s41598-017-16638-1


ID: 600
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Tissue-specific bioenergetics in mouse models of mitochondrial disease

Valeria Balmaceda1, Timea Komoldi2, Massimo Zeviani1, Erich Gnaiger3, Anthony L. Moore4, Erika Fernandez Vizarra1, Carlo Viscomi1

1Università di Padova; 2Semmelweis University; 3Universität Innsbruck; 4University of Sussex



ID: 490
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Yeast as a tool to investigate variants in mtARS genes associated with mitochondrial diseases

Sonia Figuccia1, Camilla Ceccatelli Berti1, Andrea Legati2, Rossella Izzo2, Alessia Nasca2, Daniele Ghezzi2,3, Paola Goffrini1

1Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; 2Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 3Department of Medical Physiopathology and Transplantation, University of Milan, Milan, Italy



ID: 227
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A mutation in mouse mt-Atp6 gene induces respiration defects and opposed effects on the cell tumorigenic phenotype

Raquel Moreno-Loshuertos1, Nieves Movilla1, Joaquín Marco-Brualla2, Ruth Soler-Agesta1, Patricia Ferreira1, José Antonio Enríquez3, Patricio Fernández-Silva1

1University of Zaragoza, Spain; 2University of Zaragoza, Peaches Biotech Group, Spain; 3Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain

Bibliography
1.Moreno-Loshuertos, R.; Marco-Brualla, J.; Meade, P.; Soler-Agesta, R.; Enriquez, J. A.; Fernandez-Silva, P., How hot can mitochondria be? Incubation at temperatures above 43 degrees C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion 2023, 69, 83-94.
2.Moreno-Loshuertos, R.; Movilla, N.; Marco-Brualla, J.; Soler-Agesta, R.; Ferreira, P.; Enriquez, J. A.; Fernandez-Silva, P., A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023, 24, (2).
3.Novo, N.; Romero-Tamayo, S.; Marcuello, C.; Boneta, S.; Blasco-Machin, I.; Velázquez-Campoy, A.; Villanueva, R.; Moreno-Loshuertos, R.; Lostao, A.; Medina, M.; Ferreira, P., Beyond a platform protein for the degradosome assembly: The Apoptosis-Inducing Factor as an efficient nuclease involved in chromatinolysis. PNAS Nexus 2022, 2, (2).
4.Soler-Agesta, R.; Marco-Brualla, J.; Minjarez-Saenz, M.; Yim, C. Y.; Martinez-Julvez, M.; Price, M. R.; Moreno-Loshuertos, R.; Ames, T. D.; Jimeno, J.; Anel, A., PT-112 Induces Mitochondrial Stress and Immunogenic Cell Death, Targeting Tumor Cells with Mitochondrial Deficiencies. Cancers (Basel) 2022, 14, (16).
5.Pinol, R.; Zeler, J.; Brites, C. D. S.; Gu, Y.; Tellez, P.; Carneiro Neto, A. N.; da Silva, T. E.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Gallego, A. I.; Martinez-Lostao, L.; Martinez, A.; Carlos, L. D.; Millan, A., Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles. Nano Lett 2020, 20, (9), 6466-6472.
6.Gu, Y.; Yoshikiyo, M.; Namai, A.; Bonvin, D.; Martinez, A.; Pinol, R.; Tellez, P.; Silva, N. J. O.; Ahrentorp, F.; Johansson, C.; Marco-Brualla, J.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Cui, Y.; Ohkoshi, S. I.; Millan, A., Magnetic hyperthermia with epsilon-Fe(2)O(3) nanoparticles. RSC Adv 2020, 10, (48), 28786-28797.
7.Delavallee, L.; Mathiah, N.; Cabon, L.; Mazeraud, A.; Brunelle-Navas, M. N.; Lerner, L. K.; Tannoury, M.; Prola, A.; Moreno-Loshuertos, R.; Baritaud, M.; Vela, L.; Garbin, K.; Garnier, D.; Lemaire, C.; Langa-Vives, F.; Cohen-Salmon, M.; Fernandez-Silva, P.; Chretien, F.; Migeotte, I.; Susin, S. A., Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Mol Metab 2020, 40, 101027.


ID: 242
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A systemic Muscle-WAT crosstalk progressively depletes protein and fat stores aggravating mitochondrial myopathy.

Nneka Southwell1, Guido Primiano3, Emelie Beattie1, Nicola Rizzardi1, Serenella Servidei3, Giovanni Manfredi1, Qiuying Chen2, Marilena D'Aurelio1

1Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY; 2Weill Cornell Medicine, Department of Pharmacology, New York, NY; 3Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.



ID: 646
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A novel mitochondrial assembly factor RTN4IP1 has an essential role in the final stages of Complex I assembly

Monika Oláhová1,2, Jack J. Collier1,3, Rachel M. Guerra4, Juliana Heidler5, Kyle Thompson1, Robert N. Lightowlers1, Zofia M.A. Chrzanowska-Lightowlers1, Ilka Wittig5, David J. Pagliarini4, Robert W. Taylor1

1Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 2Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK; 3Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; 4Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; 5Functional Proteomics Group, Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany

Bibliography
1 Charif M et al. Neurologic Phenotypes Associated With Mutations in RTN4IP1 (OPA10) in Children and Young Adults. JAMA Neurol. 2017


ID: 599
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

ETFDH supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis

Beñat Salegi Ansa1, Juan Cruz Herrero Martín1, José M. Cuezva1,2,3,4, Laura Formentini1,2,3,4

1Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO-UAM-CSIC), Madrid, Spain; 2Instituto Universitario de Biología Molecular (IUBM), Autonomous University of Madrid, Madrid, Spain; 3Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; 4Instituto de Investigación Hospital 12 de octubre, i+12, Universidad Autónoma de Madrid, Madrid, Spain



ID: 559
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic rewiring as an adaptive mechanism in COX null cells

Guillermo Puertas-Frias1,2, Kristýna Čunátová1,2, Petr Pecina1, Marek Vrbacký1, Lukáš Alán1, Tomáš Čajka3, Josef Houštěk1, Tomáš Mráček1, Alena Pecinová1

1Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 2Faculty of Science, Charles University, 12800 Prague, Czech Republic; 3Laboratory of Translational Metabolomics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic



ID: 383
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic rewiring due to progressive increase in mtDNA mutation heteroplasmy reveals markers of disease severity

Karin Terburgh1, Marianne Venter1, Jeremie Z Lindeque1, Emi Ogasawara2, Mirian C H Janssen3, Jan A M Smeitink3, Kazuto Nakada4, Roan Louw1

1North-West University, South Africa; 2Osaka University, Japan; 3Radboud University Medical Center, Netherlands; 4University of Tsukuba, Japan



ID: 442
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Novel or rare AIFM1 pathogenic variants: their impact on mitochondrial metabolism and clinical manifestation in eight patients, including 3 girls

Tereza Rakosnikova1, Jan Kulhanek1, Martin Reboun1, Hana Stufkova1, Lenka Dvorakova1, Dagmar Grecmalova2, Pavlina Plevova2, Tomas Honzik1, Hana Hansikova1, Jiri Zeman1, Marketa Tesarova1

1Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague; 2Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava



ID: 558
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Pathological molecular mechanisms underlying COA8 loss of function

Kristyna Cunatova1,2, Michele Brischigliaro1,2, Alfredo Cabrera-Orefice3, Cinzia Franchin1, Jimin Pei4, Marco Roverso5, Sara Bogialli5, Qian Cong4, Giorgio Arrigoni1, Susanne Arnold3,6, Carlo Viscomi1,2, Massimo Zeviani2,7, Erika Fernández-Vizarra1,2

1Department of Biomedical Sciences, University of Padova, Padova, Italy; 2Veneto Institute of Molecular Medicine, Padova, Italy; 3Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; 4University of Texas Southwestern Medical Center, Dallas, TX, USA; 5Department of Chemical Sciences, University of Padova, Padova, Italy; 6Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; 7Department of Neurosciences, University of Padova, Padova, Italy

Bibliography
Hedberg-Oldfors, C., Darin, N., Thomsen, C., Lindberg, C., and Oldfors, A. (2020). COX deficiency and leukoencephalopathy due to a novel homozygous APOPT1/COA8 mutation. Neurol Genet 6, e464.
Melchionda, L., Haack, T.B., Hardy, S., Abbink, T.E., Fernandez-Vizarra, E., Lamantea, E., Marchet, S., Morandi, L., Moggio, M., Carrozzo, R., et al. (2014). Mutations in APOPT1, Encoding a Mitochondrial Protein, Cause Cavitating Leukoencephalopathy with Cytochrome c Oxidase Deficiency. Am J Hum Genet 95, 315-325.
Pei, J., Zhang, J., and Cong, Q. (2022). Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics.
Sharma, S., Singh, P., Fernandez-Vizarra, E., Zeviani, M., Van der Knaap, M.S., and Saran, R.K. (2018). Cavitating Leukoencephalopathy With Posterior Predominance Caused by a Deletion in the APOPT1 Gene in an Indian Boy. J Child Neurol 33, 428-431.
Signes, A., Cerutti, R., Dickson, A.S., Beninca, C., Hinchy, E.C., Ghezzi, D., Carrozzo, R., Bertini, E., Murphy, M.P., Nathan, J.A., et al. (2019). APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO molecular medicine 11.


ID: 366
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Retinal pathophysiology characterisation of the novel mitochondrial heteroplasmy mouse model

Lucia Luengo-Gutierrez1, Keira Turner1, James B Stewart2, Patrick Yu-Wai-Man1, Michal Minczuk1

1University of Cambridge, United Kingdom; 2Newcastle University, United Kingdom



ID: 666
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Impaired spermatogenesis driven by mitochondrial dysfunction and ferroptosis in primary spermatocytes in a mouse model of Leigh syndrome

Enrico Radaelli1, Charles-Antoine Assenmacher1, Esha Banerjee1, Florence Manero2, Salim Khiati3, Anais Girona3, Guillermo Lopez-Lluch4, Placido Navas4, Marco Spinazzi3,5

1University of Pennsylvania,USA; 2University of Angers, SFR ICAT, SCIAM, 49000 Angers, France; 3MITOLAB, University of Angers, INSERM U1083, France; 4Pablo de Olavide University, Spain; 5Neuromuscular Reference Center CHU Angers, France



ID: 574
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitophagy dysfunction in mitochondrial myopathy and therapy by mitophagy activator CAP1902

Takayuki Mito1, Amy E. Vincent2, Julie Faitg2, Kathleen Rodgers3, Kevin Gaffney3, Thomas G. McWilliams1, Orian Shirihai4, Anu Suomalainen1

1STEMM Research Program, Biomedicum Helsinki, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 2Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 3Department of Pharmacology, Center for Innovations in Brain Science, University of Arizona, Tucson, AZ, USA; 4Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA



ID: 192
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mtfp1 controls oxidative phosphorylation and cell death in liver disease

Cecilia Patitucci1, Juan Diego Hernández-Camacho1, Elodie Vimont1, Etienne Kornobis2, Thibault Chaze3, Quentin Giai Gianetto3,4, Mariette Matondo3, Anastasia Gazi5, Ivan Nemanyy6, Daniella Hock7, Erminia Donnarumma1, Timothy Wai1

1Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France.; 2Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France.; 3Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France.; 4Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France.; 5Institut Pasteur Ultrastructural Bio Imaging, UTechS, Université Paris Cité, Paris, France.; 6Platform for Metabolic Analyses, SFR Necker, INSERM US24/CNRS UMS 3633, Paris, France.; 7Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia.



ID: 319
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Non-canonical function of succinate dehydrogenase assembly factor 2 (SDHAF2) during OXPHOS dysfunction

Kugapreethan Roopasingam1, Joanna Sacharz1, Tegan Stait2, Yau chung Low2,3, Ann E. Frazier2,3, David P. De souza4, David R. Thorburn2,3,5, David A. Stroud1,3,5

1Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; 2Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; 3Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; 4Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; 5Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia



ID: 502
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

NUAK1-dependent metabolic underpinnings of adult muscle stem cells

Ha-My Ly, Caroline Brun, Géraldine Meyer-Dihet, Julien Courchet, Rémi Mounier

Physiopathology and Genetics of Neurons and Muscles Laboratory, Institut NeuroMyoGène, Lyon, France



ID: 415
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A novel approach to measure complex V ATP hydrolysis in frozen cell lysates and tissue homogenates

Lucia Fernandez del Rio1,2, Cristiane Benincá1,2, Frankie Villalobos1,2, Cynthia Shu1,2, Linsey Stiles1,2,3, Marc Liesa1,2,4,5, Ajit S. Divakaruni2,3, Rebeca Acin-Perez1,2, Orian S. Shirihai1,2,3,4

1Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095 USA; 2Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; 3Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; 4Molecular & Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA.; 5Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Catalonia, 08028, Spain



ID: 440
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

OxPhos defects cause cell-autonomous and whole-body signs of hypermetabolism in cells and in patients with mitochondrial diseases

Gabriel Sturm1, Karan Kalpita1, Anna S Monzel1, Balaji Santhanam1, Tanja Taivassalo2, Céline Bris3, Atif Towheed1, Albert Higgins-Chen4, Meagan McManus5, Andres Cardenas6, Jue Lin7, Elissa Epel7, Shamima Rahman8, Jon Vissing9, Bruno Grassi10, Morgan Levine11, Steve Horvath11, Ronald G Haller12, Guy Lenaers3, Douglas C Wallace5, Marie-Pierre St-Onge1, Saeed Tavasoie1, Vincent Procaccio3, Brett A Kaufman13, Erin L Seifert14, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2University of Florida, United States of America; 3Angers University, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute, Angers, France; 4Yale University, United States of America; 5University of Pennsylvania, United States of America; 6Stanford University, United States of America; 7University of California San Francisco, United States of America; 8Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; 9University of Copenhagen, Denmark; 10University of Udine, Italy; 11Altos labs, United States of America; 12University of Texas Southwestern Medical Center, United States of America; 13University of Pittsburgh, United States of America; 14Thomas Jefferson University, United States of America

Bibliography
Sturm G et al. A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations. Sci Data 9, 751 (2022). https://doi.org/10.1038/s41597-022-01852-y

Sturm G. et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 6, 22 (2023). https://doi.org/10.1038/s42003-022-04303-x


ID: 605
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dysfunction of mitochondrial chaperone HSP60 triggers disruption of mitochondrial pathways activating multiple regulatory responses

Cagla Cömert1, Paula Fernandez-Guerra1, Kasper Kjær-Sørensen2, Jakob Hansen3, Jesper Just4,5, Jasper Carlsen1, Lisbeth Schmidt-Laursen2, Johan Palmfeldt1, Peter Bross1

1Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; 3Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; 4Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; 5Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Bibliography
1. Bie AS, Cömert C, Körner R, et al. An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space. Cell Stress Chaperones. 2020;25(3):407-416.
2. Bross P, Naundrup S, Hansen J, et al. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem. 2008;283(23):15694-15700.
3. Magen D, Georgopoulos C, Bross P, et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet. 2008;83(1):30-42.
4. Cömert C, Brick L, Ang D, et al. A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy. Cold Spring Harb Mol Case Stud. 2020;6(3):a004879. Published 2020 Jun 12.


ID: 365
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Generation of iPSCs derived neural progenitors and cardiomyocytes as cellular models to study the pathophysiology of Pearson Syndrome

Chiara Fasano1, Luca Sala2,3, Camille Peron1, Andrea Cavaliere1, Maria Nicol Colombo1, Valeria Tiranti1

1Unit of Medical genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 2Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy; 3Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy



ID: 476
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

High aerobic exercise capacity predicts increased mitochondrial response to exercise training

Estelle Heyne1, Susanne Zeeb1, Luren G Koch2, Steven L Britton3, Torsten Doenst1, Michael Schwarzer1

1Department of Cardiothoracic Surgery, University Hospital of Friedrich-Schiller-University Jena, Germany; 2Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States; 3Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States

Bibliography
Heyne E, Schrepper A, Doenst T, Schenkl C, Kreuzer K, Schwarzer M. High-fat diet affects skeletal muscle mitochondria comparable to pressure overload-induced heart failure. J Cell Mol Med. 2020 Jun;24(12):6741-6749. doi: 10.1111/jcmm.15325. Epub 2020 May 4. PMID: 32363733; PMCID: PMC7299710.
Schwarzer M, Molis A, Schenkl C, Schrepper A, Britton SL, Koch LG, Doenst T. Genetically determined exercise capacity affects systemic glucose response to insulin in rats. Physiol Genomics. 2021 Sep 1;53(9):395-405. doi: 10.1152/physiolgenomics.00014.2021. Epub 2021 Jul 23. PMID: 34297615; PMCID: PMC8530732.


ID: 488
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating the role of LONP1 in heart and skeletal muscle metabolism

Franziska Baumann1, Dieu Hien Rozsivalova1, Katharina Senft1, Simon Geißen2, Aleksandra Trifunovic3

1Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; 2Department III of Internal Medicine, Heart Center, University Hospital of Cologne, 50931 Cologne, Germany; 3Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany



ID: 229
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial dysfunction promotes liver fibrosis through the ACOT2-MCT6-OXCT1 axis.

Xiaoshan Zhou1, Sophie Curbo1, Wei Wang2, Xinling Li2, Jingyi Yan1, Yu Lei1, Raoul Kuiper3, Ujjwal Noegi1, Anna Karlsson1

1Karolinska Institutet, Sweden; 2Zhengzhou University, China; 3Norwegian Veterinary Institute, Norway

Bibliography
Zhou X, Mikaeloff F, Curbo S, Zhao Q, Kuiper R, Végvári Á, Neogi U, Karlsson A.Coordinated pyruvate kinase activity is crucial for metabolic adaptation and cell survival during mitochondrial dysfunction.Hum Mol Genet. 2021 Oct 13;30(21):2012-2026


ID: 655
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

PNC2 (SLC25A36) deficiency associated with the hyperinsulinism/hyperammonemia syndrome

Francesco Massimo Lasorsa1, Deborah Fratantonio2, Maher A. Shahroor3, Vito Porcelli1, Bassam Abu-Libdeh3, Orly Elpeleg4, Luigi Palmieri1

1Università degli Studi di Bari Aldo Moro, Italy; 2Libera Università Mediterranea Giuseppe Degennaro, Italy; 3Department of Pediatrics and Genetics, Al Makassed Hospital and Al-Quds University, Palestine.; 4Department of Genetics, Hadassah, Hebrew University Medical Center, Israel

Bibliography
[1] M.A. Shahroor, F.M. Lasorsa, V. Porcelli V, I. Dweikat, M.A. Di Noia, M. Gur, G. Agostino, A . Shaag A, T. Rinaldi, G. Gasparre, F. Guerra, A. Castegna, S. Todisco, B. Abu-Libdeh, O. Elpeleg, L. Palmieri, PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome, J Clin Endocrinol Metab, 107(2022):1346-1356.
[2] L. Jasper, P. Scarcia, S. Rust, J. Reunert, F. Palmieri, T. Marquardt, Uridine Treatment of the First Known Case of SLC25A36 Deficiency, Int J Mol Sci. 22(2021) 9929.
[3] Safran A, Proskorovski-Ohayon R, Eskin-Schwartz M, Yogev Y, Drabkin M, Eremenko E, Aharoni S, Freund O, Jean MM, Agam N, Hadar N, Loewenthal N, Staretz-Chacham O, Birk OS.Hyperinsulinism/hyperammonemia syndrome caused by biallelic SLC25A36 mutation. J Inherit Metab Dis. 2023 Jan 25. doi: 10.1002/jimd.12594. Online ahead of print


ID: 397
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Cultured neurons with CoQ10 deficiency reveal alterations of lipid metabolism

Alba Pesini1, Eliana Barriocanal-Casado1, Giacomo Monzio-Compagnoni2, Kleiner Giulio1, Agustin Hidalgo-Gutierrez1, Mohammed Bakkali3, Yashpal Singh Chhonker4, Saba Tadesse1, Delfina Larrea1, Daryl J Murry4, Caterina Mariotti5, Barbara Castellotti5, Luis Carlos Lopez3, Alesio Di Fonzo2, Estela Area-Gomez1, Catarina Quinzii1

1Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, United States; 2IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 3Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada, 18100, Spain; 4Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE; 5Unita` di Genetica delle Malattie Neurodegenerative e Metaboliche, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, 20126, Italy

Bibliography
1. Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta - Biomembr. 2004, 1660, 171–199, doi:10.1016/j.bbamem.2003.11.012.
2. Quinzii, C.M.; López, L.C.; Gilkerson, R.W.; Dorado, B.; Coku, J.; Naini, A.B.; Lagier-Tourenne, C.; Schuelke, M.; Salviati, L.; Carrozzo, R.; et al. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J. 2010, 24, 3733–3743, doi:10.1096/fj.09-152728.
3. Emma, F.; Montini, G.; Parikh, S.M.; Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. 2016, doi:10.1038/nrneph.2015.214.
4. Ernster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1995, 1271, 195–204.


ID: 426
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration

M. Tanvir Rahman1, M. Kristian Koski2, Joanna Panecka-Hofman3,4, Werner Schmitz5, Alexander J. Kastaniotis1, Rebecca C. Wade4,6, Rik K. Wierenga1, J. Kalervo Hiltunen1, Kaija J. Autio1

1Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; 2Biocenter Oulu, University of Oulu, Oulu, Finland; 3Faculty of Physics, University of Warsaw, Warsaw, Poland; 4Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; 5Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany; 6Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany

Bibliography
Rahman M.T., Koski M.K., Panecka-Hofman J., Schmitz W, Kastaniotis A.J., Wade R.C., Wierenga R.K., Hiltunen J.K. & Autio K.J. (2023) An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration. Nature Communications 14(1):619. doi: 10.1038/s41467-023-36358-7
Alam J., Sah-Teli S.K., Venkatesan R., Koski M.K., Autio K.J., Hiltunen J K. & Kastaniotis A.J. (2021) Biophysical and structural analysis of the SAM-dependent Saccharomyces cerevisiae methyltransferase family protein Rsm22. Acta Crystallographica Section D. 77:840-853
Kastaniotis A.J., Autio K.J. & Nair R.R. (2021) Mitochondrial fatty acids and neurodegenerative disorders. Neuroscientist 27(2):143-158


ID: 561
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Antibiotics directly affect mitochondrial respiration

Judith Sailer1, Sabine Schmitt2, Hans Zischka1,3, Erich Gnaiger2

1Technische Universität München, Germany; 2Oroboros Instruments GmbH, Innsbruck, Austria; 3Helmholtz Zentrum München, Germany

Bibliography
[1] Tarantino G. et al. (2017): Hepatol Res. 37:410‐415
[2] O'Reilly M. et al. (2019):. Front Cell Neurosci. 13;13:416. doi: 10.3389/fncel.2019.00416.
[3] Oyebode OT. et al. (2018) Toxicology Mechanisms and Methods, 1–31.doi:10.1080/15376516.2018.1528651


ID: 471
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Can transmission of mitochondria over the species barrier promote climate change adaptation?

Kateryna Gaertner1, Craig Michell2, Riikka Tapanainen2, Steffi Goffart2, Sina Saari1, Manu Soininmäki2, Eric Dufour1, Jaakko Pohjoismäki2

1Tampere University, Finland; 2University of Eastern Finland

Bibliography
Gaertner K, Michell C, Tapanainen R, et al. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (Lepus spp., Lagomorpha: Leporidae) [published online ahead of print, 2022 Nov 1]. Mol Ecol. 2022; doi:10.1111/mec.16755


ID: 626
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Developing an in vitro model to study the impact of the m.3243A>G mutation in iPSC-derived myofibers

Gabriel E. Valdebenito, Anitta R. Chacko, Michael R. Duchen

University College London, United Kingdom



ID: 334
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Discordant phenotype in fibroblast cell lines generated from the same MELAS patient

Monica Moresco1, Valentina Concetta Tropeano1, Valentina Del Dotto2, Mariantonietta Capristo1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1,2, Maria Lucia Valentino1,2, Valerio Carelli1,2, Alessandra Maresca1

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromuscular Sciences (DIBINEM), University of Bologna



ID: 531
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Generation of a novel CoQ deficient mouse model to elucidate the role of COQ4

Eliana Barriocanal Casado, Agustin Hidalgo-Gutierrez, Alba Pesini, Catarina M Quinzii

Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA.

Bibliography
1.Guerra, R.M. and D.J. Pagliarini, Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci, 2023.
2.Alcázar-Fabra, M., E. Trevisson, and G. Brea-Calvo, Clinical syndromes associated with Coenzyme Q. Essays Biochem, 2018. 62(3): p. 377-398.
3.Belogrudov, G.I., et al., Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys, 2001. 392(1): p. 48-58.
4.Casarin, A., et al., Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. Biochem Biophys Res Commun, 2008. 372(1): p. 35-9.
5.Marbois, B., et al., Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem, 2005. 280(21): p. 20231-8.
6.Marbois, B., et al., The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys Acta, 2009. 1791(1): p. 69-75.


ID: 414
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Perivascular adipose tissue remodeling impairs mitochondrial function in thermoneutral-housed rats

Amy C Keller1, Melissa M Henckel1, Leslie A Knaub1, Greg B Pott1, Georgia James2, Jane E-B Reusch1

1University of Colorado/Rocky Mountain Regional VA Medical Center, United States of America; 2Cornell College, United States of America

Bibliography
1. Chun J.H., Henckel M.M., Knaub L.A., Hull S.E., Pott G.B., Ramirez D.G., Reusch J.E.-B., Keller A.C. (-)-Epicatechin Reverses Glucose Intolerance in Rats Housed at Thermoneutrality. Planta Med. 2022 Aug;88(9-10):735-744. doi: 10.1055/a-1843-9855.

2. Keller A.C., Chun J.H., Knaub L.A., Henckel M.M., Hull S.E., Scalzo R.L., Pott G.B., Walker L.A., Reusch J.E.-B. Thermoneutrality induces vascular dysfunction and impaired metabolic function in male Wistar rats: a new model of vascular disease. J Hypertens. 2022 Nov 1;40(11):2133-2146. doi: 10.1097/HJH.0000000000003153.

3. Vaughan O.R., Rosario F.J., Chan J., Cox L.A., Ferchaud-Roucher V., Zemski-Berry K.A., Reusch J.E.- B., Keller A.C., Powell T.L., Jansson T. Maternal obesity causes fetal cardiac hypertrophy and alters adult offspring myocardial metabolism in mice. J Physiol. 2022 Jul;600(13):3169-3191. doi: 10.1113/JP282462.

4. Chun J.H., Henckel M.M., Knaub L.A., Hull S.E., Pott G., Walker, L.A., Reusch J.E.B., Keller A.C. (–)-Epicatechin improves vasoreactivity and mitochondrial respiration in thermoneutral-housed Wistar rat vasculature. Nutrients. 2022 14(5), 1097;doi.org/10.3390/nu14051097.

5. Keller, A.C., Hull, S.E., Elajaili, H., Johnston, A., Knaub, L.A., Chun, J.H., Walker, L.A., Nozik-Grayck, E., Reusch, J.E.-B. (–)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress. Oxidative Medicine and Cellular Longevity. 2020. doi.org/10.1155/2020/6392629


ID: 595
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Temporal analysis of mitochondrial complexome profiling coupled to multi-omics analysis unveils implications of CIV remodelling in postnatal heart development

Milica Popovic, Aleksandra Trifunovic

University of Cologne, Germany

Bibliography
1. Porter Jr G., et al. (2011) Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 75–81. doi: 10.1016/j.ppedcard.2011.02.002;
2. Gan J., Sonntag H-J., Tang Mk., Cai D., Lee KKH. (2015) Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome. PLoS ONE 10 (7): e0133288. doi:10.1371/journal.pone.0133288
3. Gu Y., et al. (2022) Multi-omics profiling visualizes dynamics of cardiac development and functions, Cell Reports, Volume 41, Issue 13,111891, ISSN 2211-1247, https://doi.org/10.1016/j.celrep.2022.111891.
4.Talman V., et al. (2018). Molecular Atlas of Postnatal Mouse Heart Development. J Am Heart Assoc. 2018;7:e010378. DOI: 10.1161/JAHA.118.010378


ID: 258
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial dysfunction in immune cells leads to distinct transcriptome profile and improved immune competence in Drosophila

Yuliya Basikhina1, Laura Vesala1,2, Tea Tuomela1, Emilia Siukola1, Anssi Nurminen1, Pedro F. Vale3, Tiina S. Salminen1

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Department of Molecular Biology, Umeå University, Umeå, Sweden; 3Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom



ID: 376
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Molecular mechanisms of extraocular muscle manifestation in mitochondrial myopathy

Swagat Pradhan, Takayuki Mito, Thomas McWilliams, Nahid Khan, Anu Suomalainen

STEMM, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland

Bibliography
Forsström, S., Jackson, C. B., Carroll, C. J., Kuronen, M., Pirinen, E., Pradhan, S., … Suomalainen, A. (2019). Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress Responses in Mitochondrial Myopathy with mtDNA
Deletions. Cell Metabolism, 1–15. https://doi.org/10.1016/j.cmet.2019.08.019.

Khan, N. A., Nikkanen, J., Yatsuga, S., Jackson, C., Wang, L., Pradhan, S., … Suomalainen, A. (2017). mTORC1 Regulates
Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metabolism, 26(2), 419-428.e5.
https://doi.org/10.1016/j.cmet.2017.07.007

Pradhan, S...Lopus M (2017) “Elucidation of the Tubulin-Targeted Mechanism of Action of 9-(3-Pyridyl) Noscapine.” Cur.
Top. in Medicinal Chemistry, vol. 17, no. 22, 2017, pp. 2569–74, doi:http://dx.doi.org/10.2174/1568026617666170104150304.


ID: 572
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Redox metabolites and transporters: Differential expression and ratios in specific Ndufs4 knockout mice organs.

Jeremie Zander Lindeque, Marthinus Theodorus Jooste, Daneël Nel, Belinda Fouché, Marianne Venter

Human Metabolomics, North-West University, South Africa



ID: 475
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

What makes folding of a mitochondrial protein dependent on the HSP60/HSP10 chaperone complex?

Peter Bross, Cagla Cömert, Paula Fernandez-Guerra, Johan Palmfeldt

Aarhus University and Aarhus University Hospital, Denmark

Bibliography
1.Henriques, B. J., Katrine Jentoft Olsen, R., Gomes, C. M., andBross, P. (2021) Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease Gene 145407 10.1016/j.gene.2021.145407
2.Cömert, C., Brick, L., Ang, D., Palmfeldt, J., Meaney, B. F., Kozenko, M. et al. (2020) A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy Cold Spring Harb Mol Case Stud 6, 10.1101/mcs.a004879
3.Bie, A. S., Comert, C., Korner, R., Corydon, T. J., Palmfeldt, J., Hipp, M. S. et al. (2020) An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space Cell Stress Chaperones 25, 407-416 10.1007/s12192-020-01080-6
4.Palmfeldt, J., andBross, P. (2017) Proteomics of human mitochondria Mitochondrion 33, 2-14 10.1016/j.mito.2016.07.006


ID: 385
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

OXPHOS composition is altered in the FXNI151F mouse model of Friedreich Ataxia in a progressive and a tissue-specific way

Maria Pazos-Gil, Marta Medina-Carbonero, Arabela Sanz-Alcázar, Marta Portillo-Carrasquer, Fabien Delaspre, Elisa Cabiscol, Joaquim Ros, Jordi Tamarit

Dept. Ciències Mèdiques Bàsiques, Fac. Medicina, Universitat de Lleida. IRB Lleida.

Bibliography
Medina-Carbonero M, Sanz-Alcázar A, Britti E, Delaspre F, Cabiscol E, Ros J, Tamarit J. Mice harboring the FXN I151F pathological point mutation present decreased frataxin levels, a Friedreich ataxia-like phenotype, and mitochondrial alterations. Cell Mol Life Sci. 2022 Jan 17;79(2):74.


ID: 482
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Disease causing-Mfn2 mutations alter mitochondrial fusion and fission dynamics and metabolism.

Daniel Lagos1,2, Nicolas Perez2, Pamela R. de Santiago2, Diego Troncoso2, Benjamin Cartes-Saavedra2, Rita Horvath1, Veronica Eisner2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.; 2School of Biological Sciences, Department of Cellular and Molecular Biology, Pontificia Universidad Catolica de Chile, Santiago, Chile.



ID: 284
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dissecting the mitochondrial disease-associated ATAD3 gene cluster and its pathogenic variants

Linden Muellner-Wong1,2, Ann E. Frazier2,3, Eric Hanssen4, Tegan Stait2,3,5, Alice J. Sharpe6, Danielle L. Rudler7,8,9, Shuai Nie10, Luke E. Formosa6, Michael T. Ryan6, Aleksandra Filipovska7,8,9, David R. Thorburn2,3,5, David A. Stroud1,2,5

1Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria,Australia; 2Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; 3Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; 4Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia; 5Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia; 6Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; 7Harry Perkins Institute of Medical Research and The University of Western Australia Centre for Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; 8ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre and University of Western Australia, Nedlands, Western Australia, Australia; 9Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia; 10Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia



ID: 340
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dynamics of adenine nucleotides in colorectal cancer clinical material

Sten Miller1,2, Leenu Reinsalu1,2, Marju Puurand1, Natalja Timohhina1, Kersti Tepp1, Igor Sevchuk1, Indrek Reile1, Heiki Vija1, Vahur Valvere3, Jelena Bogovskaja3, Tuuli Käämbre1

1National Institute of Chemical Physics and Biophysics, Estonia; 2Tallinn University of Technology, Estonia; 3North Estonia Medical Centre

Bibliography
Klepinin, A., Miller, S., Reile, I., Puurand, M., Rebane-Klemm, E., Klepinina, L., Vija, H., Zhang, S., Terzic, A., Dzeja, P., & Kaambre, T. (2022). Stable Isotope Tracing Uncovers Reduced γ/β-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Frontiers in oncology, 12, 892195. https://doi.org/10.3389/fonc.2022.892195

Reinsalu, L., Puurand, M., Chekulayev, V., Miller, S., Shevchuk, I., Tepp, K., Rebane-Klemm, E., Timohhina, N., Terasmaa, A., & Kaambre, T. (2021). Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Frontiers in oncology, 11, 698951. https://doi.org/10.3389/fonc.2021.698951

Kaup, K. K., Toom, L., Truu, L., Miller, S., Puurand, M., Tepp, K., Käämbre, T., & Reile, I. (2021). A line-broadening free real-time 31P pure shift NMR method for phosphometabolomic analysis. The Analyst, 146(18), 5502–5507. https://doi.org/10.1039/d1an01198g


ID: 521
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The role of SURF1 protein in cytochrome c oxidase biogenesis

Maria Jose Saucedo Rodriguez1, Petr Pecina1, Kristýna Čunátová1, Marek Vrbacký1, Alena Pecinová1, Roman Sobotka2, Carlo Viscomi3, Massimo Zeviani4, Tomáš Mráček1, Josef Houštěk1

1Institute of Physiology of the Czech Academy of Sciences, Czech Republic; 2Institute of Microbiology, Czech Academy of Sciences, Trebon, Czech Republic; 3Departement of Biomedical Sciences, University of Padova, Padova, Italy; 4Departement of Neurosciences, University of Padova, Padova, Italy

Bibliography
N. Kovářová, P. Pecina, H. Nůsková, M. Vrbacký, M. Zeviani, T. Mráček, C. Viscomi, J. Houštěk, Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects, BBA, 1862 (2016), 705-15.


ID: 447
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Depicting inclusion body myositis using a patient-derived fibroblast model

Judith Cantó Santos1,2,3, Laura Valls Roca1,2,3, Ester Tobías1,2,3, Francesc Josep García García1,2,3, Mariona Guitart Mampel1,2,3, Félix Andújar Sánchez1,2,3, Anna Esteve Codina4,5, Beatriz Martín Mur4, Mercedes Casado3,6, Rafael Artuch3,6, Estel Solsona Vilarrasa7,8, José Carlos Fernández Checa7,8, Carmen García Ruiz7,8, Carles Rentero9, Carlos Enrich9, Pedro Juan Moreno Lozano1,2,3, José César Milisenda1,2,3, Francesc Cardellach1,2,3, Josep Maria Grau Junyent1,2,3, Glòria Garrabou1,2,3

1Laboratory of Inherited Metabolic Disorders and Muscle Disease, Centre de Recerca Biomèdica CELLEX - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; 2Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain; 3CIBERER— Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain; 4CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; 5Universitat Pompeu Fabra (UPF), Barcelona, Spain; 6Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain; 7Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain; 8CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain; 9Department of Biomedicine, Cell Biology Unit, CELLEX-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain



ID: 223
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Effect of physiological cell culture media on cell viability and NRF2 activation

Anton Terasmaa, Rutt Taba, Marie Põlluaed, Tuuli Käämbre

National Institute of Chemical and Biological Physics, Estonia



ID: 637
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Genetic and functional characterization of a new patient with COX4I1 deficiency

Frederic Tort1, Olatz Ugarteburu1, Gerard Muñoz-Pujol1, María Unceta2, Ainhoa García2, Arantza Arza2, Javier de las Heras2, Antonia Ribes1, Laura Gort1

1Hospital Clinic, IDIBAPS, CIBERER, Barcelona, Spain; 2Hospital Universitario de Cruces, Spain



ID: 233
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Application of the Escherichia coli Model System to Study the Human Polyribonucleotide Phosphorylase

Roberto Pizzoccheri, Federica Anna Falchi, Andrea Alloni, Francesca Forti, Sarah Sertic, Giulio Pavesi, Federica Briani

Università degli Studi di Milano, Italy



ID: 523
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Phase two biotransformation is highly affected by mitochondrial disease: considerations for pharmacological therapies.

Marianne Venter, Belinda Fouché, Louis Mostert, Zander Lindeque, Rencia van der Sluis

Human Metabolomics, North-West University, South Africa

Bibliography
1.Kühn, S., Williams, M. E., Dercksen, M., Sass, J. O., & van der Sluis, R. (2023). The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA-an in-silico and in vitro validation. Computational and Structural Biotechnology Journal, 21, 1236-1248. https://doi.org/10.1016/j.csbj.2023.01.041
2.Gruosso, F., Montano, V., Simoncini, C., Siciliano, G., & Mancuso, M. (2020). Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020. Journal of Clinical Medicine, 10(1), 94. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jcm10010094
3.Fouché, B. R. (2021). Differential expression of genes involved in phase two biotransformation in an NDUFS4 deficient mouse model (Master’s dissertation, North-West University (South Africa)). http://hdl.handle.net/10394/38596


ID: 436
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial phenotyping of fibroblasts from Kearns Sayre’s patients to model the disease

Laura Valls-Roca1,2,3, Judith Cantó-Santos1,2,3, Ester Tobías1,2,3, Francesc Josep García-García1,2,3, Félix Andújar-Sánchez1,2, Laia Farré-Tarrats1,2, Cristina Núñez de Arenas3,6, Rocío Garrido-Moraga5, Joan Padrosa1,2, Raquel Aránega1,2, Pedro J. Moreno-Lozano1,2,3, José César Milisenda1,2, Mar O’Callaghan3,4, Teresa García-Silva3,5, Montserrat Morales-Conejo3,5, Rafael Artuch3,4, Miguel Ángel Martín3,5, José M. Cuezva3,6, Josep M. Grau-Junyent1,2,3, Mariona Guitart-Mampel1,2,3, Glòria Garrabou1,2,3

1Laboratory of Inherited Metabolic Disorders and Muscle Disease, Centre de Recerca Biomèdica CELLEX - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences - Universitat de Barcelona (UB); Barcelona, Spain.; 2Internal Medicine Department - Hospital Clínic de Barcelona; Barcelona, Spain.; 3CIBERER—Spanish Biomedical Research Centre in Rare Diseases; Madrid, Spain.; 4Hospital Sant Joan de Déu (HSJdD) de Barcelona, Barcelona, Spain.; 5Grupo de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (imas12). Madrid. Spain.; 6Centro de Biología Molecular S.O., Universidad Autónoma de Madrid (UAM); Madrid, Spain.



ID: 343
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Effect of various mutations in the GTPase and middle domain of Drp1 on the mitochondrial network, nucleoids, and peroxisomes

Nikol Volfová1, Aleš Hnízda1, Lukáš Alán2, Robert Dobrovolný1, Jakub Sikora1, Jana Křížová1, Lucie Zdražilová1, Hana Hansíková1, Jiří Zeman1, Markéta Tesařová1

1Department of Paediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic; 2Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic



ID: 317
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Importance of human ClpXP protease for mitochondrial function

Daniela Burska, Jana Tesarova, Jana Krizova, Nikol Volfova, Hana Hansikova, Jiri Zeman, Lukas Stiburek

First Faculty of Medicine, Charles University; and General University Hospital in Prague



ID: 581
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Ketogenic diet mitigates the pathogenic phenotype in TMEM70 deficient animal models

Aleksandra Marković1, Petr Pecina1, Alena Pecinová1, Marek Vrbacký1, Jana Mikešová1, Hana Nuskova1, Kateřina Tauchmannová1, Otto Kučera3, Zuzana Cervinkova3, Radislav Sedláček2, Josef Houštěk1, Tomáš Mráček1

1Institute of Physiology of the Czech Acad. Sci., Prague, Czech Republic; 2Institute of Molecular Genetics of the Czech Acad. Sci., Prague, Czech Republic; 3Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic



ID: 276
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mutation in Coq5 leads to CoQ10 deficiency, developmental delay and early death in zebrafish

Sergio López-Herrador1, Julia Corral-Sarasa2, Macarena Gil1, Yaco Morillas1, Luis C. López1,2, Mª. Elena Díaz-Casado1,2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs.Granada, Granada, Spain

Bibliography
[1] Malicdan MCV, Vilboux T, Ben-Zeev B, et al. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat. 2018;39(1):69-79


ID: 364
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Omega-3 supplementation effects on mitochondrial and metabolic profile in a rabbit model of intrauterine growth restriction

Félix Andújar-Sánchez1,2,3, Mariona Guitart-Mampel1,2,3, Míriam Illa3,4, Ester Tobías1,2,3, Laura Valls-Roca1,2,3, Judith Cantó-Santos1,2,3, Laia Farré-Tarrats1,2,3, Clara Oliva3,5, Francesc Cardellach1,2,3, Rafael Artuch3,5, Fàtima Crispi3,4, Glòria Garrabou1,2,3, Francesc J García-García1,2,3

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), 08036 Barcelona, Spain; 2Internal Medicine Unit, Medicine Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; 3Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; 4BCNatal—Barcelona Centre for Maternal-Foetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; 5Department of Clinical Biochemistry, Institut de Recerca de Sant Joan de Deu, Esplugues de Llobregat, 08036 Barcelona, Spain



ID: 616
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Redundant and divergent roles of COQ8A and COQ8B in cell metabolism.

Agata Valentino1, Elisa Baschiera1, Iolanda Spera2, Luna Laera2, Valentina Giorgio3, Alessandra Castegna2, Leonardo Salviati1, Maria Andrea Desbats1

1Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova and “Fondazione Istituto di Ricerca Pediatrica Città Della Speranza”, 35127 Padova, Italy.; 2Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70121 Bari, Italy; 3Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy.



ID: 305
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Loss of CHCHD8 (COA4) caused mitochondrial respiratory Complex IV deficiency

Taku Amo, Yuga Hikage

National Defense Academy, Japan



ID: 341
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Delving into the phenotypic heterogeneity of Coenzyme Q biosynthesis defects

Ariadna Crespo-González1, María del Mar Blanquer-Rosselló1,2, Laura García-Corzo1,2, Carmine Staiano1,2, María Chacón1, Ana Belén Cortés-Rodríguez3, Estefanía Sanabria-Reinoso1, María Almuedo-Castillo1, Miguel Ángel Moreno-Mateos1,2, Gloria Brea-Calvo1,2

1Centro Andaluz de Biología del Desarrollo/Universidad Pablo de Olavide-CSIC-JA, Seville, Spain; 2CIBERER, Instituto de Salud Carlos III, Madrid, Spain; 3Laboratorio de Fisiopatología Celular y Bioenergética, Seville, Spain.



ID: 654
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating the impact of mtDNA point mutations on mitochondrial function and bioenergetics using patient fibroblasts and hiPSC derived neuronal models

Anitta Rose Chacko, Gabriel Esteban Valdebenito, Michael R Duchen

University College London, United Kingdom



ID: 632
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Human COQ10A and COQ10B genes are essential for Coenzyme Q function in mitochondrial respiration

Elisa Baschiera1, Carlo Viscomi1, Maria Andrea Desbats2, Placido Navas3, Leonardo Salviati1,2

1University of Padova, Italy; 2Isituto di Ricerca Pediatrica - Cittá della Speranza, Italy; 3Pablo de Olavide University, Sevilla, Spain

Bibliography
[1] Stefely JA, Pagliarini DJ. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem Sci. 2017 Oct;42(10):824-843. doi: 10.1016/j.tibs.2017.06.008. Epub 2017 Sep 17. PMID: 28927698; PMCID: PMC5731490.
[2] Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, Ibarra H, Clubb RT, Blaby-Haas CE, Clarke CF. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res. 2019 Jul;60(7):1293-1310. doi: 10.1194/jlr.M093534. Epub 2019 May 2. PMID: 31048406; PMCID: PMC6602128.


ID: 286
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The use of β-RA in leptin-deficient mice reveals novel mechanisms of this compound for the treatment of obesity

Sara Torres-Rusillo1, Sergio López-Herrador1, Pilar González-García1, Mª. Elena Díaz-Casado1,2, Laura Jiménez-Sánchez2, Julia Corral-Sarasa2, Julio Ruiz-Travé1, Luis C. López1,2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs.Granada, Granada, Spain

Bibliography
Santos AL, Sinha S. Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev. 2021;67:101268

Hidalgo-Gutiérrez A, Barriocanal-Casado E, Díaz-Casado ME, et al. β-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight. Biomedicines. 2021;9(10):1457


ID: 274
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oocyte-specific mitofusin 2 knockout enhances the metabolic disfunction of offspring born to obese mothers

Jaiane Santana da Paz, Angélica Camargo dos Santos, Lindomar Oliveira Alves, Julio Cesar Valerio Roncato, Renan Omete Ferreira, Victória Hass Gonçalves, Mirela Souza Cáceres, Marcos Roberto Chiaratti

Federal University of Sao Carlos, Brazil

Bibliography
GARCIA, B.M.; MACHADO, T.S.; CARVALHO, K.F.; NOLASCO, P.; NOCITI, R.P.; DEL COLLADO, M.; CAPO BIANCO, M.J.D.; GREJO, M.P.; AUGUSTO NETO, J.D.; SUGIYAMA, F.H.C.; TOSTES, K.; PANDEY, A.K.; GONÇALVES, L.M.; PERECIN, F.; MEIRELLES, F.V.; FERRAZ, J.B.S.; VANZELA, E.C.; BOSCHERO, A.C.; GUIMARÃES, F.E.G.; ABDULKADER, F.; LAURINDO, F.R. M.; KOWALTOWSKI, A.J.; CHIARATTI, M.R. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Molecular Human Reproduction, v. 26, p. 938-952, 2020.


ID: 489
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Off-target effects of etomoxir: inhibition of mitochondrial Complex I and fatty acid oxidation

Timea Komlódi1,2, Filomena SG Silva3, Ana I Duarte3,4,5, Débora Mena3,5,6, Luiz F Garcia-Souza1, Marina Makrecka-Kuka7, Guida Bento3, Luís F Grilo3,5,6, Paulo J Oliveira3, Erich Gnaiger1

1Oroboros Instruments, Innsbruck, Austria; 2Dept Biochem, Semmelweis Univ, Budapest, Hungary; 3CNC-Center Neurosci and Cell Biol, Univ Coimbra, Portugal; 4IIUC-Inst Interdisciplinary Research, Univ Coimbra, Portugal; 5CIBB-Center for Innovative Biomed Biotechnol, Univ Coimbra, Portugal; 6PDBEB-PhD Programme in Exp Biol Biomed, IIUC, Univ Coimbra, Portugal; 7Lab Pharmaceut Pharmacol, Latvian Inst Organic Synthesis, Riga, Latvia

Bibliography
Fischer C, Valente de Souza L, Komlódi T, Garcia-Souza LF, Volani C, Tymoszuk P, Demetz E, Seifert M, Auer K, Hilbe R, Brigo N, Petzer V, Asshoff M, Gnaiger E, Weiss G (2022) Mitochondrial respiration in response to iron deficiency anemia. Comparison of peripheral blood mononuclear cells and liver. https://doi.org/10.3390/metabo12030270

Komlódi T, Tretter L (2022) The protonmotive force – not merely membrane potential. Bioenerg Commun 2022.16. https://doi.org/10.26124/bec:2022-0016

Pallag G, Nazarian S, Ravasz D, Bui D, Komlódi T, Doerrier C, Gnaiger E, Seyfried TN, Chinopoulos C (2022) Proline oxidation supports mitochondrial ATP production when Complex I is inhibited. https://doi.org/10.3390/ijms23095111

Komlódi T, Cardoso LHD, Doerrier C, Moore AL, Rich PR, Gnaiger E (2021) Coupling and pathway control of coenzyme Q redox state and respiration in isolated mitochondria. https://doi.org/10.26124/bec:2021-0003

Komlódi T, Sobotka O, Gnaiger E (2021) Facts and artefacts on the oxygen dependence of hydrogen peroxide production using Amplex UltraRed. https://doi.org/10.26124/bec:2021-0004


ID: 542
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial alterations in sirtuin1 heterozygous mice fed high fat diet and melatonin

Alessandra Stacchiotti1,2, Francesca Arnaboldi1, Gaia Favero3, Aleksandra Korac4, Maria Monsalve5, Rita Rezzani3

1Dept Biomedical Sciences for Health, University of Milan, Milan, Italy; 2Laboratorio Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy; 3Dept Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; 4Center for Electron Microscopy, University of Belgrade, Belgrade, Serbia; 5Instituto de Investigaciones Biomedicas “Alberto Sols” (CSIC-UAM), Madrid, Spain

Bibliography
1. Paramesha B. et al. Antioxidants (2021) 10: 338;
2. Stacchiotti A. et al. Cells (2019) 8: 1053.
3. Stacchiotti A et al. Nutrients (2017) 9:1323.


ID: 1300
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Microproteins in metabolic regulation

Jiemin Nah1, Baptiste Kerouanton1, David Robinson2, Kyle Dunlap3, Pooja Sridnivasan1, Sonia Chothani1, Greg Ducker3, Owen Rackham4, David Stroud2, Lena Ho1

1Duke-NUS Medical School, Singapore; 2University of Melbourne, Australia; 3University of Utah, USA; 4University of Southampton, UK

Bibliography
Lena Ho, PhD (lead PI), is regarded as a pioneer in the field of microprotein research with over 30 primary research articles (5991 citations, H-index of 21) in top-tier journals. With more than 12 years of experience in microprotein discovery, functionalization and therapeutic development, Lena and her team have developed a framework of bioinformatic tools for mining ribo-seq data for disease-relevant small ORF peptides, as well as an extensive range of biochemical tools to validate their function and uncover their molecular mechanism. Lena is an EMBO Young Investigator and HHMI international scholar.
Recent publications :
1) Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity.
Lee CQE, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, Hock DH, Lim R, Nadkarni R, Huynh VT, Lim D, Chew WL, Zhong FL, Stroud DA, Schafer S, Tergaonkar V, St John AL, Rackham OJL, Ho L. Nat Commun. 2021 Apr 9;12(1):2130. doi: 10.1038/s41467-021-22397-5.

2) Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis.
Liang C, Zhang S, Robinson D, Ploeg MV, Wilson R, Nah J, Taylor D, Beh S, Lim R, Sun L, Muoio DM, Stroud DA, Ho L. Cell Rep. 2022 Aug 16;40(7):111204. doi: 10.1016/j.celrep.2022.111204.

3) Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly.
Zhang S, Reljić B, Liang C, Kerouanton B, Francisco JC, Peh JH, Mary C, Jagannathan NS, Olexiouk V, Tang C, Fidelito G, Nama S, Cheng RK, Wee CL, Wang LC, Duek Roggli P, Sampath P, Lane L, Petretto E, Sobota RM, Jesuthasan S, Tucker-Kellogg L, Reversade B, Menschaert G, Sun L, Stroud DA, Ho L.

4) Viral proteases activate the CARD8 inflammasome in the human cardiovascular system.
Nadkarni R, Chu WC, Lee CQE, Mohamud Y, Yap L, Toh GA, Beh S, Lim R, Fan YM, Zhang YL, Robinson K, Tryggvason K, Luo H, Zhong F, Ho L. J Exp Med. 2022 Oct 3;219(10):e20212117. doi: 10.1084/jem.20212117. Epub 2022 Sep 21.


ID: 1301
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oxphos deficiency indicates novel functions for the mitochondrial protein import subunit tim50

Jordan J Crameri1, Catherine S Palmer1, David Coman2, David A Stroud1, David R Thorburn3,4,5, Ann E Frazier3,4, Diana Stojanovski1

1Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia; 2Queensland Children’s Hospital, Department of Metabolic Medicine, South Brisbane, Brisbane, Queensland, 4001, Australia; 3Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia; 4Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia; 5Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia



ID: 1226
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The levels and activation state of the pyruvate dehydrogenase complex modulate the SCAFI-dependent organization of the mitochondrial respiratory chain

Sandra Lopez-Calcerrada1, Ana Sierra-Magro1, Erika Fernández-Vizarra2, Cristina Ugalde1,3

1Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; 2Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain

Bibliography
Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. 2022 Nov 1;34(11):1792-1808.e6. doi: 10.1016/j.cmet.2022.09.005. PMID: 36198313.


ID: 631
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Development of a yeast model to characterize OPA1 mutations associated with different neuromuscular disorders

Cristina Calderan1, Marco Marchi1, Mara Doimo1, Maria Andrea Desbats1, Geppo Sartori2, Leonardo Salviati1

1Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy; 2Department of Biomedical Sciences, University of Padua, Padua, Italy



ID: 263
Clinical 1: from new genes to old and novel phenotypes

An ultra-special family with an ultra-rare condition: three children with mithochondrial complex III deficiency due to homozygous mutations in Lyrm7

Francesca Manzoni, Titia Anita Wischmeijer, Elisa Boni, Lucio Parmeggiani, Andrea Bordugo, Francesca Pellegrini

Bolzano Hospital, Italy

Bibliography
Invernizzi, Federica et al. “A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity.” Human mutation. 2013.
Sánchez E et al. LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells. Biochim Biophys Acta. 2013.
Dallabona C. et al. LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain. 2016.
Hempel M. et al. LYRM7 - associated complex III deficiency: A clinical, molecular genetic, MR tomographic, and biochemical study. Mitochondrion. 2017.
Cherian A. et al. Multifocal cavitating leukodystrophy-A distinct image in mitochondrial LYRM7 mutations. Mult Scler Relat Disord. 2021.
Peruzzo R et al. Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nat Commun. 2021.
 

Date: Tuesday, 13/June/2023
8:00am - 6:30pmSlides Center
Location: Slides Center
8:00am - 6:30pmRegistration Desk
Location: Bologna Congress Center
9:00am - 10:45amSession 3.1: Inflammation and Immunity as mitochondrial contributor to pathology
Location: Bologna Congress Center - Sala Europa
Session Chair: Jose Antonio Enriquez
Session Chair: Daria Diodato
Invited Speakers: S. Pluchino; M. Mittelbrunn
 
Invited
ID: 162
Invited Speakers

Fuels and drivers of smouldering brain disease

Stefano Pluchino, Luca Peruzzotti-Jametti, Alexandra Nicaise

University of Cambridge, United Kingdom

Bibliography
1. MA Leone, et al., S Pluchino, L Peruzzotti-Jametti, AL Vescovi. Foetal Allogeneic Intracerebroventricular Neural Stem Cell Transplantation in People with Secondary Progressive Multiple Sclerosis: A phase I dose-escalation clinical trial. medRxiv https://doi.org/10.1101/2022.11.14.22282124;
2. R Hamel, et al., and S Pluchino. Time-resolved single-cell RNAseq profiling identifies a novel Fabp5-expressing subpopulation of inflammatory myeloid cells in chronic spinal cord injury. bioRxiv, doi.org/10.1101/2020.10.21.346635;
3. A Mottahedin, et al., S Pluchino, L Peruzzotti-Jametti, R Goodwin, C Frezza, M Murphy and T Krieg. Targeting succinate metabolism to decrease brain injury upon mechanical thrombectomy treatment of ischemic stroke. Redox Biology 2023; 59: 102600;
4. Peruzzotti-Jametti, et al., and S Pluchino. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol 2021, https://doi.org/10.1371/journal.pbio.3001166;
5. G Krzak, CM Willis, JA Smith, S Pluchino and L Peruzzotti-Jametti. Succinate receptor SUCNR1 (GPR91) - an emerging regulator of myeloid cell function in neuroinflammation. Trends Immunol 2021; 42(1): 45-58;
6 Pluchino S, Smith JA, Peruzzotti-Jametti L. Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends Mol Med 2020 Oct;26(10):898-912;
7. S Pluchino and JA Smith. Explicating Exosomes: reclassifying the rising stars in intercellular communication. Cell 2019 Apr 4;177(2):225-227;
8. L Peruzzotti-Jametti and S Pluchino. Targeting mitochondrial metabolism in neuroinflammation: towards a therapy for progressive multiple sclerosis? Trends Mol Med. 2018 Oct;24(10):838-855;
9. L Peruzzotti-Jametti, et al., and S Pluchino. Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell 2018 Mar 1; 22(3): 355-368;
10. N Iraci, et al., and S Pluchino. Extracellular vesicles are independent metabolic units delivering functional Asparaginase-like protein 1. Nat Chem Biol 2017 Sep;13(9):951-955.


Invited
ID: 673
Invited Speakers

Immunometabolisms at the crossroad between inflammation and aging

Maria Mittelbrunn

CSIC- Consejo Superior de Investigaciones Cientificas, Spain

Bibliography
Biology Center “Severo Ochoa” (Madrid, Spain) since 2017. Her research goal is to identify new strategies to target immune cells for boosting systemic resilience to inflammaging, cellular senescence and age-related multimorbidity. She has obtained funding from the major European and Spanish funding organizations, including an European Research Council Starting Grant in 2016, and Consolidator Grant in 2022.


Among the more important discoveries from her lab:

1.Demonstration that mimicking age-associated mitochondrial dysfunction in T cells does not only recapitulate immunosenescence, but causes a general, body-wide deterioration of health with multiple aging-related features. These results place the metabolism of T cells at the crossroad between inflammation, senescence and aging, highlighting that immunometabolism can be a therapeutic target to delay aging.
2.Decoding the molecular mechanisms by which aged T cells contribute to inflammaging and age-related diseases
3.The above studies in her laboratory have allowed them to propose new therapeutic targets to delay age-related multimorbidity and to reverse aortic aneurysms and prevent sudden death due to aortic dissections

Her international leadership in the field is endorsed by having been an "Invited Speaker" at more than 60 conferences and international congresses in the last 5 years, including Gordon Conferences, Cold Spring Harbor Conferences, EMBO workshops, Keystone Symposium, and participating as a keynote speaker on several occasions.

She has been awarded with ,L’Oréal UNESCO for Women in Science (2015), and BANCO SABADELL AWARD for Biomedical Research (2022), Royal Spanish Acadamy of Science for Female Scientist among others.


Oral presentation
ID: 491
Inflammation and Immunity as mitochondrial contributor to pathology

Dissecting the role of type I interferon signaling in microglial response in a mouse model of mitochondrial disease

Melania González-Torres1,2, Patrizia Bianchi1, Patricia Prada-Dacasa1, Joaquín Fernández-Irigoyen3, Enrique Santamaría3, Mariona Arberola4, Elisenda Sanz1,2, Albert Quintana1,2

1Institute of Neurosciences, Autonomous University of Barcelona, Barcelona, Spain; 2Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain; 3Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain; 4Centro de Análisis Genómico, CNAG-CRG, Barcelona, Spain

Bibliography
Gella, A., Prada, P., Carrascal, M., Urpí, A., González-Torres, M., Abian, J., Sanz, E., & Quintana, A. (2020). Mitochondrial Proteome of Affected Glutamatergic Neurons in a Mouse Model of Leigh Syndrome. Frontiers in Cell and Developmental Biology, 8, 660.


Oral presentation
ID: 323
Inflammation and Immunity as mitochondrial contributor to pathology

The contribution of cell free-mitochondrial DNA in the pathogenesis of MELAS syndrome

Alessandra Maresca1, Monica Moresco1, Valentina Del Dotto2, Concetta Valentina Tropeano1, Mariantonietta Capristo1, Claudio Fiorini1, Danara Ormanbekova1, Alessandro Rapone2, Maria Lucia Valentino1,2, Chiara La Morgia1,2, Valerio Carelli1,2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Italy; 2Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy



Oral presentation
ID: 182
Inflammation and Immunity as mitochondrial contributor to pathology

A novel role for the mitochondrial topoisomerase TOP1MT in mediating mtDNA release and cGAS-STING activation

Iman Al Khatib1, Yves Pommier2, Phillip West3, William Gibson4, Tim Shutt1

1University of Calgary, Canada; 2National Institutes of Health; 3Texas A&M University; 4University of British Columbia

Bibliography
Al Khatib I, Deng J, Symes SA, Zhang H, Huang S, Pommier Y, Khan A, Gibson W, Shutt TE. Activation of the cGAS-STING innate immune response in cells with deficient mitochondrial topoisomerase TOP1MT. https://www.biorxiv.org/content/10.1101/2022.03.08.483326v1

Al Khatib I, Kerr M, Zhang H, Huang S, Pommier Y, Khan A, Shutt TE. Functional characterization of two variants in the mitochondrial topoisomerase gene TOP1MT that impact regulation of the mitochondrial genome. Journal of Biological Chemistry. 2022 Oct; 298(10):102420.


Flash Talk
ID: 209
Inflammation and Immunity as mitochondrial contributor to pathology

Impaired inflammatory response to lipopolysaccharide in fibroblasts from patients with long-chain fatty acid oxidation disorders

Signe Mosegaard1,2, Krishna Twayana3, Simone Denis1, Jeffrey Kroon4, Bauke Schomakers5, Michel van Weeghel5, Riekelt Houtkooper1, Rikke Olsen2, Christian Holm3

1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 2Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark; 3Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark; 4Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 5Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Bibliography
Mosegaard S*, Dipace G*, Bross P, Carlsen J, Gregersen N, Olsen RKJ. 2020. ”Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism”. International Journal of Molecular Sciences;21(11):3847. doi: 10.3390/ijms21113847.

Mosegaard S*, Bruun GH*, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. 2017. “An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency”. Molecular Genetics and Metabolism;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014.

Olsen RKJ*, Koňaříková E*, Giancaspero TA*, Mosegaard S*, Boczonadi V*, Mataković L*, ….. Barile M, Prokisch H. 2016. ”Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency”. American Journal of Human Genetics;98(6):1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

V.A. Yépez, M. Gusic, R. Kopajtich, C. Mertes, N.H. Smith, C.L. Alston, R. Ban, S. Beblo, R. Berutti, H. Blessing, E. Ciara, F. Distelmaier, P. Freisinger, J. Häberle, S.J. Hayflick, M. Hempel, Y.S. Itkis, Y. Kishita, T. Klopstock, T.D. Krylova, C. Lamperti, D. Lenz, C. Makowski, S. Mosegaard, M.F. Müller, G. Muñoz-Pujol, A. Nadel, A. Ohtake, Y. Okazaki, E. Procopio, T. Schwarzmayr, J. Smet, C. Staufner, S.L. Stenton, T.M. Strom, C. Terrile, F. Tort, R. Van Coster, A. Vanlander, M. Wagner, M. Xu, F. Fang, D. Ghezzi, J.A. Mayr, D. Piekutowska-Abramczuk, A. Ribes, A. Rötig, R.W. Taylor, S.B. Wortmann, K. Murayama, T. Meitinger, J. Gagneur, H. Prokisch, Clinical implementation of RNA sequencing for Mendelian disease diagnostics, Genome Med. 14 (2022) 38. https://doi.org/10.1186/s13073-022-01019-9.

Fogh S, Dipace G, Bie A, Veiga-da-Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. “Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria?” J Inherit Metab Dis. 2021 Sep;44(5):1215-1225. doi: 10.1002/jimd.12394.

Muru K., Reinson K., Künnapas K., Lilleväli H., Nochi Z., Mosegaard S., Pajusalu S., Olsen R. and Õunap K. “FLAD1 Asso-ciated Multiple Acyl-CoA Dehydrogenase Deficiency Identified by Newborn Screening.”. Molecular Genetics & Genomic Medicine;7(9). doi: 10.1002/mgg3.915.

García-Villoria J., de Azua B., Tort F., Mosegaard S., Matalonga L., Ugarteburu O., Teixidó L., Olsen R. and Ribes A. “FLAD1, a recently described gene associated to multiple acyl-CoA dehydrogenase deficiency (MADD) is mutated in a patient with myopathy, scoliosis and cataracts.”. Clinical Genetics;94(6):592-593. doi: 10.1111/cge.13452.

Auranen M., Paetau A., Piirilä P., Pohju A., Salmi T., Lamminen A., Thure H., Löfberg M., Mosegaard S., Olsen R., Tyni T. “FLAD1 gene mutation causes riboflavin responsive MADD disease”. Neuromuscular Disorders;27(6):581-584. doi: 10.1016/j.nmd.2017.03.003.


Flash Talk
ID: 409
Inflammation and Immunity as mitochondrial contributor to pathology

Fumarate induces mtDNA release via mitochondrial-derived vesicles and drives innate immunity

Vincent Paupe1, Vincent Zecchini2, Christian Frezza2,3, Julien Prudent1

1Medical Research Council, MBU,University of Cambridge, UK; 2Medical Research Council Cancer Unit,University of Cambridge, UK; 3CECAD Research Centre, University of Cologne, Cologne, Germany

Bibliography
AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology.
Tilokani L, Russell FM, Hamilton S, Virga DM, Segawa M, Paupe V, Gruszczyk AV, Protasoni M, Tabara LC, Johnson M, Anand H, Murphy MP, Hardie DG, Polleux F, Prudent J.
Sci Adv. 2022 Nov 11;8(45):eabo7956. doi: 10.1126/sciadv.abo7956. Epub 2022 Nov 11. PMID: 36367943

Mitochondrial translation is required for sustained killing by cytotoxic T cells.
Lisci M, Barton PR, Randzavola LO, Ma CY, Marchingo JM, Cantrell DA, Paupe V, Prudent J, Stinchcombe JC, Griffiths GM.
Science. 2021 Oct 15;374(6565):eabe9977. doi: 10.1126/science.abe9977. Epub 2021 Oct 15.
PMID: 34648346

Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division.
Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H, Pogson JH, Zunino R, McBride HM, Prudent J.
Science. 2020 Mar 20;367(6484):1366-1371. doi: 10.1126/science.aax6089.
PMID: 32193326

SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, Shoubridge EA. EMBO Mol Med. 2016 Sep 1;8(9):1019-38. doi: 10.15252/emmm.201506159. Print 2016 Sep.
PMID: 27390132

CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter.
Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA.
Cell Metab. 2015 Jan 6;21(1):109-16. doi: 10.1016/j.cmet.2014.12.004.
PMID: 25565209


Flash Talk
ID: 430
Inflammation and Immunity as mitochondrial contributor to pathology

Free cytosolic-mitochondrial DNA triggers a potent type-I Interferon response in Kearns–Sayre patients counteracted by mofetil mycophenolate

Michela Di Nottia1, Ivan Caiello2, Alessandra Torraco1, Martina Zoccola1, Fabrizio De Benedetti2, Carlo Dionisi-Vici3, Enrico Bertini4, Diego Martinelli3, Rosalba Carrozzo1

1Unit of Cellular Biology and Diagnosis of Mitochondrial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; 2Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 3Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Research Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

 
10:45am - 11:00amCoffee Break
Location: Bologna Congress Center
11:00am - 12:40pmSession 3.2: Mitochondrial mechanisms in neurodegeneration and neurodevelopment
Location: Bologna Congress Center - Sala Europa
Session Chair: Vincent Procaccio
Session Chair: Elena Rugarli
 
Invited
ID: 675
Invited Speakers

Destructuring of mitochondrial cristae in the initiation of CHCHD10-related neurodegeneration

Véronique Paquis-Flucklinger1,2

1IRCAN, UMR 7284/INSERM U1081/UCA, Nice, France; 2Reference Center for mitochondrial diseases, Universitary hospital, Nice, France



Invited
ID: 670
Invited Speakers

Convergence of mitochondrial and lysosomal dysfunction in Parkinson’s disease

Lena F Burbulla

Ludwig Maximilian University (LMU) Munich, Germany



Oral presentation
ID: 588
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Development of cortical organoids to model m.3243A>G disease and understand cell specificity

Denisa Hathazi, Yu Nie, Camilla Lions, Juliane Müller, George Gibbons, Patrick Chinnery, Andras Lakatos, Rita Horvath

University of Cambridge, United Kingdom



Oral presentation
ID: 623
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Brain and brainstem-specific mitochondrial diversity associated with vulnerability to neurodegeneration in mitochondrial diseases

Anna S. Monzel1, Masashi Fujita2, Ayelet M. Rosenberg1, Eugene V. Mosharov3,6, Jack Devine1, David A. Bennett4,5, Vilas Menon2, Philip L. De Jager2, Martin Picard1,6,7

1Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York NY, USA; 2Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York NY, USA; 3Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, New York NY, USA; 4Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; 5Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; 6New York State Psychiatric Institute, New York NY, USA; 7Department of Neurology, Columbia University Irving Medical Center, New York NY, USA



Oral presentation
ID: 527
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial DNA mutations exacerbate motor and behavioural deficits in a mouse model of Parkinson’s disease

Michael J Keogh1,2, Yu Nie2,3, Zoe Golder2,3, Malwina Prater2,3, Nils-Goran Larsson4, Andrew Blamire1,5, Chris Morris1, Patrick F Chinnery2,3

1Clinical and Translational Research Institute, Centre for Life, Newcastle University, UK, NE3 1BZ; 2Department of Clinical Neuroscience, University of Cambridge, UK, CB2 0QQ; 3Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK, CB2 0QQ; 4Division of Molecular Metabolism, Biomedicum, floor 9D, Solnavägen 9, Karlolinska Institute, 171 65 Stockholm, Sweden; 5Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, NE4 5PL

Bibliography
Nie, Yu, et al. "Heteroplasmic mitochondrial DNA mutations in frontotemporal lobar degeneration." Acta Neuropathologica 143.6 (2022): 687-695.
Murley, Alexander G., et al. "High-Depth PRNP Sequencing in Brains With Sporadic Creutzfeldt-Jakob Disease." Neurology Genetics 9.1 (2023).
Burr, Stephen P., et al. "Cell lineage-specific mitochondrial resilience during mammalian organogenesis." Cell (2023).


Flash Talk
ID: 556
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Macromolecular crowding: A novel player in mitochondrial physiology and disease

Elianne P Bulthuis1, Cindy EJ Dieteren1, Jesper Bergmans1, Job Berkhout1, Jori A Wagenaars1, Els MA van de Westerlo1, Emina Podhumljak1, Mark A Hink2, Laura FB Hesp1, Hannah S Rosa3, Afshan N Malik3, Mariska Kea-te Lindert1, Peter HGM Willems1, Han JGE Gardeniers4, Wouter K den Otter4, Merel JW Adjobo-Hermans1, Werner JH Koopman1,5

1Radboud University Medical Center, The Netherlands; 2University of Amsterdam, The Netherlands; 3King's College, London, UK; 4University of Twente, The Netherlands; 5Wageningen University, The Netherlands

Bibliography
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MK, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J. 2023 Feb 24:e108533. doi: 10.15252/embj.2021108533. Epub ahead of print. PMID: 36825437.

Bulthuis EP, Adjobo-Hermans MJW, Willems PHGM, Koopman WJH. Mitochondrial Morphofunction in Mammalian Cells. Antioxid Redox Signal. 2019 Jun 20;30(18):2066-2109. doi: 10.1089/ars.2018.7534. Epub 2018 Nov 29.

Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ. Solute diffusion is hindered in the mitochondrial matrix. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8657-62. doi: 10.1073/pnas.1017581108. Epub 2011 May 9. PMID: 21555543; PMCID: PMC3102363.


Flash Talk
ID: 342
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Preserved motor function and striatal innervation despite severe degeneration of dopamine neurons upon mitochondrial dysfunction

Thomas Paß1, Roy Chowdury2, Julien Prudent2, Yu Nie3, Patrick Chinnery3, Markus Aswendt4, Heike Endepols5, Bernd Neumaier5, Trine Riemer6, Bent Brachvogel6, Rudi Wiesner7

1Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Germany; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK; 3Medical Research Council Mitochondrial Biology Unit and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, UK; 4Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; 5Institute of Radiochemistry and Experiment Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Germany; 6Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, Germany; 7Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Center for Molecular Medicine Cologne, University of Cologne, Germany

Bibliography
(1) Ricke, K.M., T. Paß, S. Kimoloi, K. Fährmann, C. Jüngst, A. Schauss, O.R. Baris, M. Aradjanski, A. Trifunovic, T.M. Eriksson Faelker, M. Bergami and R.J. Wiesner (2020): Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. J Neuroscience 40: 1975-1986
(2) Dölle C., Flønes I., Nido G.S., Miletic H., Osuagwu N., Kristoffersen S., Lilleng P.K., Larsen J.P., Tysnes O.B., Haugarvoll K., Bindoff L.A., Tzoulis C. (2016): Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 7: 13548.


Flash Talk
ID: 320
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The mitochondrial DNA depletion syndrome protein FBXL4 mediates the degradation of the mitophagy receptors BNIP3 and NIX to suppress mitophagy

Keri-Lyn Kozul1, Giang Thanh Nguyen-Dien1,2, Yi Cui1, Prajakta Gosavi Kulkarni1, Michele Pagano3,4, Brett M. Collins5, Robert Taylor6,7, Mathew J.K. Jones8, Julia K. Pagan1,5,8

1School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia; 2Department of Biotechnology, School of Biotechnology, Viet Nam National University-International University, Ho Chi Minh City, Vietnam; 3Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA; 4Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA; 5The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia

Bibliography
Nguyen-Dien G, Kozul K, Cui Y, Townsend B, Gosavi Kulkarni P, Ooi S, Marzio A, Carrodus N, Zuryn S, Pagano M et al. (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv 2022.10.12.511867; doi: https://doi.org/10.1101/2022.10.12.511867
 
12:40pm - 12:45pmConference Picture
Location: Bologna Congress Center - Sala Europa
12:45pm - 1:15pmIndustry Workshop: Oroboros
Location: Bologna Congress Center - Sala Europa
12:45pm - 1:45pmLunch
Location: Bologna Congress Center - Sala Europa
1:45pm - 3:30pmSession 3.3: Metabolic stress responses in mitochondrial diseases and cancer
Location: Bologna Congress Center - Sala Europa
Session Chair: Luca Scorrano
Session Chair: Luisa Iommarini
Invited Speaker: A. Trifunovic; L. Greaves
 
Invited
ID: 195
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Transcriptional regulation of mitochondrial stress responses

Aleksandra Trifunovic

University of Cologne, Germany

Bibliography
1.Croon M, Szczepanowska K, Popovic M, Lienkamp C, Senft K, Brandscheid CP, Theresa Bock T, Gnatzy-Feik L, Ashurov A, Acton RA, Kaul H, Pujol C, Rosenkranz S, Krüger M and Trifunovic A. (2022) FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction. Sci Adv. 2022 Apr 8;8(14):eabn7105.
2.Rumyantseva A, Popovic M and Trifunovic A. (2022) CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis. Brain Feb 11;e109169.
3.Kaspar, S., Oertlin, C., Szczepanowska, K., Kukat, A., Senft, K., Lucas, C., Brodesser, S., Hatzoglou, M., Larsson, O., Topisirovic, I., Trifunovic, A. (2021) Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Sci. Adv. 7, eabf0971


Invited
ID: 678
Invited Speakers

Mitochondrial DNA mutations in ageing and cancer - what's the connection?

Anna Smith1, Julia Whitehall1, Shivam Karadkar1, Pedro Silva-Pinheiro2, Conor Lawless1, Michal Minczuk2, Doug Turnbull1, Owen Sansom3, Laura Greaves1

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2MRC Mitochondrial Biology Unit, Cambridge, United Kingdom; 3CRUK Beatson Institute, Glasgow, United Kingdom

Bibliography
Gorelick, A. N., M. Kim, W. K. Chatila, K. La, A. A. Hakimi, M. F. Berger, B. S. Taylor, P. A. Gammage and E. Reznik (2021). "Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA." Nat Metab 3(4): 558-570.

Greaves, L. C., M. J. Barron, S. Plusa, T. B. Kirkwood, J. C. Mathers, R. W. Taylor and D. M. Turnbull (2010). "Defects in multiple complexes of the respiratory chain are present in ageing human colonic crypts." Exp Gerontol 45(7-8): 573-579.

Smith, A. L. M., J. C. Whitehall, C. Bradshaw, D. Gay, F. Robertson, A. P. Blain, G. Hudson, A. Pyle, D. Houghton, M. J. Hunt, J. N. Sampson, C. Stamp, G. Mallett, S. Amarnath, J. Leslie, F. Oakley, L. Wilson, A. Baker, O. M. Russell, R. Johnson, C. A. Richardson, B. Gupta, I. McCallum, S. A. C. McDonald, S. Kelly, J. C. Mathers, R. Heer, R. W. Taylor, N. D. Perkins, D. M. Turnbull, O. J. Sansom and L. C. Greaves (2020). "Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis." Nature Cancer 1(10): 976-989.


Oral presentation
ID: 452
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria

Janne Purhonen1,2, Rishi Banerjee1,2, Vilma Wanne1,2, Nina Sipari3, Matthias Mörgelin4,5, Vineta Fellman1,2,6,7, Jukka Kallijärvi1,2

1Folkhälsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; 3Viikki Metabolomics Unit, University of Helsinki, Finland; 4Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden; 5Colzyx AB, Lund, Sweden; 6Department of Clinical Sciences, Lund, Pediatrics, Lund University, Sweden; 7Children’s Hospital, Helsinki University Hospital, Finland

Bibliography
Purhonen J., Banerjee R, Wanne V. Sipari N. Mörgelin M. Fellman V. and Kallijärvi J. Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria. BioRxiv 2023; 01.10.521980.

Purhonen J. and Kallijärvi J. Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription. BioRxiv 2023; 02.18.527797.

Banerjee R. Purhonen J. and Kallijärvi, J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. The FEBS Journal 2021; 289, 6936–6958.

Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye, and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Research 2020: gkaa516

Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nature Communications 2020;11:1–12.

Rajendran J, Purhonen J, Tegelberg S, Smolander OP, Mörgelin M, Rozman J, Gailus-Durner J, Fuchs H, Hrabe de Angelis M, Auvinen P, Mervaala E, Jacobs HT, Szibor M, Fellman V, Kallijärvi J. Alternative oxidase‐mediated respiration prevents lethal mitochondrial cardiomyopathy. EMBO Molecular Medicine 2019;11:e9456.


Oral presentation
ID: 624
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A genetic deficiency screen in vivo reveals rescue mechanisms of mitochondrial dysfunction

Najla El Fissi1, Florian Rosenberger2, Kai Chang1, Thomas Benedict Barton-Owen3, Zoe Golder3, Matthias Mann2, Patrick Chinnery3, Anna Wedell1, Christoph Freyer1, Anna Wredenberg1

1Karolinska Institutet, Sweden; 2Max-Planck Institute of Biochemistry, Germany; 3University of Cambridge, Cambridge Biomedical Campus, UK



Oral presentation
ID: 456
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Heterochromatin Protein 1 controls gene expression and longevity in response to mitochondrial dysfunction

Patricia de la Cruz Ruiz1, Hayat Heluani Gahete1,2, María de los Angeles Ortega De La Torre2, María Jesús Rodríguez Palero1,2, Cristina Ayuso García1, Shinya Ohta3, Peter Askjaer1, Marta Artal-Sanz1,2

1Andalusian Centre for Developmental Biology (CABD). CSIC-Universidad Pablo de Olavide-Junta de Andalucía. Carretera de Utrera Km 1, 41013 Sevilla, Spain.; 2Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide. Carretera de Utrera Km 1, 41013 Seville, Spain; 3Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan.



Flash Talk
ID: 381
Metabolic stress responses in mitochondrial diseases, ageing and cancer

High fat diet ameliorates the mitochondrial cardiomyopathy of CHCHD10 mutant mice

Hibiki Kawamata, Nneka Southwell, Nicole Sayles, Giovanni Manfredi

Weill Cornell Medicine, United States of America



Flash Talk
ID: 413
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Functional characterisation of the human mitochondrial disaggregase, CLPB

Megan J Baker1, Alexander J Anderson1, Catherine S Palmer1, David R Thorburn2,3, Ann E Frazier2, Diana Stojanovski1

1Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville VIC 3010, Australia; 2Murdoch Children’s Research Institute, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville VIC 3052, Australia; 3Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Parkville VIC 3052, Australia



Flash Talk
ID: 448
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitochondrial inhibitor IF1 has a dual role in cancer

Martina Grandi1, Cristina Gatto1, Simone Fabbian2, Natascia Tiso3, Francesco Argenton3, Massimo Bellanda2, Giancarlo Solaini1, Valentina Giorgio*1, Alessandra Baracca*1

1Department of Biomedical and Neuromotor Sciences, University of Bologna; 2Department of Chemical Science, University of Padova; 3Department of Biology, University of Padova, Padova

Bibliography
1. Galber, C; Fabbian, S; Gatto, C; Grandi, M; Carissimi, S; Acosta, MJ; Sgarbi, G; Tiso, N; Argenton, F; Solaini, G; Baracca, A; Bellanda, M; Giorgio,CELL DEATH & DISEASE, 2023, 14, pp. 1 - 19
2. Gatto, C; Grandi, M; Solaini, G; Baracca, A; Giorgio, V, FRONTIERS IN PHYSIOLOGY, 2022, 13, 917203, pp. 1 - 11
3. Galber C; Minervini G; Cannino G; Boldrin F; Petronilli V; Tosatto S; Lippe G; Giorgio V, CELL REPORTS, 2021, 35, 109111, pp. 1 - 14
 
3:30pm - 3:50pmIndustry Workshop: UCB Farchim SA
Location: Bologna Congress Center - Sala Europa
3:30pm - 4:30pmTea Break and poster session
Location: Bologna Congress Center
Session topics:
- Clinical 2: natural history, biomarkers and outcome measures
- Inflammation and Immunity as mitochondrial contributor to pathology
- Metabolic stress responses in mitochondrial diseases, ageing and cancer
 
ID: 653
Clinical 2: natural history, biomarkers and outcome measures

Evaluating functional mobility and endurance in adults with Primary Mitochondrial Myopathy (PMM); insights concerning gait protocol and outcome measure selection.

Lisa Alcock1,2, Alaa Abouhajar3, Theophile Bigirumurame4, Penny Bradley5, Philip Brown6, Laura Brown7, Ian Campbell5, Silvia Del Din1,2, Julie Faitg7, Gavin Falkous7, Gráinne S. Gorman2,7,8, Heather Hunter6, Rachel Lakey3, Robert McFarland7,8, Jane Newman2,7,8, Lynn Rochester1,2,6, Vicky Ryan4, Hesther Smith5, Alison Steel3, Renae J. Stefanetti2,7, Huizhong Su2,7, Robert W. Taylor2,7,8, Naomi J.P. Thomas2,7,8, Helen Tuppen2,7, Amy E. Vincent7, Charlotte Warren2,7, Gillian Watson3

1Translational and Clinical Research Institute, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 3Newcastle Clinical Trials Unit, Newcastle University, UK; 4Population Health Sciences Institute, Newcastle University, UK; 5Pharmacy Directorate, The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 6The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 7Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, UK; 8NHS Highly Specialised Service for Rare Mitochondrial Disorders, The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK



ID: 173
Clinical 2: natural history, biomarkers and outcome measures

Natural variability in protein expression of oxidative deficiency markers in single muscle fibres and tissue homogenate mitochondrial genetics in m.3243A>G-related myopathy

Tiago Bernardino Gomes1,2, Charlotte Warren1, Valeria Di Leo1, Jordan Childs1,3, Grainne Gorman1,2, Doug M Turnbull1, Amy E Vincent1

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom; 3Centre for Doctoral Training in Cloud Computing and Big Data, Newcastle upon Tyne, United Kingdom

Bibliography
Bernardino Gomes, T. (2019). The best care for children with facioscapulohumeral dystrophy. Dev Med Child Neurol, 61(8), 865. doi:10.1111/dmcn.14158
Bernardino Gomes, T. M., Ng, Y. S., Pickett, S. J., Turnbull, D. M., & Vincent, A. E. (2021). Mitochondrial DNA disorders: From pathogenic variants to preventing transmission. Hum Mol Genet. doi:10.1093/hmg/ddab156
Horrigan, J., Gomes, T. B., Snape, M., Nikolenko, N., McMorn, A., Evans, S., . . . Lochmuller, H. (2020). A Phase 2 Study of AMO-02 (Tideglusib) in Congenital and Childhood-Onset Myotonic Dystrophy Type 1 (DM1). Pediatric Neurology, 112, 84-93. doi:10.1016/j.pediatrneurol.2020.08.001
Leo, V. D., Lawless, C., Roussel, M.-P., Gomes, T. B., Gorman, G. S., Russell, O. M., . . . Vincent, A. E. (2023). Strength training rescues mitochondrial dysfunction in skeletal muscle of patients with myotonic dystrophy type 1. medRxiv, 2023.2001.2020.23284552. doi:10.1101/2023.01.20.23284552


ID: 402
Clinical 2: natural history, biomarkers and outcome measures

Retrospective natural history of mitochondrial deoxyguanosine kinase deficiency: a worldwide cohort of 197 patients

E. Manzoni1,2, P. Gaignard3, L.D. Schlieben4,5, S. Carli1, M. Hirano6, D. Ronchi7, E. Gonzales8, M. Shimura9, K. Murayama9, Y. Okazaki10, I. Baric11, D. Ramadza11, D. Karall12, J. Mayr13, D. Martinelli14, C. La Morgia15,16, G.A. Primiano17,18, R. Santer19, S. Servidei17,18, C. Bris20, A. Cano21, F. Furlan22, S. Gasperini23, N. Laborde24, C. Lamperti25, D. Lenz26, M. Mancuso27, F. Menni22, O. Musumeci28, V. Nesbitt29, E. Procopio30, C. Rouzier31, C. Staufner26, J.W. Taanman32, G. Tal33, C. Ticci30, V. Carelli15,16, V. Procaccio20, H. Prokisch4,5, C. Garone1,2

1Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna; 2IRCCS Istituto delle Scienze Neurologiche, Neuropsichiatria dell’età pediatrica, Bologna; 3Department of Biochemistry, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, France; 4School of Medicine, Institute of Human Genetics, Technical University of Munich,Germany; 5Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany; 6H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; 7Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 8Pediatric Hepatology and Pediatric Liver Transplantation Unit, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France; 9Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-000, Japan; 10Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; 11Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia; 12Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria; 13University Children's Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; 14Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; 15Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 16IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 17Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.; 18Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.; 19Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; 20MitoLab, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute , Angers University Hospital, Angers, France; 21Centre de référence des maladies héréditaires du métabolisme, CHU la Timone Enfants, Marseille, France; 22Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Regional Clinical Center for expanded newborn screening, Milan, Italy; 23Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy.; 24Unité de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse, France; 25Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Neurological Institute "C. Besta", Milan, Italy; 26Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; 27Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa & AOUP, Italy; 28Unit of Neurology and Neuromuscular Disorders, Department of Clinical and experimental Medicine, University of Messina, Italy; 29Department of Paediatrics, Medical Sciences Division, Oxford University, Oxford OX3 9DU, UK; 30Metabolic Unit, Meyer Children's Hospital IRCCS, Florence, Italy; 31Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France; 32Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; 33Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel



ID: 315
Clinical 2: natural history, biomarkers and outcome measures

Tissue, molecular and metabolic changes in the liver of patients with Mitochondrial Neurogastrointestinal Encephalomyopathy

Elisa Boschetti1, Leonardo Caporali1, Irene Neri1, Claudio Fiorini2, Danara Ormanbekova2, Valeria Righi3, Roberto D'Angelo2, Carolina Malagelada4, Roberta Costa1, Giovanna Cenacchi1, Rita Rinaldi2, Antonietta D'Errico5, Maria Lucia Tardio5, Stefano Ratti1, Roberto De Giorgio6, Valerio Carelli1,2, Lucia Manzoli1

1Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna. Italy; 3Department of Life Quality Studies (QuVI), University of Bologna, Bologna, Italy; 4University Hospital Vall d'Hebron. Barcelona. Spain; 5IRCCS St. Orsola. Bologna. Italy; 6Department of Translational Medicine, University of Ferrara, Ferrara, Italy

Bibliography
1. Hirano M et al. and Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mi-tochondrial disorder. Neurology 44: 721–727, 1994. doi:10.1212/wnl.44.4.721

2. Hirano M et al Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE In-ternational Network. J Inherit Metab Dis 1–12, 2020. doi:10.1002/jimd.12300.

3. De Giorgio R et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol 80: 448–455, 2016. doi:10.1002/ana.24724


ID: 206
Clinical 2: natural history, biomarkers and outcome measures

Phenotyping mtDNA-related diseases in childhood: a cohort study of 150 patients

Anna Ardisssone, Giulia Ferrera, Costanza Lamperti, Valeria Tiranti, Daniele Ghezzi, Isabella Moroni, Eleonora Lamantea

Fondazione IRCCS Besta, Milan Italy

Bibliography
Please enter recent publications by the first author.
1. Mitochondrial epilepsy: a cross-sectional nationwide Italian survey.
Ticci C, Sicca F, Ardissone A, Bertini E, Carelli V, Diodato D, Di Vito L, Filosto M, La Morgia C, Lamperti C, Martinelli D, Moroni I, Musumeci O, Orsucci D, Pancheri E, Peverelli L, Primiano G, Rubegni A, Servidei S, Siciliano G, Simoncini C, Tonin P, Toscano A, Mancuso M, Santorelli FM.
Neurogenetics. 2020 Apr;21(2):87-96

2.ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy.
Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, Baratta S, Schöls L, Schüle R, Barboni P, Cascavilla ML, Maresca A, Capristo M, Ardissone A, Pareyson D, Cammarata G, Melzi L, Zeviani M, Peverelli L, Lamperti C, Marzoli SB, Fang M, Synofzik M, Ghezzi D, Carelli V, Taroni F.
Ann Neurol. 2020 Jul;88(1):18-32

3. A homozygous MRPL24 mutation causes a complex movement disorder and affects the mitoribosome assembly.
Di Nottia M, Marchese M, Verrigni D, Mutti CD, Torraco A, Oliva R, Fernandez-Vizarra E, Morani F, Trani G, Rizza T, Ghezzi D, Ardissone A, Nesti C, Vasco G, Zeviani M, Minczuk M, Bertini E, Santorelli FM, Carrozzo R.
Neurobiol Dis. 2020 Jul;141:104880


4.Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I.
Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, Lamantea E, Meisterknecht J, Spagnolo M, He L, Alameer S, Hakami F, Almehdar A, Ardissone A, Alston CL, McFarland R, Wittig I, Ghezzi D, Taylor RW.
EMBO Mol Med. 2020 Nov 6;12(11)


5.SARS-CoV-2 infection in patients with primary mitochondrial diseases: features and outcomes in Italy.
Mancuso M, La Morgia C, Lucia Valentino M, Ardissone A, Lamperti C, Procopio E, Garone C, Siciliano G, Musumeci O, Toscano A, Primiano G, Servidei S, Carelli V.
Mitochondrion. 2021 May;58:243-245


6.Movement Disorders in Children with a Mitochondrial Disease: A Cross-Sectional Survey from the Nationwide Italian Collaborative Network of Mitochondrial Diseases.
Ticci C, Orsucci D, Ardissone A, Bello L, Bertini E, Bonato I, Bruno C, Carelli V, Diodato D, Doccini S, Donati MA, Dosi C, Filosto M, Fiorillo C, La Morgia C, Lamperti C, Marchet S, Martinelli D, Minetti C, Moggio M, Mongini TE, Montano V, Moroni I, Musumeci O, Pancheri E, Pegoraro E, Primiano G, Procopio E, Rubegni A, Scalise R, Sciacco M, Servidei S, Siciliano G, Simoncini C, Tolomeo D, Tonin P, Toscano A, Tubili F, Mancuso M, Battini R, Santorelli FM.
J Clin Med. 2021 May 12;10(10):2063


7.Clinical, imaging, biochemical and molecular features in Leigh syndrome: a study from the Italian network of mitochondrial diseases.
Ardissone A, Bruno C, Diodato D, Donati A, Ghezzi D, Lamantea E, Lamperti C, Mancuso M, Martinelli D, Primiano G, Procopio E, Rubegni A, Santorelli F, Schiaffino MC, Servidei S, Tubili F, Bertini E, Moroni I.
Orphanet J Rare Dis. 2021 Oct 9;16(1):413

8. Kearns-Sayre syndrome: expanding spectrum of a "novel" mitochondrial leukomyeloencephalopathy.
Moscatelli M, Ardissone A (co-first author), Lamantea E, Zorzi G, Bruno C, Moroni I, Erbetta A, Chiapparini L.
Neurol Sci. 2022 Mar;43(3):2081-2084


ID: 262
Clinical 2: natural history, biomarkers and outcome measures

Carrier frequency of pathogenic and likely pathogenic variants in POLG in Eastern Norway

Linda Mathisen1, Erle Kristensen2,3, Siren Berland4, Helle Høyer5, Ying Sheng1, Trine Prescott5, Shamima Rahman6,7, Laurence A. Bindoff3,8,9, Omar Hikmat3,10

1Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; 2Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; 3Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; 4Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; 5Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway; 6Metabolic Unit, Great Ormond Street Hospital, London, UK.; 7Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.; 8Department of Neurology, Haukeland University Hospital, Bergen, Norway; 9Nasjonal kompetansetjeneste for medfødte stoffskiftesykdommer, Oslo University Hospital, Oslo, Norway; 10Department of Pediatrics, Haukeland University Hospital, Bergen, Norway



ID: 470
Clinical 2: natural history, biomarkers and outcome measures

Exercise testing and measurement of habitual physical activities in m.3243A>G-related Mitochondrial Disease

Renae J Stefanetti1,2, Sarah J Charman1, Alasdair P Blain1, Alexandra Bright1,2, Robert McFarland1,2, Yi Shiau Ng1,2, Gráinne S Gorman1,2

1Wellcome Centre for Mitochondrial Research. Clinical and Translational Research Institute. Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust

Bibliography
Cassidy S, Trenell M, Stefanetti RJ, Charman SJ, Barnes AC, Brosnahan N, McCombie L, Thom G, Peters C, Zhyzhneuskaya S, Leslie WS. Physical activity, inactivity and sleep during the Diabetes Remission Clinical Trial (DiRECT). Diabetic Medicine. 2022 Nov 18:e15010.

Abouhajar A, Alcock L, Bigirumurame T, Bradley P, Brown L, Campbell I, Del Din S, Faitg J, Falkous G, Gorman GS, Lakey R. Acipimox in Mitochondrial Myopathy (AIMM): study protocol for a randomised, double-blinded, placebo-controlled, adaptive design trial of the efficacy of acipimox in adult patients with mitochondrial myopathy. Trials. 2022 Dec;23(1):1-5.

Stefanetti RJ, Ng YS, Errington L, Blain AP, McFarland R, Gorman GS. L-arginine in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: a systematic review. Neurology. 2022 Jun 7;98(23):e2318-28.

Houghton D, Ng YS, Jackson MA, Stefanetti R, Hynd P, Mac Aogáin M, Stewart CJ, Lamb CA, Bright A, Feeney C, Newman J. Phase II Feasibility Study of the Efficacy, Tolerability, and Impact on the Gut Microbiome of a Low-Residue (Fiber) Diet in Adult Patients With Mitochondrial Disease. Gastro Hep Advances. 2022 Jan 1;1(4):666-77


ID: 568
Clinical 2: natural history, biomarkers and outcome measures

Leber’s hereditary optic neuropathy in females.

Giulia Amore1, Martina Romagnoli2, Michele Carbonelli1, Chiara La Morgia1,3, Valerio Carelli1,2

1Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy

Bibliography
1.Carelli V, D'Adamo P, Valentino ML, La Morgia C, Ross-Cisneros FN, Caporali L, Maresca A, Loguercio Polosa P, Barboni P, De Negri A, Sadun F, Karanjia R, Salomao SR, Berezovsky A, Chicani F, Moraes M, Moraes Filho M, Belfort Jr R, Sadun AA. Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain. 2016. mar; 139, e17.
2.Lopez Sanchez MIG, Kearns LS, Staffieri SE, Clarke L, McGuinness MB, Meteoukki W, Samuel S, Ruddle JB, Chen C, Fraser CL, Harrison J, Hewitt AW, Howell N, Mackey DA. Establishing risk of vision loss in Leber hereditary optic neuropathy. Am J Hum Genet. 2021 Nov 4;108(11):2159-2170. doi: 10.1016/j.ajhg.2021.09.015. Epub 2021 Oct 19. PMID: 34670133; PMCID: PMC8595929.


ID: 539
Clinical 2: natural history, biomarkers and outcome measures

Non-invasive tool for mitochondrial diseases diagnostics

Zuzana Korandová1,2, Eliška Koňaříková1, Petr Pecina1, Alena Pecinová1, Josef Houštěk1, Hana Hansíková2, Tomáš Honzík2, Tomáš Mráček1

1Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; 21st Faculty of medicine, Charles University, Prague, Czech Republic



ID: 333
Clinical 2: natural history, biomarkers and outcome measures

Obstetric history of women with m.3243A>G – a retrospective cohort study

Petra Kuikka, Hilkka Nikkinen, Kari Majamaa, Mika Henrik Martikainen

University of Oulu and Oulu University Hospital, Finland

Bibliography
n/a


ID: 429
Clinical 2: natural history, biomarkers and outcome measures

Clustering analysis with optical coherence tomography data in Leber hereditary optic neuropathy (LHON) patients by non-negative matrix factorization unsupervised learning technique

Martina Romagnoli1, Michele Carbonelli2, Giulia Amore2, Pietro D’Agati3, Piero Barboni4,5, Leonardo Caporali1, Claudio Fiorini1, Valerio Carelli1,2, Chiara La Morgia2,3

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna - Bologna (Italy); 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica - Bologna (Italy); 4Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele – Milan (Italy); 5Studio Oculistico d’Azeglio - Bologna (Italy)

Bibliography
Yu-Wai-Man P, Votruba M, Burte F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016 Dec;132(6):789-806.
Barboni P, Savini G, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber's hereditary optic neuropathy. Ophthalmology. 2005 Jan;112(1):120-6.
Balducci N, Savini G, Cascavilla ML, et al. Macular nerve fibre and ganglion cell layer changes in acute Leber's hereditary optic neuropathy. Br J Ophthalmol. 2016 Sep;100(9):1232-7.
Barboni P, Savini G, Feuer WJ, et al. Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol. 2012 Nov-Dec;22(6):985-91.
Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010 Jul 2;11:367.


ID: 135
Clinical 2: natural history, biomarkers and outcome measures

Leigh syndrome global patient registry - cure mito foundation

Sophia Zilber1, Kasey Woleben2, Danielle Boyce3, Kevin Freiert4, Courtney Boggs5, Souad Messahel6, Melinda Burnworth7, Titilola Afolabi8, Saima Kayani9

1Cure Mito Foundation, United States of America; 2Cure Mito Foundation, United States of America; 3Cure Mito Foundation, United States of America; Johns Hopkins University School of Medicine; 4Cure Mito Foundation, United States of America; 5Cure Mito Foundation, United States of America; 6Perot Foundation Neuroscience Transla-tional Research Center (PNTRC), The University of Texas Southwestern Medical Center O'Donnell Brain Institute; 7Midwestern University College of Pharmacy; 8Midwestern University College of Pharmacy; 9Cure Mito Foundation; The University of Texas Southwestern Medical Center



ID: 552
Clinical 2: natural history, biomarkers and outcome measures

Mitochondrial ATP synthase deficiency and its relationship with the urea cycle

Barbara Siri1, Diego Martinelli1, Giorgia Olivieri1, Sara Cairoli2, Bianca Goffredo2, Alessandra Torraco3, Rosalba Carrozzo3, Carlo Dionisi-Vici1

1Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy; 2Laboratory of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy; 3Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Bibliography
1.Dvorakova V, Magner M, Honzik T. Hyperammonemic crisis in a child with ATP synthase deficiency caused by mtDNA mutation m.8851T>C. Mol Genet Metab Rep. 2014;2:46. Published 2014 Dec 18.

2.Žigman T, Šikić K, Petković Ramadža D, et al. ATP synthase deficiency due to m.8528T>C mutation - a novel cause of severe neonatal hyperammonemia requiring hemodialysis. J Pediatr Endocrinol Metab. 2020;34(3):389-393. Published 2020 Nov 13.

3.Magner M, Dvorakova V, Tesarova M, et al. TMEM70 deficiency: long-term outcome of 48 patients [published correction appears in J Inherit Metab Dis. 2015 May;38(3):583-4. Morava-Kozicz, Eva [corrected to Morava, Eva]]. J Inherit Metab Dis. 2015;38(3):417-426.

4.Honzík T, Tesarová M, Mayr JA, et al. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch Dis Child. 2010;95(4):296-301.
5. Staretz-Chacham O, Wormser O, Manor E, Birk OS, Ferreira CR. TMEM70 deficiency: Novel mutation and hypercitrullinemia during metabolic decompensation. Am J Med Genet A. 2019;179(7):1293-1298.


ID: 289
Clinical 2: natural history, biomarkers and outcome measures

Quantifying ataxia in adult patients with primary mitochondrial disease

Jane Newman1,2,3,4, Lisa Alcock2,4, Harry Ingledew1, Silvia Del Din2,4, Aye-Myat Moe1,2,3,4, Yi Shiau Ng1,2,3,4

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2NIHR Newcastle Biomedical Research Centre, Newcastle University; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 4Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK



ID: 407
Clinical 2: natural history, biomarkers and outcome measures

Retrospective natural history study of MTRFR/C12orf65-related disorders

Catarina Olimpio1, Emma Harrison2, Chloe Seikus2, Allison Moore3, Heather Biggs2, Rita Horvath2

1East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; 2Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (add-tr.mitoteam@nhs.net); 3Hereditary Neuropathy Foundation, New York, NY, USA (https://www.hnf-cure.org/)



ID: 466
Clinical 2: natural history, biomarkers and outcome measures

Correlation of mitochondrial respiration in platelets, peripheral blood mononuclear cells and muscle fibres

Emil Westerlund1,2, Sigurður E. Marelsson1,3, Michael Karlsson4, Fredrik Sjövall1,5, Imen Chamkha1, Eleonor Åsander Frostner1, Johan Lundgren6, Vineta Fellman6, Erik A. Eklund6, Katarina Steding-Ehrenborg7, Niklas Darin8, Gesine Paul9, Magnus J. Hansson1, Johannes K. Ehinger1,10, Eskil Elmér1

1Lund University, Sweden; 2A&E Department, Kungälv Hospital, Kungälv, Sweden; 3Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland; 4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark; 5Skåne University Hospital, Department of Intensive- and perioperative Care, Malmö, Sweden; 6Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden; 7Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden; 8Department of Pediatrics, The Queen Silvia Children’s Hospital, University of Gothenburg, Gothenburg, Sweden; 9Lund University, Department of Clinical Sciences Lund, Translational Neurology Group and Wallenberg Center for Molecular Medicine, Lund, Sweden; 10Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Lund, Sweden



ID: 154
Clinical 2: natural history, biomarkers and outcome measures

Epidemiology and the natural history of POLG disease in Norway

Erle Kristensen1,2, Linda Mathisen3, Siren Berland4, Claus Klingenberg5,6, Eylert Brodtkorb7,8, Magnhild Rasmussen9,10, Trine Tangeraas11, Yngve Thomas Bliksrud1, Shamima Rahman12,13, Laurence Bindoff11,14, Omar Hikmat2,15

1Department of Medical Biochemistry, Oslo University Hospital, Norway; 2Department of Clinical Medicine (K1), University of Bergen, Norway; 3Department of Medical Genetics, Oslo University Hospital, Norway; 4Department of Medical Genetics, Haukeland University Hospital, Norway; 5Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, Norway; 6Department of Paediatrics, University Hospital of North Norway, Norway; 7Department of Neurology, St. Olav’s Hospital, University Hospital, Norway; 8Department of Neuroscience and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology, Norway; 9Unit for Congenital and Hereditary Neuromuscular Conditions (EMAN), Department of Neurology, Oslo University Hospital, Norway; 10Department of Clinical Neurosciences for Children, Oslo University Hospital, Norway; 11Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway. European Reference Network for Hereditary Metabolic Disorders; 12Metabolic Unit, Great Ormond Street Hospital, London, UK. European Reference Network for Hereditary Metabolic Disorders; 13Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UK; 14Department of Neurology, Haukeland University Hospital, Norway; 15Department of Pediatrics, Haukeland University Hospital, Norway

Bibliography
1.Bendiksen Skogvold H, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Haarr D, et al. A pioneer study on human 3-nitropropionic acid intoxication: Contributions from metabolomics. J Appl Toxicol. 2022;42(5):818-29.
2.Böhm HO, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Rootwelt H, et al. Global Metabolomics Discovers Two Novel Biomarkers in Pyridoxine-Dependent Epilepsy Caused by ALDH7A1 Deficiency. Int J Mol Sci. 2022;23(24).
3.Tangeraas T, Ljungblad UW, Lutvica E, Kristensen E, Rowe AD, Bjørke-Monsen AL, et al. Vitamin B12 Deficiency (Un-)Detected Using Newborn Screening in Norway. Int J Neonatal Screen. 2023;9(1).
4.Jamali A, Kristensen E, Tangeraas T, Arntsen V, Sikiric A, Kupliauskiene G, et al. The spectrum of pyridoxine dependent epilepsy across the age span: A nationwide retrospective observational study. Epilepsy Research. 2023;190:107099.


ID: 529
Clinical 2: natural history, biomarkers and outcome measures

The evolving phenotypic profile of cardiomyopathy in patients with Barth syndrome

Carolyn Taylor1, Hilary J. Vernon2, Hani N. Sabbah3, David Brown4, Anthony Abbruscato4, Jim Carr4

1Medical University of South Carolina, Charleston, SC, United States of America; 2Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; 3Henry Ford Hospital, Detroit, MI, United States of America; 4Stealth BioTherapeutics, Inc, Needham, MA, United States of America



ID: 251
Clinical 2: natural history, biomarkers and outcome measures

True or false mitochondrial disorder?

Agnes Rotig1,3, Giulia Barcia1,2,3, Zahra Assouline2,3, Arnold Munnich1, Claire-Marine Dufeu-Bérat2,3, Nathalie Boddaert1,2, Manuel Schiff1,3, Jean-Paul Bonnefont1,2,3

1INSERM UMR1163, Université Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France; 2Departments of Pediatric and Genetics, Hôpital Necker-Enfants-Malades, Paris, France; 3CARAMMEL reference center for mitochondrial diseases



ID: 629
Clinical 2: natural history, biomarkers and outcome measures

An automated processing pipeline to perform probabilistic tractography of the anterior optic pathway applied to Leber’s hereditary optic neuropathy.

Giovanni Sighinolfi1,2, Laura Ludovica Gramegna1, Chiara La Morgia2, Alessandro Carrozzi1, Cristiana Fiscone1,2, Claudia Testa2,3, Raffaele Lodi1,2, Valerio Carelli1,2, Caterina Tonon1,2, David Neil Manners1

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 3Department of Physics and Astronomy, University of Bologna, Bologna, Italy

Bibliography
1. Manners DN, Gramegna LL, La Morgia C, Sighinolfi G, Fiscone C, Carbonelli M, Romagnoli M, Carelli V, Tonon C, Lodi R. Multishell Diffusion MR Tractography Yields Morphological and Microstructural Information of the Anterior Optic Pathway: A Proof-of-Concept Study in Patients with Leber's Hereditary Optic Neuropathy. Int J Environ Res Public Health. 2022 Jun 5;19(11):6914. doi: 10.3390/ijerph19116914
2. He J, Zhang F, Xie G, Yao S, Feng Y, Bastos DCA, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Hum Brain Mapp. 2021 Aug 15;42(12):3887-3904. doi: 10.1002/hbm.25472


ID: 200
Clinical 2: natural history, biomarkers and outcome measures

Natural history of Pearson syndrome: various clinical courses with changes in clinical phenotypes

Ayami Yoshimi1, Sarah Grünert2, Aron Fisch1, Miriam Erlacher1, Arndt Borkhardt3, Holger Cario4, Daniela Karall5, Charlotte Niemeyer1

1Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; 2Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany; 3Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany; 4Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany; 5Medical University of Innsbruck, Clinic for Paediatrics, Inherited Metabolic Disorders, Innsbruck, Austria

Bibliography
,


ID: 494
Clinical 2: natural history, biomarkers and outcome measures

Phenotype and natural history of pantothenate kinase-associated neurodegeneration (PKAN)

Vassilena Iankova1, Ivan Karin1, Boriana Büchner1, Thomas Klopstock1,2,3

1Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany; 2German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 3Munich Cluster for Systems Neurology, Munich, Germany



ID: 575
Clinical 2: natural history, biomarkers and outcome measures

RARS2 disease’s morbidity and mortality correlate with the severity of brain involvement

R Restuccia1,2, L Licchetta3,4, S Resciniti1, F Ferraresi1, E Santi1, L Di Vito3,4, R Minardi4, E Ricci2, V Di Pisa2, F Palombo4, F Bisulli3,4, DM Cordelli1,2, P Tinuper3,4, V Carelli3,4, C Garone1,2

1Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Neuropsichiatria dell’età pediatrica, Bologna, Italy; 3Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, Bologna, Italy; 4IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy



ID: 172
Clinical 2: natural history, biomarkers and outcome measures

A new non-invasive diagnostic method for detection of pathogenic mitochondrial DNA variants using faecal-derived DNA samples.

Charlotte Warren1, Isabel Barrow1,2, Helen Tuppen1, Laura Brown1, Clare Massarella1, David Houghton1, Laura Greaves1, Robert McFarland1,2, Gráinne Gorman1,2

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute; NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; 2Department of Neurosciences, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne NE2 4HH, UK



ID: 235
Clinical 2: natural history, biomarkers and outcome measures

Complex V assembly intermediates in human muscle from patient with suspected mitochondrial disease - Potential insights into disease mechanisms.

Amanda Lam1,2,3, Robert Winter1,2,3, Simon Heales1,2,4

1Neurometabolic Unit, NHNN, University College London Hospitals; 2Chemical Pathology Laboratory, Great Ormond Street Hospital for Children; 3Queen Square Institute of Neurology, University College London; 4Great Ormond Street Institute of Child Health, University College London

Bibliography
Poole OV, et al., 2019 Adult-onset Leigh syndrome linked to the novel stop codon mutation m.6579G>A in MT-CO1. Mitochondrion. 2019 Jul;47:294-297.

Bugiardini E et al., 2020 Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations. Neurol Genet. 2020 Jan 7;6(1):e381.

Keshavan N., (2020) The natural history of infantile mitochondrial DNA depletion syndrome due to RRM2B deficiency. Genet Med. 2020 Jan;22(1):199-209.

Forny P et al., 2021 Diagnosing Mitochondrial Disorders Remains Challenging in the Omics Era. Neurol Genet. 2021 May 25;7(3):e597.

Schober FA, et al., 2022 Pathogenic SLC25A26 variants impair SAH transport activity causing mitochondrial disease. Hum Mol Genet. 2022 Jun 22;31(12):2049-2062.

Kaiyrzhanov R et al., 2022 Bi-allelic LETM1 variants perturb mitochondrial ion homeostasis leading to a clinical spectrum with predominant nervous system involvement. Am J Hum Genet. 2022 Sep 1;109(9):1692-1712.


ID: 219
Clinical 2: natural history, biomarkers and outcome measures

Prolonged gastrointestinal transit times in mitochondrial disease – a case control study

Simone Rask Nielsen1,2, Anne-Marie Wegeberg2,3, Donghua Liao2,3, Asbjørn Mohr Drewes2,3, Inge Søkilde Pedersen2,4, Anja Lisbeth Frederiksen1,2, Christina Brock2,3

1Dept. of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; 2Dept.of Clinical Medicine, Aalborg University, Aalborg, Denmark; 3Mech-Sense, Dept. of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; 4Dept. of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark

Bibliography
Bone Deformities and Kidney Failure: Coincidence of PHEX-Related Hypophosphatemic Rickets and m.3243A>G Mitochondrial Disease. Nielsen SR, Hansen SG, Bistrup C, Brusgaard K, Frederiksen AL. Calcif Tissue Int.2022 Dec;111(6):641-645

FGF21 and glycemic control in patients with T1D. Rosell Rask S, Krarup Hansen T, Bjerre M. Endocrine 2019 Aug 65(3): 550-557


ID: 129
Clinical 2: natural history, biomarkers and outcome measures

Rethinking mitochondrial diabetes: a multifaceted disease entity

Chiara Pizzamiglio1,2, Niki Margari3, Iwona Skorupinska2, Antonio Borges Neves3, Danna Nitzani3, Michael G. Hanna1,2, Umasuthan Srirangalingam3, Robert D.S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Endocrinology Department, University College London Hospital, London, UK



ID: 583
Clinical 2: natural history, biomarkers and outcome measures

Therapeutic intervention in Leber Hereditary Optic Neuropathy: later is better?

Martina Romagnoli1, Giulia Amore2, Pietro D’Agati3, Piero Barboni4,5, Valerio Carelli1,2, Chiara La Morgia2,3, Michele Carbonelli2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna - Bologna (Italy); 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica - Bologna (Italy); 4Department ofOphthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele – Milan (Italy); 5Studio Oculistico d’Azeglio - Bologna (Italy)

Bibliography
Subramanian PS, Newman NJ, Moster M, et al. Study design and baseline characteristics for the REFLECT gene therapy trial of m.11778G>A/ND4-LHON. BMJ Open Ophthalmology 2022;7:e001158. doi:10.1136/bmjophth-2022-001158.

Catarino CB, von Livonius B, Priglinger C, Banik R, Matloob S, Tamhankar MA, et al. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2020;40(4):558-65.


ID: 645
Clinical 2: natural history, biomarkers and outcome measures

Neurofilament light chain – an emerging biomarker in mitochondrial disease

Alessandra Maresca1, Valerio Carelli1,2, Monica Moresco1, Chiara La Morgia1,2, Maria Lucia Valentino1,2, Laurence Bindoff3, Kristin Varhaug4,5

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.; 2Department of Biomedical and Neuromotor Sciences, University of Bologna,; 3Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; 4Dept. of Neurology, Haukeland University Hospital, Norway; 5Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway



ID: 450
Inflammation and Immunity as mitochondrial contributor to pathology

Assessing the role of mtdsRNA as a trigger for neuroinflammation in a mouse model of Leigh syndrome

Mònica Girona1, Melania González-Torres1, Patricia Prada-Dacasa1, Patrizia Bianchi1, Elisenda Sanz1,2, Albert Quintana1,2

1Institute of Neurosciences, Autonomous University of Barcelona, Barcelona, Spain; 2Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain



ID: 406
Inflammation and Immunity as mitochondrial contributor to pathology

Concerted cell-specific neuronal programs drive neurodegeneration in Leigh Syndrome

Albert Quintana

Universitat Autònoma de Barcelona, Spain

Bibliography
* Microglial response promotes neurodegeneration in the Ndufs4 KO mouse model of Leigh syndrome. Aguilar K, Comes G, Canal C, Quintana A, Sanz E, Hidalgo J.
Glia. 2022 Nov;70(11):2032-2044. doi: 10.1002/glia.24234.

* Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. van de Wal MAE, Adjobo-Hermans MJW, Keijer J, Schirris TJJ, Homberg JR, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Brain. 2022 Mar 29;145(1):45-63. doi: 10.1093/brain/awab426.

* Mitochondria-Induced Immune Response as a Trigger for Neurodegeneration: A Pathogen from Within. Luna-Sánchez M, Bianchi P, Quintana A. Int J Mol Sci. 2021 Aug 7;22(16):8523. doi: 10.3390/ijms22168523.

* Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome. Bolea I, Gella A, Sanz E, Prada-Dacasa P, Menardy F, Bard AM, Machuca-Márquez P, Eraso-Pichot A, Mòdol-Caballero G, Navarro X, Kalume F, Quintana A. Elife. 2019 Aug 12;8:e47163. doi: 10.7554/eLife.47163.

* Mitochondrial Proteome of Affected Glutamatergic Neurons in a Mouse Model of Leigh Syndrome.
Gella A, Prada-Dacasa P, Carrascal M, Urpi A, González-Torres M, Abian J, Sanz E, Quintana A. Front Cell Dev Biol. 2020 Jul 28;8:660. doi: 10.3389/fcell.2020.00660. eCollection 2020.


ID: 526
Inflammation and Immunity as mitochondrial contributor to pathology

Parkinson’s disease genes converge at the mitochondria-lysosome interface to promote inflammatory cell death

Jack Collier, Mai Nguyen, Sidong Huang, Heidi McBride

McGill University, Canada

Bibliography
Collier JJ, Olahova M, McWilliams TG, Taylor RW. Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends in Neurosciences. 2023;46(2):137-152.

Collier JJ, Guissart C, Olahova M, Sasorith S, Piron-Prunier F, Suomi F, Zhang D, Martinez-Lopez N, Leboucq N, Bahr A, Azzarello-Burri S, Reich S, Schols L, Polvikoski TM, Meyer P, Larrieu L, Schaefer AM, Alsaif HS, Alyamani S, Zuchner S, Barbosa IA, Deshpande C, Pyle A, Rauch A, Synofzik M, Alkuraya FS, Rivier F, Ryten M, McFarland R, Delahodde A, McWilliams TG, Koenig M, Taylor RW. Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. New England Journal of Medicine. 2021;384(25):2406-2417.

Collier JJ, Suomi F, Olahova M, McWilliams TG, Taylor RW. Emerging roles of ATG7 in human health and disease. EMBO Molecular Medicine. 2021;13(12)e14824.

Thompson K*, Collier JJ*, Glasgow RIC, Robertson FM, Pyle A, Alston CL, Blakely EL, Olahova M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. Journal of Inherited Metabolic Disorders 2020;43:36-50. Review. *Co-first authors

Nolden KA, Egner JM, Collier JJ, Russell OM, Alston CL, Harwig MC, Widlansky ME, Sasorith S, Barbosa IA, Douglas AG, Baptista J, Walker M, Donnelly DE, Morris AA, Tan HJ, Kurian MA,Gorman K, Mordekar S, Deshpande C, Samanta R, McFarland R, Hill RB, Taylor RW, Olahova M. Novel DNM1L variants impair mitochondrial dynamics through divergent mechanisms. Life SciAlliance. 2022;5(12).

Olahova M, Peter B, Diaz H, Szilagyi Z, Sommerville EW, Blakely EL, Collier JJ, Stránecký V, Hartmannová H, Bleyer AJ, McBride KL, Bowden SA, Korandová Z, Pecinová A, Ropers H-H, Kahrizi K, Najmabadi H, Tarnopolsky M, Brady LI, Weaver N, Prada CE, Õunap K, Wojcik MH, Pajusalu S, Syeda SB, Pais L, Estrella EA, Bruels CC, Kunkel LM, Kang PB, Mráček T, Kmoch S, Gorman G, Falkenberg M, Gustafsson C, Taylor RW. Mutations in POLRMT cause a spectrum of neurological phenotypes through impaired mitochondrial transcription. Nature Communications 2021;12,1135

Olahova M, Ceccatelli Berti C, Collier JJ, Alston CL, Jameson E, Jones SA, Edwards N, He L, Chinnery PF, Horvath R, Goffrini P, Taylor RW, Sayer JA. Molecular genetic investigations identify new clinical phenotypes associated with BCS1L-related mitochondrial disease. Human Molecular Genetics 2019;28:3766-76.


ID: 642
Inflammation and Immunity as mitochondrial contributor to pathology

[18F]ROStrace PET as a biomarker of mitochondria-induced neuroinflammation in the prodromal phase of Parkinson’s disease mouse models

Yi Zhu1, Anthony Young2, Neha Kohli1, Josh Jose1, Nisha Patel1, Hsaioju Lee2, Shihong Li2, Guilong Tian2, Eric Marsh1, Michael Robinson1, Robert Doot2, Douglas Wallace1, Robert Mach2, Meagan Joy McManus1

1Children's Hospital of Philadelphia, United States of America; 2University of Pennsylvania, United States of America

Bibliography
1.Hsieh CJ, Hou C, Zhu Y, Lee JY, Kohli N, Gallagher E, Xu K, Lee H, Li S, McManus MJ, Mach RH. [18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer's disease pathology in APP/PS1 mice. EJNMMI Res. 2022 Jul 27;12(1):43.


ID: 651
Inflammation and Immunity as mitochondrial contributor to pathology

Modulation of immune cell activation and differentiation by mitochondrial nicotinamide adenine dinucleotide levels

Aurea Oliva Herrero1,2, Andrea Alonso Gomez1,2, Javier Traba1,2

1Instituto Universitario de Biología Molecular – UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain



ID: 257
Inflammation and Immunity as mitochondrial contributor to pathology

MtDNA replication stress and innate immune signalling

Dusanka Milenkovic, Amir Bahat, Eileen Cors, Mabel Barnett, Thomas Langer

Max Planck Institute for Biology of Ageing, Germany

Bibliography
Misic J, Milenkovic D. Methods Mol Biol. 2023;2615:219-228.Studying Mitochondrial Nucleic Acid Synthesis Utilizing Intact Isolated Mitochondria.

Misic J, Milenkovic D, Al-Behadili A, Xie X, Jiang M, Jiang S, Filograna R, Koolmeister C, Siira SJ, Jenninger L, Filipovska A, Clausen AR, Caporali L, Valentino ML, La Morgia C, Carelli V, Nicholls TJ, Wredenberg A, Falkenberg M, Larsson NG. Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion.
Nucleic Acids Res. 2022 Aug 26;50(15):8749-8766.

Milenkovic D, Sanz-Moreno A, Calzada-Wack J, Rathkolb B, Veronica Amarie O, Gerlini R, Aguilar-Pimentel A, Misic J, Simard ML, Wolf E, Fuchs H, Gailus-Durner V, de Angelis MH, Larsson NG.Mice lacking the mitochondrial exonuclease MGME1 develop inflammatory kidney disease with glomerular dysfunction. PLoS Genet. 2022 May 9;18(5):e1010190.

Sprenger HG, MacVicar T, Bahat A, Fiedler KU, Hermans S, Ehrentraut D, Ried K, Milenkovic D, Bonekamp N, Larsson NG, Nolte H, Giavalisco P, Langer T.Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity. Nat Metab. 2021 May;3(5):636-650.

Matic S, Jiang M, Nicholls TJ, Uhler JP, Dirksen-Schwanenland C, Polosa PL, Simard ML, Li X, Atanassov I, Rackham O, Filipovska A, Stewart JB, Falkenberg M, Larsson NG, Milenkovic D.Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun. 2018 Mar 23;9(1):1202.


ID: 241
Inflammation and Immunity as mitochondrial contributor to pathology

Inflammatory cardiomyopathy and heart failure caused by impaired inner membrane integrity

Erminia Donnarumma1, Michael Kohlhaas2, Elodie Vimont1, Marcio Ribeiro1, Etienne Kornobis3, Thibault Chaze4, Mariette Matondo4, Christoph Maack2, Timothy Wai1

1Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France; 2Department of Translational Research, Comprehensive Heart Failure Center (CHFC), Medical Clinic 1, University ClinicWürzburg,Würzburg, Germany; 3Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France; 4Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France

Bibliography
Donnarumma, E., Kohlhaas, M., Vimont, E., Kornobis, E., Chaze, T., Gianetto, Q.G., Matondo, M., Moya-Nilges, M., Maack, C., and Wai, T. (2022). Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure. Nat. Commun. 13, 6634. 10.1038/s41467-022-34316-3.


ID: 650
Inflammation and Immunity as mitochondrial contributor to pathology

Lack of SIRT3 results in a constitutive IFNbeta release and protects against viral infection

Carolina Meroño Ortega1,2, Yara Cuesta Valero1,2, Marta Pascual Fernández1,2, Natalia García Acosta1,2, Javier Traba Domínguez1,2

1Instituto Universitario de Biología Molecular – UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain



ID: 372
Inflammation and Immunity as mitochondrial contributor to pathology

Mitochondrial DNA variation alters cell-mediated and humoral innate immune responses

Tiina Susanna Salminen1, Laura Vesala1, Yuliya Basikhina1, Megan Kutzer2, Tea Tuomela1, Katy Monteith2, Ryan Lucas2, Arun Prakash2, Pedro Vale2

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK

Bibliography
Valanne, S., Vesala, L., Maasdorp, M., Salminen T.S., and Rämet, M. 2022: The Drosophila Toll pathway in innate immunity – from the core pathway towards effector functions. J Immunol 2022; 209:1817-1825; doi: 10.4049/jimmunol.2200476

Anderson L., Camus M.F., Monteith K.M., Salminen T.S. and Vale P.F. 2022: Variation in mitochondrial DNA affects locomotor activity and sleep in Drosophila melanogaster. Heredity, 129, pages 225–232 https://doi.org/10.1038/s41437-022-00554-w

Salminen T.S. & Vale P.F. 2020: Drosophila as a model system to investigate the effects of mitochondrial variation on innate immunity. Front. Immunol. 11:521.doi: 10.3389/fimmu.2020.00521

Valanne S., Järvelä-Stölting M., Harjula S-K. E., Myllymäki H., Salminen T.S. & Rämet M. 2020: Osa-containing Brahma complex regulates innate immunity and metabolism in Drosophila. J. Immunol. DOI: https://doi.org/10.4049/jimmunol.1900571

Salminen T.S., Cannino G., Oliveira M.T., Lillsunde P., Jacobs H.T., Kaguni L.S. 2019: Lethal interaction of nuclear and mitochondrial genotypes in Drosophila melanogaster. G3: GENES, GENOMES, GENETICS 9 (7): 2225-2234: doi: https://doi.org/10.1534/g3.119.400315

Valanne S*., Salminen T.S.*, Järvelä-Stölting M., Vesala L. & Rämet M. 2019: Correction: Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster. PLoS Pathog 15(1): e1007504. DOI: 10.1371/journal.ppat.1008088 *Shared first authorship

Salminen T.S., Oliveira M.T., Cannino G., Lillsunde P., Jacobs H.T. & Kaguni L.S. 2017: Mitochondrial genotype modulates mtDNA copy number and organismal phenotype in Drosophila. Mitochondrion 34: 75-83.


ID: 177
Inflammation and Immunity as mitochondrial contributor to pathology

Iron homeostasis in mitochondria is critical for the survival of T cells

Ajay Kumar, Chenxian Yee, Afia Nkansah, Thomas Decoville, Emily Yarosz, Garrett Forgo, Young-Ah Seo, Thomas Sanderson, Cheong-Hee Chang

University of Michigan, United States of America



ID: 567
Inflammation and Immunity as mitochondrial contributor to pathology

Inflammatory conditions, redox status and c-miRNAs as potential predictors of vascular damage in type 2 diabetes mellitus patients.

Iryna Rusanova Rusanova1,2,3, Ayauly Duisenbek4, Gabriela C. Lopez-Armas5, José M. Aguilar Benítez6, María D. Avilés-Pérez3,7, Arailym Yessenbekova4, Nurzhanyat Ablaikhanova4, Germaine Escames2,3,8, Darío Acuña-Castroviejo2,3,8

1Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Spain; 2Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; 3Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; 4Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan; 5Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial; Guadalajara, Jalisco, México; 6Hospital de Alcalá la Real, Andalucia, Spain; 7Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, Granada, Spain.; 8Department of Physiology, Faculty of Medicine, University of Granada.

Bibliography
1. Acuña-Castroviejo, D.; Rahim, I.; Acuña-Fernández, C.; Fernández-Ortiz, M.; Solera-Marín, J.; Sayed, R.K.A.; Díaz-Casado, M.E.; Rusanova, I.; López, L.C.; Escames, G. Melatonin, clock genes and mitochondria in sepsis. Cell. Mol. Life Sci. 2017, 74, doi:10.1007/s00018-017-2610-1.
2. Rovira-Llopis, S.; Apostolova, N.; Bañuls, C.; Muntané, J.; Rocha, M.; Victor, V.M. Mitochondria, the NLRP3 inflammasome, and sirtuins in type 2 diabetes: New therapeutic targets. Antioxidants Redox Signal. 2018, 29, 749–791, doi:10.1089/ars.2017.7313.
3. Mensà, E.; Giuliani, A.; Matacchione, G.; Gurău, F.; Bonfigli, A.R.; Romagnoli, F.; De Luca, M.; Sabbatinelli, J.; Olivieri, F. Circulating miR-146a in healthy aging and type 2 diabetes: Age- and gender-specific trajectories. Mech. Ageing Dev. 2019, 180, 1–10, doi:10.1016/j.mad.2019.03.001.
4. Rusanova, I.; Fernández-Martínez, J.; Fernández-Ortiz, M.; Aranda-Martínez, P.; Escames, G.; García-García, F.J.; Mañas, L.; Acuña-Castroviejo, D. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp. Gerontol. 2019, 124, doi:10.1016/j.exger.2019.110637.
5. López-Armas, G. C., Yessenbekova, A., González-Castañeda, R. E., Arellano-Arteaga, K. J., Guerra-Librero, A., Ablaikhanova, N., Florido, J., Escames, G., Acuña-Castroviejo, D., & Rusanova, I. (2022 Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants 2022, 11.


ID: 664
Inflammation and Immunity as mitochondrial contributor to pathology

Loss of pathogenic mitochondrial tRNA mutations during the development of adaptive immune responses

Jingdian Zhang1,2, Camilla Koolmeister1,2, Jinming Han3, Roberta Filograna1,2, Martin Engvall4, Anna Wredenberg1,2,4, Gunilla B. Karlsson Hedestam5, Xaquin Castro Dopico5, Joanna Rorbach1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden; 2Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17165, Sweden.; 3Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm 17176, Sweden; 4Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17164, Sweden.; 5Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.



ID: 311
Inflammation and Immunity as mitochondrial contributor to pathology

Role of mitochondrial dynamics in abdominal aortic aneurysm

Alexis Richard1, Alicia Baptista-Vicente1, Maroua Eid1,2, Agnès Toutain-Barbelivien1, Linda Grimaud1, Bertrand Toutain1, Clément Tetaud1, Daniel Henrion1, Olivier Fouquet1,2, Laurent Loufrani1

1UMR CNRS 6015, INSERM U1083, MitoVasc Institute, CarMe Team, University of Angers, France; 2CHU of Angers, France



ID: 261
Inflammation and Immunity as mitochondrial contributor to pathology

Between benefit and harm – the effect of antibiotics-induced mitochondrial stress on innate immune responses

Tilman Tietz, Laura Vesala, Tea Tuomela, Mahmudul H. Tanvir, Tiina S. Salminen

Tampere University, Finland



ID: 232
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial thermo-profiles of diverse cell lines show reduction of thermo-stability at pathophysiological conditions

Mügen Terzioglu1, Kristo Veeroja1, Toni Montanen1, Maria Carretero-Junquera2, Tiina Susanna Salminen1, Takeharu Nagai3, Howard Jacobs1

1Tampere University, Finland; 2University of Copenhagen; 3Osaka University

Bibliography
Ignatenko O, Chilov D, Paetau I, de Miguel E, Jackson CB, Capin G, Paetau A, Terzioglu M, Euro L, Suomalainen A. Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy. Nat Commun. 2018 Jan 4;9(1):70. doi: 10.1038/s41467-017-01859-9. PMID: 29302033; PMCID: PMC5754366.


ID: 171
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial thermogenesis and thermal adaptation in fibroblasts

Kateryna Gaertner1, Mügen Terzioglu1, Riikka Tapanainen2, Jaakko Pohjoismäki2, Eric Dufour1, Sina Saari1

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland



ID: 507
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Effects of SIRT1 modulators in a pregnancy-induced mouse model of primary mitochondrial cardiomyopathy

Nicole M. Sayles1,2, Gabriella Casalena2, Holly E. Holmes3, Ryan W. Dellinger3, Hibiki Kawamata2, Giovanni Manfredi2

1Neuroscience Graduate Program, Will Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY 10065, USA; 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.; 3Elysium Health New York, New York, NY 10013, USA

Bibliography
Sayles, N. M., Southwell, N., McAvoy, K., Kim, K., Pesini, A., Anderson, C. J., Quinzii, C., Cloonan, S., Kawamata, H., & Manfredi. "Mutant CHCHD10 Causes an Extensive Metabolic Rewiring That Precedes OXPHOS Dysfunction in a Murine Model of Mitochondrial Cardiomyopathy." Cell Reports, 2022, https://doi.org/10.1016/j.celrep.2022.110475.


ID: 111
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance

Giulia Rossetti1,2,3, Judith Ermer1,2,3, Maike Stentenbach1,2,3, Stefan Siira1,2,3, Tara Richman1,2,3, Dusanka Milenkovic4, Kara Perks1,2,3, Laetitia Hughes1,2,3, Emma Jamieson5, Gulibaikelamu Xiafukaiti6, Natalie Ward7, Satoru Takahashi6, Nicola Gray8, Helena Viola9, Livia Hool9,10, Oliver Rackham1,2,11,12, Aleksandra Filipovska1,2,3,13,

1Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia; 2ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; 3Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia.; 4Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; 5Faculty of Health and Medical Sciences, Medical School, The Rural Clinical School of Western Australia, The University of Western Australia, Bunbury, Western Australia 6230, Australia; 6Department of Anatomy and Embryology, Faculty of Medicine, Laboratory Animal Resource Center (LARC), and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; 7Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, Western Australia, Australia; 8Australian National Phenome Centre, Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia 6150, Australia; 9School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia.; 10Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales 2010, Australia.; 11Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia; 12Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia.; 13Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.

Bibliography
1. Vos PD, Rossetti G, Mantegna JL, Siira SJ, Gandadireja AP, Bruce M, Raven SA, Khersonsky O, Fleishman SJ, Filipovska A, Rackham O. Computationally designed hyperactive Cas9 enzymes. Nat Commun. 2022 May 31;13(1):3023. doi: 10.1038/s41467-022-30598-9.

2. Rossetti, G., Ermer, J. A., Stentenbach, M., Siira, S. J., Richman, T. R., Milenkovic, D., Perks, K. L., Hughes, L. A., Jamieson, E., Xiafukaiti, G., Ward, N. C., Takahashi, S., Gray, N., Viola, H. M., Hool, L. C., Rackham, O., & Filipovska, A. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. Science Advances, 7(39), (2021). [eabi7514]. https://doi.org/10.1126/sciadv.abi7514

3. Richman, T. R., Ermer, J. A., Siira, S. J., Kuznetsova, I., Brosnan, C. A., Rossetti, G., Baker, J., Perks, K. L., Cserne Szappanos, H., Viola, H. M., Gray, N., Larance, M., Hool, L. C., Zuryn, S., Rackham, O. & Filipovska, A., Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan
Aging Cell (2021). 20, 7, e13408.

4. Ferreira, N., Andoniou, C. E., Perks, K.L., Ermer, J.A., Rudler, D.L., Rossetti, G.,
Periyakaruppiah, A., Wong, J. K. Y., Rackham, O., Noakes, P. G., Degli-Esposti, M. A., Filipovska, A. Murine cytomegalovirus infection exacerbates Complex IV deficiency in a model of mitochondrial disease. PLOS Genetics (2020) 16(3):e1008604.

5. Perks KL, Ferreira N, Ermer JA, Rudler DL, Richman TR, Rossetti G, Matthews VB, Ward NC, Rackham O, Filipovska A. Reduced mitochondrial translation prevents diet-induced metabolic dysfunction but not inflammation. EMBO J. (2019) Dec 16;38(24):e102155. doi: 10.15252/embj.2019102155. Epub 2019 Nov 13.PMID: 31721250

6. Ferreira, N, Perks, K.L., Rossetti, G., Rudler, D.L., Hughes, L., Ermer, J.A., Scott, L., Kuznetsova, I., Szappanos,H.C, Tull D., Yeoh, G.C., Hool, L.C., Filipovska, A. and Rackham, O. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation EMBO Journal (2019) 38(24):e102155.

7. Perks, K.L., Rossetti, G., Kuznetsova, I., Hughes, L., Ermer, J.A., Ferreira, N., Rudler, D., Spahr,H., Busch, J.D., Shearwood, A.M.-J., Viola, H.M, Siira, S.J., Milenković, D., Hool, L.C., Larsson, N.-G., Rackham, O. and Filipovska, A. PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Reports (2018) 23(1):127-142.

8. Siira, S.J., Rossetti, G., Richman, T.R., Perks, K.L., Ermer, J.E., Kuznetsova, I., Hughes, L., Shearwood, A.M.-J., Viola, H.M, Hool, L.C., Rackham, O. and Filipovska, A. Concerted regulation of mitochondrial and nuclear non-coding RNAs by a dual-targeted RNase Z. EMBO Reports (2018) pii: e46198. doi: 10.15252/embr.201846198

9. Butchart, L. C., Terrill, J. R., Rossetti, G., White, R., Filipovska, A., & Grounds, M. D. (2018). Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (Mdx) mouse muscles, and their response to taurine treatment. International Journal of Biochemistry and Cell Biology, 99(October 2017), 52–63. https://doi.org/10.1016/j.biocel.2018.03.016

10. Duff, R. M., Shearwood, A. M. J., Ermer, J., Rossetti, G., Gooding, R., Richman, T. R., Balasubramaniam, S., Thorburn, D.R., Rackham, O., Lamont, P.J., Filipovska, A. (2015). A mutation in MT-TW causes a tRNA processing defect and reduced mitochondrial function in a family with Leigh syndrome. Mitochondrion, 25, 113–119. https://doi.org/10.1016/j.mito.2015.10.008


ID: 609
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Metformin enhanced the Effect of Ketogenic Diet and low Dose of Cyclophosphamide in MYCN-amplified Neuroblastoma

Luca Catalano1, Sepideh Aminzadeh-Gohari1, Daniela Weber1, Julia Tevini1, Thapa Maheshwor2, Rodolphe Poupardin3, Sophia Derdak4, Victoria Stefan1, William Smiles1, Barbara Kofler1

1Paracelsus Medical University, Austria; 2Shuzhao Li Lab The Jackson Laboratory for Genomic Medicine, Farmington, USA; 3Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute; 4Core Facilities, Medical University of Vienna, Vienna, Austria

Bibliography
1.Oliynyk, G., et al., MYCN-enhanced Oxidative and Glycolytic Metabolism Reveals Vulnerabilities for Targeting Neuroblastoma. iScience, 2019. 21: 188-204.
2.Weber, D.D., et al., Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab, 2020. 33: 102-121.
3.Wheaton, W.W., et al., Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife, 2014. 3: e02242.
4.Ruiz-Perez, M.V., et al., Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma. iScience, 2021. 24(2): 102128.


ID: 293
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Respiratory complex I deficiency triggers integrated stress response upon metabolic challenge

Sara Milioni1,2, Manuela Sollazzo1, Claudia Zanna3, Ivana Kurelac2, Monica De Luise2, Luigi D'Angelo1, Erika Fernandez-Vizarra4, Anna Ghelli1, Giuseppe Gasparre2, Anna Maria Porcelli1, Luisa Iommarini1

1University of Bologna, Department of Pharmacy and Biotechnology, Italy; 2University of Bologna, Department of Medical and Surgical Sciences, Italy; 3University of Bologna, Department of Biomedical and Neuromotor Sciences, Italy; 4University of Padua, Department of Biomedical Sciences, Italy



ID: 288
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Stress responses in a novel mitochondrial myopathy mouse model

Sukru Anil Dogan

Bogazici University, Turkey



ID: 597
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The multifaceted role of GDF15 in mitochondrial muscle disease and its synergistic action with FGF21

Anastasiia Marmyleva1, Nahid Khan1, Liliya Euro1,2, Sonja Jansson1,2, Harding Luan3, Anu Suomalanen1,2

1University of Helsinki, Finland; 2Nadmed Ltd, Helsinki, Finland; 3NGM Biopharmaceuticals, South San Francisco, CA 94080, USA



ID: 596
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Red 630 light transcranial LED therapy (RL-TCLT) stimulates bioenergetic mitochondrial function, enhancing neuronal arborization and reducing hippocampal memory loss in aged SAMP8 mice.

Claudia Jara1, Italo Fuentes1, Matías Lira1,2, Debora Buendía3, Cheril Tapia-Rojas1,2

1Neurobiology of Aging Lab, CEBICEM, Universidad San Sebastián, Chile; 2Centro Ciencia & Vida, Fundación Ciencia & Vida, Chile.; 3Escuela de Ingeniería Civil Biomédica, Universidad de Valparaíso, Chile.



ID: 357
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitokine GDF15 correlates with differentially dietary fat intake in pregnancies with intrauterine growth restriction

Mariona Guitart-Mampel1,2,3, Sara Castro-Barquero4, Ana María Ruiz-Leon5, Judith Cantó-Santos1,2,3, Laura Valls-Roca1,2,3, Laia Farré-Tarrats1,2,3, Félix Andújar-Sánchez1,2,3, Lina Youssef3,4, Laura Garcia-Otero3,4, Kilian Vellvé3,4, Ana Sandra Hernández3,4, Ester Tobias1,2,3, Rosa Casas5, Fàtima Crispi3,4, Eduard Gratacós3,4, Francesc Cardellach1,2,3, Francesc Josep García-García1,2,3, Glòria Garrabou1,2,3

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), 08036 Barcelona, Spain; 2Internal Medicine Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; 3Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; 4BCNatal—Barcelona Centre for Maternal-Foetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; 5Medicine Department, Faculty of Medicine. CIBEROBN Obesity and Nutrition Physiopathology. Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB). University of Barcelona, Barcelona, Spain. Fundación Dieta Mediterránea, Barcelona, Spain,



ID: 179
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Telomerase is crucial for mitochondrial function in human cardiomyocytes

Shambhabi Chatterjee1,2,3, Megan Leach-Mehrwald1, Cheng-Kai Huang1, Ke Xiao1,3, Dongchao Lu1, Thomas Thum1,2,3, Christian Bär1,2,3

1Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany; 2REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; 3Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany

Bibliography
1.Lu D*, Chatterjee S*, Xiao K*, et al. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. (2022) European Heart Journal. doi: 10.1093/eurheartj/ehac337 *equal contribution

2.Olliges L, Chatterjee S, Jia L, et al. Multiformin-type azaphilones prevent SARS-CoV-2 binding to ACE2 receptor. (2022) Cells. doi: 10.3390/cells12010083

3.Bei Y†, Lu D†, Bär C†, Chatterjee S, et al. MiR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection (2022) Mol. Ther. doi: 10.1016/j.ymthe.2022.01.031 †equal contribution

4.Chatterjee S*, Hofer T*, Costa A, et. al. Telomerase therapy attenuates cardiotoxic effects of doxorubicin (2020) Mol. Ther. doi: 10.1016/j.ymthe.2020.12.035 *equal contribution

5.Lu D*, Chatterjee S*, Xiao K, et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes (2020) J Mol Cell Cardiol. 2020;148:46-49. doi: 10.1016/j.yjmcc.2020.08.017 *equal contribution


ID: 535
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Drug repositioning as a mitochondrial-targeted therapeutic approach for neurodegenerations associated with OPA1 mutations

Valentina Del Dotto1, Serena J. Aleo1, Alessandra Maresca2, Anna Ghelli3, Michela Rugolo3, Anna Maria Porcelli3, Enrico Baruffini4, Alessandra Baracca1, Valerio Carelli1,2, Claudia Zanna1

1Dept. Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3Dept. Pharmacy and Biotechnology (FABIT), University of Bologna, Italy; 4Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy



ID: 602
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondria hormesis delays aging and associated diseases in C. elegans impacting on key ferroptosis players

Alfonso Schiavi1, Eva Salveridou1, Vanessa Brinkmann1, Anjumara Shaik1, Ralph Menzel2, Sumana Kalyanasundaram3, Ståle Nygård3, Hilde Nilsen3, Natascia Ventura1,4

1Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; 2Humboldt-Universität zu Berlin, Berlin, Germany; 3Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Norway; 4Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Germany



ID: 230
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Cross-talk between mitochondria and immunoproteasomes upon mitochondrial dysfunction

Vyshnavi Tallapaneni, Agnieszka Chacinska

IMol Polish Academy of Sciences, Warsaw, Poland



ID: 585
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Diagnostic examination of kinase inhibitors by bioenergetic profiling of cancer cell models reveals off-target drug effects

Omar Torres-Quesada1,2, Sophie Strich2, Andreas Feichtner2,3, Selina Schwaighofer3, Carolina Doerrier4, Sabine Schmitt4, Erich Gnaiger4, Eduard Stefan2,3

1Division of Medical Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; 2Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria.; 3Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; 4Oroboros Instruments, Schoepfstrasse 18, 6020 Innsbruck, Austria

Bibliography
1.Cohen, P, Cross, D, Jänne, PA (2021). Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 20(7):551-569. https://doi.org/10.1038/s41573-021-00195-4
2.Zhang J, Yang PL, Gray NS (2009). Targeting cancer with small molecule kinase inhibitors. https://doi.org/10.1038/nrc2559
3.Ubersax JA, Ferrell JE, Jr. (2007). Mechanisms of specificity in protein phosphorylation. https://doi.org/10.1038/nrm2203
4.Wallace, DC Mitochondria and Cancer (2012). Nat. Rev. Cancer, 12, 685–698. https://doi.org/10.1038/nrc3365
5.Torres-Quesada O, Strich S, Stefan E (2022). Kinase perturbations redirect mitochondrial function in cancer. BEC 2022.13. https://doi.org/10.26124/bec:2022-0013
6.Torres-Quesada, O, Doerrier, C, Strich, S, Gnaiger, E, Stefan, E (2022). Physiological Cell Culture Media Tune Mitochondrial Bioenergetics and Drug Sensitivity in Cancer Cell Models. Cancers, 14, 3917. https://doi.org/10.3390/cancers14163917


ID: 121
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Leukemia cells undergo metabolic remodeling and become vulnerable to mitochondrial translation inhibition

Eva Nyvltova, Priyanka Maiti, Tyler A. Cunningham, Paola Manara, Matthew D. Wiefels, Jonathan H. Schatz, Antoni Barrientos, Flavia Fontanesi

University of Miami, United States of America



ID: 400
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Metabolic reprogramming of bone-marrow mesenchymal stem cells leads to impaired bone formation in m.3243A>G carriers

Paula Fernandez Guerra1,2, Ahmed Sayed1,2, Pernille Kjær1,2, Tina K. Nielsen1,2, Nicholas Ditzel1,2, Simone K. Terp3, Charlotte Ejersted1, Jesper S. Thomsen4, Herma Renkema5, Jan Smeitink5,6, John Vissing7, Per H. Andersen8, Kent Søe9,10,11, Thomas L. Andersen9,10,12, Moustapha Kassem1,2, Morten Frost1,2,13, Anja L. Frederiksen14

1Dept. of Endocrinology, Odense University Hospital (OUH), Odense, Denmark; 2The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Molecular Endocrinology, University of Southern (SDU), Denmark; 3Dept. of Molecular Diagnostics, Aalborg University Hospital, Aalborg; 4Department of Biomedicine, Aarhus University, Aarhus, Denmark; 5Khondrion BV, Nijmegen, The Netherlands; 6Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; 7Dept. of Neurology, Rigshospitalet, Copenhagen, Denmark; 8Dept. of Endocrinology, Hospital of Southwest, Esbjerg, Denmark; 9Dept. of Clinical Research, SDU, Denmark; 10Clinical Cell Biology, Dept. of Pathology, OUH, Denmark; 11Dept. of Molecular Medicine, SDU, Denmark; 12Dept. of Forensic Medicine, AU, Denmark; 13Steno Diabetes Centre Odense, OUH, Denmark; 14Dept. of Clinical Genetics, Aalborg University Hospital, Denmark



ID: 404
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Nucleus Associated Mitochondria (NAM) drive a cholesterol-mediated mechanism of Temozolomide resistance in glioblastoma cells

Daniela Strobbe1, Mardja Bueno2, Claudia De Vitis3, Danilo Faccenda4, Krenare Bruqi1, Elena Romano1, Gurtej K Dhoot4, Ivi J Bistrot5, Fabio Klamt5, Luana S Lenz2, Eduardo Cremonese Filippi-Chiela2,11, Pietro Ivo D'Urso6, Imogen Lally7, Laura Falasca8, Rita Mancini3, Federico Roncaroli9, Guido Lenz2, Michelangelo Campanella4,10

1Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy; 2Department of Biophysics, and Centre of Biotechnology, Universida de Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; 3Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00198 Rome, Italy; 4Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London; 5Department of Biochemistry, Universidade Federal do Rio Grandedo Sul (UFRGS), Porto Alegre, RS, Brazil; 6Department of Neurosurgery, Manchester Academic Health Science Centre, Northern Care Alliance, Salford UK; 7Department of Cellular Pathology, Northern Care Alliance, Salford UK; 8Laboratory of Electron Microscopy, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy; 9Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; 10UCL Consortium for Mitochondrial Research, University College London, WC1 6BT, London, UK; 11Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil

Bibliography
- Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. Published online 2018. doi:10.1016/j.jocn.2018.05.002
- Michaelsen SR, Christensen IJ, Grunnet K, et al. Clinical variables serve as prognostic factors in a model for survival from glioblastoma multiforme: an observational study of a cohort of consecutive non-selected patients from a single institution. BMC Cancer. 2013;13(1):402. doi:10.1186/1471-2407-13-402
- Colwell N, Larion M, Giles AJ, et al. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro Oncol. 2017;19(7):887-896. doi:10.1093/neuonc/now258
- Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumors. Nat Rev Clin Oncol. 2019;16(8):509-520. doi:10.1038/s41571-019-0177-5
- Desai R, East DA, Hardy L, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020;6(51). doi:10.1126/sciadv.abc9955
- Kim S, Koh H. Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus. J Bioenerg Biomembr. 2017;49. doi:10.1007/s10863-017-9705-0
- Strobbe D, Sharma S, Campanella M. Links between mitochondrial retrograde response and mitophagy in pathogenic cell signaling. Cell Mol Life Sci. 2021. doi:10.1007/s00018-021-03770-5


ID: 108
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Upregulation of COX4-2 via HIF-1α and replicative stress and impaired nuclear DNA damage response in mitochondrial COX4-1 deficiency

Liza Douiev (Charpak), Chaya Miller, Ann Saada (Reisch)

Hadassah Medical Center and Hebrew University of Jerusalem, Israel

Bibliography
Douiev L, Miller C, Keller G, Benyamini H, Abu-Libdeh B, Saada A. Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4-1 Deficiency. Int J Mol Sci. 2022;23(8):4149. Published 2022 Apr 8. doi:10.3390/ijms23084149

Douiev L, Miller C, Ruppo S, Benyamini H, Abu-Libdeh B, Saada A. Upregulation of COX4-2 via HIF-1α in Mitochondrial COX4-1 Deficiency. Cells. 2021;10(2):452. Published 2021 Feb 20. doi:10.3390/cells10020452

Douiev L, Saada A. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochim Biophys Acta Bioenerg. 2018;1859(9):893-900. doi:10.1016/j.bbabio.2018.06.004


ID: 221
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Analysis of mitochondrial function using novel detection reagents

Yasuka Komatsu1, Masaki Murai1, Naoko Yamamoto1, Masakazu Nakakubo1, Munetaka Ishiyama1, Toshitada Yoshihara2

1DOJINDO LABORATORIES; 2Gunma University



ID: 536
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial dynamics in cancer cells: relationship between the F1Fo-ATPase inhibitor IF1 and the mitochondrial the fusion-fission machinery

Claudia Zanna, Silvia Grillini, Riccardo Righetti, Valentina Del Dotto, Giancarlo Solaini, Alessandra Baracca

Department of Biomedical and Neuromotor Sciences, University of Bologna



ID: 463
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Melatonin overcomes resistance to CDDP treatment associated with the overexpression of the ATP-driven transmembrane efflux pumps

Alba López Rodríguez1,2,3, César Rodríguez Santana1,2,3, Laura Martínez Ruíz1,2,3, Javier Florido Ruiz1,2,3, Germaine Escames Rosa1,2,3

1Institute of Biotechnology; 2Biomedical Research Centre; 3University of Granada, Spain

Bibliography
Florido, J., Martínez-Ruíz, L., Rodríguez-Santana, C., López-Rodríguez, A., Hidalgo-Gutiérrez, A., Cottet-Rousselle, C., Lamarche, F., Schlattner, U., Guerra-Librero, A., Aranda-Martínez, P., Acuña-Castroviejo, D., López, L.C., and Escames, G. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. Journal of Pineal Research (2022). 73(3). https://doi.org/10.1111/jpi.12824


ID: 250
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Therapeutic capacity of exercise and melatonin against inflammation and mitochondrial dysfunction in the iMS-Bmal1-/- model of sarcopenia.

Yolanda Ramírez Casas1,2, José Fernández Martínez1,2, Paula Aranda Martínez1,2, Germaine Escames Rosa1,2,3, Darío Acuña Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Marisol Fernández-Ortiz; Ramy K. A. Sayed; Yolanda Román-Montoya; María Ángeles Rol deLama; José Fernández-Martínez; Yolanda Ramírez-Casas; Javier Florido-Ruiz; Iryna Rusanova;Germaine Escames; Darío Acuña-Castroviejo. Age and
Chronodisruption in Mouse Heart: Effectof the NLRP3 Inflammasome and Melatonin Therapy. International Journal of MolecularSciences 2022, 23, 6846.


Aranda-Martínez, P.; Fernández-Martínez, J.; Ramírez-Casas, Y.; Guerra-Librero, A.; Rodríguez-Santana, C.; Escames, G.; Acuña-Castroviejo, D. The Zebrafish, an Outstanding Model forBiomedical Research in the Field of Melatonin and Human Diseases. Int. J. Mol. Sci. 2022, 23,7438. https://doi.org/10.3390/ijms23137438


ID: 445
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Astrocytic CREB neuroprotection in experimental traumatic brain injury is associated with regulation of energetics and lipid metabolism: role of lactate

Irene Fernández González1, Abel Eraso Pichot2, Mariona Jové3, Manel Portero Otin3, Levi Wood4, Mercé Giralt1, Juan Manuel Hidalgo1, Luis Pardo1,5, Arantxa Golbano1, Roser Masgrau1, Elena Galea1,6, Elisenda Sanz1, Albert Quintana1

1Universitat Autònoma de Barcelona, Institut de Neurociències, Bellaterra, Spain; 2Neurocentre Magendie, Inserm U1215, Bordeaux, France; 3Universitat de Lleida, Institut de Recerca Biomèdica, Lleida, Spain; 4Georgia Institute of Technology, Georgia, United States of America; 5Beatson Institute for Cancer Research, Glasgow, United Kingdom; 6ICREA, Barcelona, Spain

Bibliography
Fernández-González, I., & Galea, E. (2022). Astrocyte strategies in the energy-efficient brain. Essays in biochemistry, EBC20220077. Advance online publication. https://doi.org/10.1042/EBC20220077

Navarro-Romero, A., Fernandez-Gonzalez, I., Riera, J., Montpeyo, M., Albert-Bayo, M., Lopez-Royo, T., Castillo-Sanchez, P., Carnicer-Caceres, C., Arranz-Amo, J. A., Castillo-Ribelles, L., Pradas, E., Casas, J., Vila, M., & Martinez-Vicente, M. (2022). Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinson's disease, 8(1), 126. https://doi.org/10.1038/s41531-022-00397-6


ID: 164
Metabolic stress responses in mitochondrial diseases, ageing and cancer

ROS induced mitochondrial hormesis partially protects from SGAs mitochondrial toxicity and cardiovascular disease.

Maria Monsalve1, Laura Doblado1, Gaurangkumar Patel1, Salvador Pérez2, Antonio Martínez3, Susana Cadenas4, Juan Sastre2, Francisco Abad Santos3, Ángel Luis García-Villalón5, Miriam Granado5

1Instituto de Investigaciones Biomédicas Alberto Sols, Spain; 2Universidad de Valencia; 3Instituto de Investigación Sanitaria La Princesa; 4CBMSO; 5Universidad Autónoma de Madrid



ID: 396
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial metabolism in breast cancer and cancer-associated adipose tissue

Aleksandra Jankovic1, Tamara Zakic1, Marta Budnar Soskic1, Biljana Srdic Galic2, Aleksandra Korac3, Bato Korac1,3

1Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Serbia; 2Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; 3Faculty of Biology, University of Belgrade, Belgrade, Serbia



ID: 197
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Reorganization of the energy metabolism: from colon polyps to colorectal cancer

Tuuli Käämbre1, Leenu Reinsalu1, Egle Rebane-Klemm Rebane-Klemm1, Igor Shevchuk1, Vahur Valvere2, Jelena Bogovskaja2, Marju Puurand1

1National Institute of Chemical Physics and Biophysics, Estonia; 2North Estonia Medical Centre, Oncology and Haematology Clinic, Tallinn, Estonia

Bibliography
1. M. Puurand, M., Tepp, K., Timohhina, N., Aid, J., Shevchuk, I., Chekulayev, V., Kaambre, T. (2019). Tubulin betaII and betaIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells 8, doi:10.3390/cells8030239 (2019).

2. Makrecka-Kuka, M., Liepinsh, E., Murray, A.J., Lemieux, H., Dambrova, M., Tepp, K., Puurand, M., Kaambre, T., Han, W.H., de Goede, P., et al. (2019). Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf), e13430, doi:10.1111/apha.13430 (2019).

3. Tepp, K., M. Puurand, N. Timohhina, J. Aid-Vanakova, I. Reile, I. Shevchuk, V. Chekulayev, M. Eimre, N. Peet, L. Kadaja, K. Paju and T. Kaambre (2020). "Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics." Biochim Biophys Acta Gen Subj 1864(4): 129523.doi: 10.1016/j.bbagen.2020.129523

4. Koit, A., N. Timohhina, L. Truu, V. Chekulayev, S. Gudlawar, I. Shevchuk, K. Lepik, L. Mallo, R. Kutner, V. Valvere and T. Kaambre (2020). "Metabolic and OXPHOS Activities Quantified by Temporal ex vivo Analysis Display Patient-Specific Metabolic Vulnerabilities in Human Breast Cancers." Front Oncol 10: 1053.doi:10.3389/fonc.2020.01053

5. Rebane-Klemm, E., L. Truu, L. Reinsalu, M. Puurand, I. Shevchuk, V. Chekulayev, N. Timohhina, K. Tepp, J. Bogovskaja, V. Afanasjev, K. Suurmaa, V. Valvere and T. Kaambre (2020). "Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps." Cancers (Basel) 12(4). doi: 10.3390/cancers12040815

6. Klepinin, A., S. Zhang, L. Klepinina, E. Rebane-Klemm, A. Terzic, T. Kaambre and P. Dzeja (2020). "Adenylate Kinase and Metabolic Signaling in Cancer Cells." Front Oncol 10: 660.doi: 10.3389/fonc.2020.00660

7. Klepinina, L., Klepinin, A., Truu, L., Chekulayev, V., Vija, H., Kuus, K., Teino, I., Pook, M., Maimets, T., and Kaambre, T. *(2021). Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS One 16, e0245348. doi: 10.1371/journal.pone.0245348

8. Reinsalu, L., Puurand, M., Chekulayev, V., Miller, S., Shevchuk, I., Tepp, K., Rebane-Klemm, E., Timohhina, N., Terasmaa, A., and Kaambre, T. *(2021). Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Frontiers in oncology 11, 698951. doi: 10.3389/fonc.2021.698951

9. Kaup, K.K., Toom, L., Truu, L., Miller, S., Puurand, M., Tepp, K., Kaambre, T., and Reile, I. (2021). A line-broadening free real-time (31)P pure shift NMR method for phosphometabolomic analysis. The Analyst 146, 5502-5507. doi: 10.1039/d1an01198g

10. Klepinin, A., Miller, S., Reile, I., Puurand, M., Rebane-Klemm, E., Klepinina, L., Vija, H., Zhang, S., Terzic, A., Dzeja, P., and Kaambre T*(2022). Stable Isotope Tracing Uncovers Reduced gamma/beta-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Frontiers in oncology 12, 892195. Doi: 10.3389/fonc.2022.892195

11. Tepp, K., Aid-Vanakova, J., Puurand, M., Timohhina, N., Reinsalu, L., Tein, K., Plaas, M., Shevchuk, I., Terasmaa, A., and Kaambre, T. (2022). Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles. Biochem Biophys Rep 30, 101250. Doi: 10.1016/j.bbrep.2022.101250
12. Gnaiger, E., Aasander, F., E, Abumrad, N., Acuna-Castroviejo, D., Adams, S., Ahn, B., Ali, S., Alves, M., Amati, F., Amoedo, N., et al. (2019). Mitochondrial respiratory states and rates. In MitoFit Preprint Arch (MitoFitPublication, MitoEAGLEPublication), pp. 40.

13. Mado, K., Chekulayev, V., Shevchuk, I., Puurand, M., Tepp, K., and Kaambre, T. (2019). On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 316, C657-C667.

14. Rodriguez-Enriquez, S., Kaambre, T., and Moreno-Sanchez, R. (2020). Editorial: Metabolic Plasticity of Cancer. Frontiers in oncology 10, 599723.

15. Ruiz-Meana, M., Boengler, K., Garcia-Dorado, D., Hausenloy, D.J., Kaambre, T., Kararigas, G., Perrino, C., Schulz, R., and Ytrehus, K. (2020). Ageing, sex, and cardioprotection. Br J Pharmacol 177, 5270-5286.

16. Zhang, S., Yamada, S., Park, S., Klepinin, A., Kaambre, T., Terzic, A., and Dzeja, P. (2021). Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis. Biochem Biophys Res Commun 546, 59-64.


ID: 419
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Role of NcoR1 and PGC-1 for mitochondrial dysfunction in skeletal muscle of ovariectomized mice

Jiyun Ahn, Tae Youl Ha

Korea Food Research Institute, Korea, Republic of (South Korea)

Bibliography
Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice, J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):1925-1939


ID: 431
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport

Laura Martinez Ruiz1,2,3, Javier Florido1,2,3, César Rodríguez Santana1,2, Alba López Rodríguez1,2, Germaine Escames1,2,3

1Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; 2Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; 3Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain

Bibliography
Martinez-Ruiz, L.; Florido, J.; Rodriguez-Santana, C.; López-Rodríguez, A.; Hidalgo-Gutiérrez, A.; Cottet-Rouselle, C.; Lamarche, F.; Schlattner, U.; Guerra-Librero, A.; Aranda-Martínez, P.; Acuña-Castroviejo, D.; López, LC.; Escames, G.. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. Journal of Pineal Research. 28/08/2022. ISSN 1600-079X


ID: 537
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Differences in life expectancy of rats with inherited high and low exercise capacity correlate with mitochondrial function in skeletal muscle

Estelle Heyne1, Lauren G. Koch2, Steven L. Britton3, Torsten Doenst1, Michael Schwarzer1

1University Hospital of Friedrich-Schiller-University Jena, Germany; 2The University of Toledo, Toledo, OH; 3University of Michigan, Ann Arbor, MI



ID: 395
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Modulation of the activity of human mitochondrial protease complex ClpXP as potential therapeutic strategy for cancer

Francesca Rizzo, Morena Miciaccia, Antonella Cormio, Savina Ferorelli, Maria Grazia Perrone, Antonio Scilimati, Paola Loguercio Polosa

University of Bari "Aldo Moro", Italy

Bibliography
1.Nouri, K. et al. Cell Death Dis 2020, 11, 841
2.Perrone, M.G. et al. Curr. Med. Chem. 2021, 28, 3287
3.Ishizawa, J. et al. Cancer Cell, 2019, 35, 721


ID: 437
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial respiratory function in peripheral blood cells across the human life span

Eleonor Åsander Frostner1, Johannes Ehinger1,2, Emil Westerlund1,3, Michael Karlsson4, Gesine Paul5, Fredrik Sjövall1,6, Eskil Elmér1

1Lund University, Department of Clinical Sciences Lund, Mitochondrial Medicine, Lund, Sweden; 2Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Lund, Sweden; 3A&E Department, Kungälv Hospital, Kungälv, Sweden; 4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark; 5Lund University, Department of Clinical Sciences Lund, Translational Neurology Group and Wallenberg Center for Molecular Medicine, Lund, Sweden; 6Skåne University Hospital, Department of Intensive- and perioperative Care, Malmö, Sweden

Bibliography
1. A. Trifunovic et al., Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423 (2004).
2. A. Trifunovic et al., Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102, 17993-17998 (2005).


ID: 607
Clinical 2: natural history, biomarkers and outcome measures

Diagnostic value of urine organic acid analysis for primary mitochondrial disorders

Tatiana Krylova, Marina Kurkina, Polina Baranova, Polina Tsygankova, Yulia Itkis, Ekaterina Zakharova

Research Centre for Medical Genetics, Russian Federation



ID: 240
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Exercise and melatonin counteract Bmal1 loss-dependent sarcopenia in mouse skeletal muscle by improving mitochondrial ultrastructure and function

José Fernández-Martínez1,2, Yolanda Ramírez-Casas1,2, Paula Aranda-Martínez1,2, Germaine Escames1,2,3, Darío Acuña-Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Fernández-Ortiz, M., Sayed, R. K. A., Román-Montoya, Y., de Lama MÁ, R., Fernández-Martínez, J., Ramírez-Casas, Y., . . . Acuña-Castroviejo, D. (2022). Age and Chronodisruption in Mouse Heart: Effect of the NLRP3 Inflammasome and Melatonin Therapy. Int J Mol Sci, 23(12). doi:10.3390/ijms23126846

Aranda-Martínez, P., Fernández-Martínez, J., Ramírez-Casas, Y., Guerra-Librero, A., Rodríguez-Santana, C., Escames, G., & Acuña-Castroviejo, D. (2022). The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci, 23(13). doi:10.3390/ijms23137438

Sayed, R. K., Fernández-Ortiz, M., Fernández-Martínez, J., Aranda Martínez, P., Guerra-Librero, A., Rodríguez-Santana, C., . . . Rusanova, I. (2021). The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants (Basel), 10(4). doi:10.3390/antiox10040524

Sayed, R. K. A., Fernández-Ortiz, M., Rahim, I., Fernández-Martínez, J., Aranda-Martínez, P., Rusanova, I., . . . Acuña-Castroviejo, D. (2021). The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage. Antioxidants (Basel), 10(8). doi:10.3390/antiox10081269

Sayed, R. K. A., Mokhtar, D. M., Fernández-Ortiz, M., Fernández-Martínez, J., Aranda-Martínez, P., Escames, G., & Acuña-Castroviejo, D. (2020). Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging (Albany NY), 12(13), 12648-12668. doi:10.18632/aging.103654

Fernández-Ortiz, M., Sayed, R. K. A., Fernández-Martínez, J., Cionfrini, A., Aranda-Martínez, P., Escames, G., . . . Acuña-Castroviejo, D. (2020). Melatonin/Nrf2/NLRP3 Connection in Mouse Heart Mitochondria during Aging. Antioxidants (Basel), 9(12). doi:10.3390/antiox9121187

Sayed, R. K. A., Fernández-Ortiz, M., Diaz-Casado, M. E., Aranda-Martínez, P., Fernández-Martínez, J., Guerra-Librero, A., . . . Acuña-Castroviejo, D. (2019). Lack of NLRP3 Inflammasome Activation Reduces Age-Dependent Sarcopenia and Mitochondrial Dysfunction, Favoring the Prophylactic Effect of Melatonin. J Gerontol A Biol Sci Med Sci, 74(11), 1699-1708. doi:10.1093/gerona/glz079

Rusanova, I., Fernández-Martínez, J., Fernández-Ortiz, M., Aranda-Martínez, P., Escames, G., García-García, F. J., . . . Acuña-Castroviejo, D. (2019). Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp Gerontol, 124, 110637. doi:10.1016/j.exger.2019.110637


ID: 619
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Uncovering the OXPHOS complexes' interdependence mechanism

Kristýna Čunátová1, Marek Vrbacký1, Guillermo Puertas-Frias1, Josef Houštěk1, Jiří Neužil2, Alena Pecinová1, Petr Pecina1, Tomáš Mráček1

1Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Czech Republic; 2Laboratory of Molecular Therapy of Cancer, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic

Bibliography
[1] K. Čunátová, D.P. Reguera, M. Vrbacký, E. Fernández-Vizarra, S. Ding, I.M. Fearnley, M. Zeviani, J. Houštěk, T. Mráček, P. Pecina, Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis, Cells, 10 (2021).


ID: 1658
Clinical 2: natural history, biomarkers and outcome measures

Challenging the norm – outcome measure selection for evaluating therapeutic response in patients with Primary Mitochondrial Myopathy after 12 weeks of treatment with REN001, a novel PPARδ agonist.

Lisa Alcock1,2, Renae J. Stefanetti2,3, Oliver Russell2,3, Alisdair P. Blain2,3, Jane Newman2,3,4, Naomi J.P. Thomas2,3,4, Charlotte Warren2,3, Huizhong Su2,3, Philip Brown5, David Houghton2,3, Heather Hunter5, Helen Tuppen2,3, Gavin Falkous4, Robert W. Taylor2,3,4, Albert Z. Lim2,3,4, Yi Shiau Ng2,3,4, Catherine Feeney2,3,4, Iwona Skorupinska6, Louise Germain7, Enrico Bugiardini6, Michael G. Hanna6, Robert McFarland2,3,4, Robert D.S. Pitceathly6,7, Lynn Rochester1,2,5, Gráinne S. Gorman2,3,4

1Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 5The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 6Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK



ID: 1100
Clinical 2: natural history, biomarkers and outcome measures

Indirect comparison of lenadogene nolparvovec gene therapy versus natural history in m.11778G>A MT-ND4 Leber hereditary optic neuropathy patients

Nancy J. Newman1, Mark L. Moster2, Valerio Carelli3, Patrick Yu-Wai-Man4, Valerie Biousse1, Prem S. Subramanian5, Catherine Vignal-Clermont6, An-Guor Wang7, Sean P. Donahue8, Bart P. Leroy9, Robert C. Sergott2, Thomas Klopstock10, Alfredo A. Sadun11, Gema Rebolleda Fernández12, Bart K. Chwalisz13, Rudrani Banik14, Magali Taiel15, José-Alain Sahel16

1Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA; 2Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 4Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 5Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA; 6Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 7Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan; 8Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; 9Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium; 10Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; 11Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA; 12Department of Ophthalmology, Alcala University, Madrid, Spain; 13Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA; 14Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 15GenSight Biologics, Paris, France; 16Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

Bibliography
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol. 2022 Sep 22:S1474-4422(22)00174-0. doi: 10.1016/S1474-4422(22)00174-0. Epub ahead of print. PMID: 36155660.

Yu-Wai-Man P, Newman NJ, Carelli V, La Morgia C, Biousse V, Bandello FM, Clermont CV, Campillo LC, Leruez S, Moster ML, Cestari DM, Foroozan R, Sadun A, Karanjia R, Jurkute N, Blouin L, Taiel M, Sahel JA; LHON REALITY Study Group. Natural history of patients with Leber hereditary optic neuropathy-results from the REALITY study. Eye (Lond). 2022 Apr;36(4):818-826. doi: 10.1038/s41433-021-01535-9. Epub 2021 Apr 28. PMID: 33911213; PMCID: PMC8956580.

Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol. 2021 May 24;12:662838. doi: 10.3389/fneur.2021.662838. PMID: 34108929; PMCID: PMC8181419.


ID: 1451
Clinical 2: natural history, biomarkers and outcome measures

The mitochondrial stress, brain imaging, and epigenetics study (MiSBIE)

Caroline Trumpff1, Anna S Monzel1, Catherine Kelly1, Kris Engelstad1, Shufang Li1, Kalpita Karan1, Gabriel Sturm1, Jeremy Michelson1, Mangesh Kurade1, Vincenzo Lauriola1, Sophia Tepler1, Grace Liu1, Peter Shapiro1, Robert-Paul Juster2, Stephanie Assuras1, Richard Sloan1, Michel Thiebaut de Schotten3, Tor Wager4, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2Université de Montréal, Canada; 3Université de Bordeaux, France; 4Dartmouth College, Uniter States of America

Bibliography
Picard et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 1;112(48):E6614-23 (2015) https://www.pnas.org/doi/full/10.1073/pnas.1515733112

Karan et al. Leukocyte cytokine responses in adult patients with mitochondrial DNA defects. J Mol Med 100, 963–971 (2022). https://doi.org/10.1007/s00109-022-02206-2

Picard and Shirihai. Mitochondrial signal transduction. Cell Metab 34(11):1620-1653 (2022) https://doi.org/10.1016/j.cmet.2022.10.008


ID: 1430
Inflammation and Immunity as mitochondrial contributor to pathology

Free cytosolic-mitochondrial DNA triggers a potent type-I Interferon response in Kearns–Sayre patients counteracted by mofetil mycophenolate

Michela Di Nottia1, Ivan Caiello2, Alessandra Torraco1, Martina Zoccola1, Fabrizio De Benedetti2, Carlo Dionisi-Vici3, Enrico Bertini4, Diego Martinelli3, Rosalba Carrozzo1

1Unit of Cellular Biology and Diagnosis of Mitochondrial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; 2Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 3Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Research Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy



ID: 1409
Inflammation and Immunity as mitochondrial contributor to pathology

Fumarate induces mtDNA release via mitochondrial-derived vesicles and drives innate immunity

Vincent Paupe1, Vincent Zecchini2, Christian Frezza2,3, Julien Prudent1

1Medical Research Council, MBU,University of Cambridge, UK; 2Medical Research Council Cancer Unit,University of Cambridge, UK; 3CECAD Research Centre, University of Cologne, Cologne, Germany

Bibliography
AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology.
Tilokani L, Russell FM, Hamilton S, Virga DM, Segawa M, Paupe V, Gruszczyk AV, Protasoni M, Tabara LC, Johnson M, Anand H, Murphy MP, Hardie DG, Polleux F, Prudent J.
Sci Adv. 2022 Nov 11;8(45):eabo7956. doi: 10.1126/sciadv.abo7956. Epub 2022 Nov 11. PMID: 36367943

Mitochondrial translation is required for sustained killing by cytotoxic T cells.
Lisci M, Barton PR, Randzavola LO, Ma CY, Marchingo JM, Cantrell DA, Paupe V, Prudent J, Stinchcombe JC, Griffiths GM.
Science. 2021 Oct 15;374(6565):eabe9977. doi: 10.1126/science.abe9977. Epub 2021 Oct 15.
PMID: 34648346

Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division.
Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H, Pogson JH, Zunino R, McBride HM, Prudent J.
Science. 2020 Mar 20;367(6484):1366-1371. doi: 10.1126/science.aax6089.
PMID: 32193326

SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, Shoubridge EA. EMBO Mol Med. 2016 Sep 1;8(9):1019-38. doi: 10.15252/emmm.201506159. Print 2016 Sep.
PMID: 27390132

CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter.
Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA.
Cell Metab. 2015 Jan 6;21(1):109-16. doi: 10.1016/j.cmet.2014.12.004.
PMID: 25565209


ID: 1209
Inflammation and Immunity as mitochondrial contributor to pathology

Impaired inflammatory response to lipopolysaccharide in fibroblasts from patients with long-chain fatty acid oxidation disorders

Signe Mosegaard1,2, Krishna Twayana3, Simone Denis1, Jeffrey Kroon4, Bauke Schomakers5, Michel van Weeghel5, Riekelt Houtkooper1, Rikke Olsen2, Christian Holm3

1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 2Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark; 3Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark; 4Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 5Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Bibliography
Mosegaard S*, Dipace G*, Bross P, Carlsen J, Gregersen N, Olsen RKJ. 2020. ”Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism”. International Journal of Molecular Sciences;21(11):3847. doi: 10.3390/ijms21113847.

Mosegaard S*, Bruun GH*, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. 2017. “An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency”. Molecular Genetics and Metabolism;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014.

Olsen RKJ*, Koňaříková E*, Giancaspero TA*, Mosegaard S*, Boczonadi V*, Mataković L*, ….. Barile M, Prokisch H. 2016. ”Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency”. American Journal of Human Genetics;98(6):1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

V.A. Yépez, M. Gusic, R. Kopajtich, C. Mertes, N.H. Smith, C.L. Alston, R. Ban, S. Beblo, R. Berutti, H. Blessing, E. Ciara, F. Distelmaier, P. Freisinger, J. Häberle, S.J. Hayflick, M. Hempel, Y.S. Itkis, Y. Kishita, T. Klopstock, T.D. Krylova, C. Lamperti, D. Lenz, C. Makowski, S. Mosegaard, M.F. Müller, G. Muñoz-Pujol, A. Nadel, A. Ohtake, Y. Okazaki, E. Procopio, T. Schwarzmayr, J. Smet, C. Staufner, S.L. Stenton, T.M. Strom, C. Terrile, F. Tort, R. Van Coster, A. Vanlander, M. Wagner, M. Xu, F. Fang, D. Ghezzi, J.A. Mayr, D. Piekutowska-Abramczuk, A. Ribes, A. Rötig, R.W. Taylor, S.B. Wortmann, K. Murayama, T. Meitinger, J. Gagneur, H. Prokisch, Clinical implementation of RNA sequencing for Mendelian disease diagnostics, Genome Med. 14 (2022) 38. https://doi.org/10.1186/s13073-022-01019-9.

Fogh S, Dipace G, Bie A, Veiga-da-Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. “Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria?” J Inherit Metab Dis. 2021 Sep;44(5):1215-1225. doi: 10.1002/jimd.12394.

Muru K., Reinson K., Künnapas K., Lilleväli H., Nochi Z., Mosegaard S., Pajusalu S., Olsen R. and Õunap K. “FLAD1 Asso-ciated Multiple Acyl-CoA Dehydrogenase Deficiency Identified by Newborn Screening.”. Molecular Genetics & Genomic Medicine;7(9). doi: 10.1002/mgg3.915.

García-Villoria J., de Azua B., Tort F., Mosegaard S., Matalonga L., Ugarteburu O., Teixidó L., Olsen R. and Ribes A. “FLAD1, a recently described gene associated to multiple acyl-CoA dehydrogenase deficiency (MADD) is mutated in a patient with myopathy, scoliosis and cataracts.”. Clinical Genetics;94(6):592-593. doi: 10.1111/cge.13452.

Auranen M., Paetau A., Piirilä P., Pohju A., Salmi T., Lamminen A., Thure H., Löfberg M., Mosegaard S., Olsen R., Tyni T. “FLAD1 gene mutation causes riboflavin responsive MADD disease”. Neuromuscular Disorders;27(6):581-584. doi: 10.1016/j.nmd.2017.03.003.


ID: 1413
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Functional characterisation of the human mitochondrial disaggregase, CLPB

Megan J Baker1, Alexander J Anderson1, Catherine S Palmer1, David R Thorburn2,3, Ann E Frazier2, Diana Stojanovski1

1Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville VIC 3010, Australia; 2Murdoch Children’s Research Institute, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville VIC 3052, Australia; 3Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Parkville VIC 3052, Australia



ID: 1381
Metabolic stress responses in mitochondrial diseases, ageing and cancer

High fat diet ameliorates the mitochondrial cardiomyopathy of CHCHD10 mutant mice

Hibiki Kawamata, Nneka Southwell, Nicole Sayles, Giovanni Manfredi

Weill Cornell Medicine, United States of America



ID: 1448
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitochondrial inhibitor IF1 has a dual role in cancer

Martina Grandi1, Cristina Gatto1, Simone Fabbian2, Natascia Tiso3, Francesco Argenton3, Massimo Bellanda2, Giancarlo Solaini1, Valentina Giorgio*1, Alessandra Baracca*1

1Department of Biomedical and Neuromotor Sciences, University of Bologna; 2Department of Chemical Science, University of Padova; 3Department of Biology, University of Padova, Padova

Bibliography
1. Galber, C; Fabbian, S; Gatto, C; Grandi, M; Carissimi, S; Acosta, MJ; Sgarbi, G; Tiso, N; Argenton, F; Solaini, G; Baracca, A; Bellanda, M; Giorgio,CELL DEATH & DISEASE, 2023, 14, pp. 1 - 19
2. Gatto, C; Grandi, M; Solaini, G; Baracca, A; Giorgio, V, FRONTIERS IN PHYSIOLOGY, 2022, 13, 917203, pp. 1 - 11
3. Galber C; Minervini G; Cannino G; Boldrin F; Petronilli V; Tosatto S; Lippe G; Giorgio V, CELL REPORTS, 2021, 35, 109111, pp. 1 - 14


ID: 657
Clinical 2: natural history, biomarkers and outcome measures

Tractography of the anterior optic pathway provides biomarkers of pathological change in Leber’s Hereditary Optic Neuropathy

David Neil Manners2,4, Giovanni Sighinolfi1,2, Laura Ludovica Gramegna1, Chiara La Morgia2, Alessandro Carrozzi1, Cristiana Fiscone1,2, Claudia Testa2,3, Raffaele Lodi1,2, Valerio Carelli1,2, Caterina Tonon1,2

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; 2IRCCS Instituto delle Scienze Neurologiche di Bologna, Bologna, Italy; 3Department of Physics and Astronomy, University of Bologna, Italy; 4Department of Life Quality Studies, University of Bologna

Bibliography
1 He J, et al. Hum Brain Mapp. 2021
2 Manners DN, et al. Int J Environ Res Public Health. 2022


ID: 661
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A novel role of Keap1/PGAM5 complex: ROS sensor for inducing mitophagy

Akbar Zeb1, Vinay Choubey1, Ruby Gupta1, Malle Kuum1, Dzhamilja Safiulina1, Annika Vaarmann1, Nana Gogichaishvili1, Mailis Liiv1, Ivar Ilves1, Kaido Tämm1, Vladimir Veksler2, Allen Kaasik1

1University of Tartu, Estonia; 2University Paris-Saclay, INSERM UMR-S, France

Bibliography
Akbar Zeb, Vinay Choubey, Ruby Gupta, Malle Kuum, Dzhamilja Safiulina, Annika Vaarmann, Nana Gogichaishvili, Mailis Liiv, Ivar Ilves, Kaido Tämm, Vladimir Veksler, Allen Kaasik,
A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy,
Redox Biology, Volume 48, 2021,102186, ISSN 2213-2317, https://doi.org/10.1016/j.redox.2021.102186.
 
4:30pm - 6:00pmSession 3.4: Clinical 2: natural history, biomarkers and outcome measures
Location: Bologna Congress Center - Sala Europa
Session Chair: Costanza Lamperti
Session Chair: Alessandra Maresca
 
Invited
ID: 682
Invited Speakers

Optimising interventional trials: how natural history studies and digital technologies can drive innovation

Gráinne Gorman1, Michelangelo Mancuso2

1Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; 2University of Pisa, Italy



Invited
ID: 2105
Invited Speakers

Identifying circulating biomarkers to monitor mitochondrial disease severity

Rohit Sharma

Massachusetts General Hospital, United States of America



Oral presentation
ID: 593
Clinical 2: natural history, biomarkers and outcome measures

National mitochondrial disease registry in England: linking genetics with routinely collected healthcare data

Katherine R Schon1,2, Peter Stilwell3, Jeanette Aston3, Robert D S Pitceathly4, Michael G Hanna4, Carl Fratter5, Rita Horvath1, Mary Bythell3, Steven A Hardy3, Patrick F Chinnery1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; 3National Disease Registration Service, NHS Digital, Leeds, UK; 4Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 5NHS Highly Specialised Services for Rare Mitochondrial Disorders – Oxford Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK



Oral presentation
ID: 157
Clinical 2: natural history, biomarkers and outcome measures

Status epilepticus in POLG disease

Omar Hikmat1,2, Karin Naess3,4, Martin Engvall3,5, Claus Klingenberg6,7, Magnhild Rasmussen8,9,10, Eylert Brodtkorb11,12, Elsebet Ostergaard13, I.F.M de Coo14, Leticia Pias-Peleteiro15, Pirjo Isohanni16,17, Johanna Uusimaa18,19, Kari Majamaa20,21, Mikko Kärppä20,21, Juan Dario Ortigoza-Escobar22,23, Trine Tangeraas24,25, Siren Berland26, Rita Horvath27, Niklas Darin28, Shamima Rahman25,29,30, Laurence A. Bindoff2,31

1Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Norway; 2Department of Clinical Medicine (K1), University of Bergen, Norway; 3Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; 4Department of Neuropediatrics, Astrid Lindgren Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden; 5Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; 6Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway; 7Paediatric Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromso, Norway; 8Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway and Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway; 9Department of Neurology, Oslo University Hospital, Oslo, Norway; 10Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; 11Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; 12Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; 13Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; 14Facultiy of Health, Medicine and Life Sciences, Department of Toxicology, , University of Maastricht, Maastricht, The Netherlands; 15Neurometabolic Disorders Unit, Department of Child Neurology/ Department of Genetics and Molecular Medicine, Sant Joan de Déu Children´s Hospital, Barcelona, Spain; 16Department of Pediatric Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; 17Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.; 18Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; 19Department of Pediatric Neurology, Clinic for Children and Adolescents and Medical Research Center, Oulu University Hospital, Oulu, Finland; 20Research Unit of Clinical Medicine, Neurology, and Medical Research Center Oulu, Oulu University hospital and university of Oulu, Oulu Finland; 21Neurocenter , Oulu University Hospital ,Oulu Finland; 22Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII, Barcelona, Spain; 23European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain; 24Norwegian national Unit for Newborn Screening, Division of Pediatric and adolescent Medicine, Oslo University Hospital, Oslo, Norway; 25European Reference Network for Hereditary Metabolic Disorder; 26Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; 27Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 28Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; 29Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; 30Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 31Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway

Bibliography
Omar Hikmat is a senior consultant in paediatric neurology, working at the Paediatric Neurology section- Paediatric Department, Haukeland University Hospital, Bergen, and researcher at the Mitochondrial Medicine and Neuro-genetic research group, Clinical Institute 1, University of Bergen, Norway.
Hikmat has a special interest in paediatric neuro-metabolic, mitochondrial disorders and complex epilepsies.
Main research interest is within mitochondrial medicine and particularly the clinical spectrum and natural history of POLG disease. Hikmat is responsible for the National Norwegian POLG registry and the multinational POLG database.


Flash Talk
ID: 658
Clinical 2: natural history, biomarkers and outcome measures

Challenging the norm – outcome measure selection for evaluating therapeutic response in patients with Primary Mitochondrial Myopathy after 12 weeks of treatment with REN001, a novel PPARδ agonist.

Lisa Alcock1,2, Renae J. Stefanetti2,3, Oliver Russell2,3, Alisdair P. Blain2,3, Jane Newman2,3,4, Naomi J.P. Thomas2,3,4, Charlotte Warren2,3, Huizhong Su2,3, Philip Brown5, David Houghton2,3, Heather Hunter5, Helen Tuppen2,3, Gavin Falkous4, Robert W. Taylor2,3,4, Albert Z. Lim2,3,4, Yi Shiau Ng2,3,4, Catherine Feeney2,3,4, Iwona Skorupinska6, Louise Germain7, Enrico Bugiardini6, Michael G. Hanna6, Robert McFarland2,3,4, Robert D.S. Pitceathly6,7, Lynn Rochester1,2,5, Gráinne S. Gorman2,3,4

1Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 5The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 6Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK



Flash Talk
ID: 100
Clinical 2: natural history, biomarkers and outcome measures

Indirect comparison of lenadogene nolparvovec gene therapy versus natural history in m.11778G>A MT-ND4 Leber hereditary optic neuropathy patients

Nancy J. Newman1, Mark L. Moster2, Valerio Carelli3, Patrick Yu-Wai-Man4, Valerie Biousse1, Prem S. Subramanian5, Catherine Vignal-Clermont6, An-Guor Wang7, Sean P. Donahue8, Bart P. Leroy9, Robert C. Sergott2, Thomas Klopstock10, Alfredo A. Sadun11, Gema Rebolleda Fernández12, Bart K. Chwalisz13, Rudrani Banik14, Magali Taiel15, José-Alain Sahel16

1Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA; 2Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 4Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 5Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA; 6Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 7Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan; 8Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; 9Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium; 10Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; 11Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA; 12Department of Ophthalmology, Alcala University, Madrid, Spain; 13Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA; 14Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 15GenSight Biologics, Paris, France; 16Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

Bibliography
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol. 2022 Sep 22:S1474-4422(22)00174-0. doi: 10.1016/S1474-4422(22)00174-0. Epub ahead of print. PMID: 36155660.

Yu-Wai-Man P, Newman NJ, Carelli V, La Morgia C, Biousse V, Bandello FM, Clermont CV, Campillo LC, Leruez S, Moster ML, Cestari DM, Foroozan R, Sadun A, Karanjia R, Jurkute N, Blouin L, Taiel M, Sahel JA; LHON REALITY Study Group. Natural history of patients with Leber hereditary optic neuropathy-results from the REALITY study. Eye (Lond). 2022 Apr;36(4):818-826. doi: 10.1038/s41433-021-01535-9. Epub 2021 Apr 28. PMID: 33911213; PMCID: PMC8956580.

Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol. 2021 May 24;12:662838. doi: 10.3389/fneur.2021.662838. PMID: 34108929; PMCID: PMC8181419.


Flash Talk
ID: 451
Clinical 2: natural history, biomarkers and outcome measures

The mitochondrial stress, brain imaging, and epigenetics study (MiSBIE)

Caroline Trumpff1, Anna S Monzel1, Catherine Kelly1, Kris Engelstad1, Shufang Li1, Kalpita Karan1, Gabriel Sturm1, Jeremy Michelson1, Mangesh Kurade1, Vincenzo Lauriola1, Sophia Tepler1, Grace Liu1, Peter Shapiro1, Robert-Paul Juster2, Stephanie Assuras1, Richard Sloan1, Michel Thiebaut de Schotten3, Tor Wager4, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2Université de Montréal, Canada; 3Université de Bordeaux, France; 4Dartmouth College, Uniter States of America

Bibliography
Picard et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 1;112(48):E6614-23 (2015) https://www.pnas.org/doi/full/10.1073/pnas.1515733112

Karan et al. Leukocyte cytokine responses in adult patients with mitochondrial DNA defects. J Mol Med 100, 963–971 (2022). https://doi.org/10.1007/s00109-022-02206-2

Picard and Shirihai. Mitochondrial signal transduction. Cell Metab 34(11):1620-1653 (2022) https://doi.org/10.1016/j.cmet.2022.10.008
 
6:00pm - 7:00pmPoster session
Location: Bologna Congress Center
Session topics:
- Mitochondrial mechanisms in neurodegeneration and neurodevelopment
- The impact of mtDNA variation and environment on rare and common diseases
 
ID: 290
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency

Carolina Montoro1,2, Hendrik Nolte3, Thibaut Molinie1,2, Giovanna Evangelista1,2, Simon Tröder2, Esther Barth1,2, Branko Zeivnik2, Thomas Langer2,3, Elena Rugarli1,2,4

1Institute for Genetics, University of Cologne, Cologne 50931, Germany; 2Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany; 3Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; 4Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany

Bibliography
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Frontiers in molecular biosciences. 2021;8:690899. doi:10.3389/fmolb.2021.690899.
Figley MD, DiAntonio A. The SARM1 axon degeneration pathway: control of the NAD(+) metabolome regulates axon survival in health and disease. Curr Opin Neurobiol. Aug 2020;63:59-66. doi:10.1016/j.conb.2020.02.012.
Figley MD, Gu W, Nanson JD, et al. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron. 2021;109(7):1118-1136.e11. doi:10.1016/j.neuron.2021.02.009.
König T, Tröder SE, Bakka K, et al. The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol Cell. 2016;64(1):148-162. doi:doi: 10.1016/j.molcel.2016.08.020
Koppen M, Metodiev MD, Casari G, Rugarli EI, Langer T. Variable and Tissue-Specific Subunit Composition of Mitochondrial m-AAA Protease Complexes Linked to Hereditary Spastic Paraplegia. Mol Cell Biol. Jan 2007;27(2):758-67.
Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell. Oct 21 2005;123(2):277-89.


ID: 203
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Pathobiology of cerebellar degeneration in the Harlequin mouse, a proteomic and system biology approach

Miguel Fernández de la Torre1, Carmen Fiuza-Luces1, Sara Laine-Menéndez1, Aitor Delmiro1,2,3, Joaquín Arenas1,2, Miguel A Martín1,2,4, Alejandro Lucía5,6, María Morán1,2

1Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital ‘12 de Octubre’ (‘imas12’), Madrid, Spain; 2Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain.; 3Servicio de Bioquímica Clínica. Hospital Universitario ‘12 de Octubre’. Madrid, Spain; 4Servicio de Genética. Hospital Universitario ‘12 de Octubre’. Madrid, Spain; 5Faculty of Sports Sciences, European University of Madrid, Madrid, Spain; 6Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain

Bibliography
DOI: 10.3390/ijms22126396
DOI: 10.3390/ijms22115598
DOI: 10.3389/fphys.2020.594223
DOI: 10.3389/fneur.2019.00790
DOI: 10.3390/pharmaceutics13020244.
DOI: 10.1249/MSS.0000000000001546.


ID: 484
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The role of mitochondrial transcriptional processes in the aetiology of Parkinson’s disease

Aine Fairbrother-Browne1,2,3, Ana Luisa Gil-Martínez3,5, Mina Ryten2,3,4, Alan Hodgkinson1

1Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom; 2Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK; 3Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK; 4NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, WC1N 1EH, UK; 5Department of Information and Communications Engineering Faculty of Informatics, Espinardo Campus, University of Murcia, Murcia, 30100, Spain



ID: 118
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Towards a unitary hypothesis of Alzheimer disease pathogenesis

Eric A. Schon1, Delfina Larrea1, Jorge Montesinos1,2, Marta Pera1, Mark Tambini1, Estela Area-Gomez1,2

1Columbia University, USA; 2Centro de Investigaciones Biológicas “Margarita Salas”, Madrid, Spain

Bibliography
Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA (2009). Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810-1816.

Area-Gomez E, Lara Castillo MdC, Tambini MD, de Groof AJC, Madra M, Ikenouchi J, Umeda M, Bird TD, Sturley SL, Schon EA (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106-4123.

Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E (2017). Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J. 36, 3356-3371.


ID: 433
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

An experimental protocol for in vivo imaging of brain mitochondrial properties with multiphoton microscopy

Renata Couto, Miguel Remondes, Vanessa A. Morais

Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal



ID: 550
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Exploiting hiPSCs-derived astrocytes from CoPAN patients as cell model to study iron accumulation.

Anna Cozzi1, Paolo Santambrogio1, Maddalena Ripamonti1,2, Chiara Cavestro3, Alicia Rubbio4, Ivano Di Meo3, Valeria Tiranti3, Sonia Levi1,2

1San Raffaele Scientific Institute; 2Vita-Salute San Raffaele, Italy; 3Fondazione IRCCS Istituto Neurologico Carlo Besta; 4Institute of Neuroscience National Research Council



ID: 533
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Secondary mitochondrial impairment in muscle of pediatric patients unrelated to the genes diagnosed by WES: are these mitochondrial diseases?

Flavia Palombo1, Mariantonietta Capristo1, Claudio Fiorini1, Concetta Valentina Tropeano1, Valentina Del Dotto1,2, Leonardo Caporali1, Maria Lucia Valentino1,2, Veronica Di Pisa3, Gaetano Cantalupo4, Marco Seri5,6, Duccio Maria Cordelli3,5, Caterina Garone3,5, Valerio Carelli1,2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; 4Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy; 5Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; 6Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy



ID: 377
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

In vitro 2D and 3D neuronal model generation of MERRF disease to test therapeutic strategies

Giada Capirossi1,2, Valentina Del Dotto2, Mariantonietta Capristo1, Giulia Sacchetti1, Claudio Fiorini1, Leonardo Caporali2, Chiara La Morgia1,2, Annalinda Pisano3, Carla Giordano3, Giulia D'Amati3, Alessandro Prigione4, Alessandra Maresca1, Valerio Carelli1,2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 3Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy; 4Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany



ID: 186
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Molecular mechanism of human mitochondrial chaperonin and its mutation in neurodegenerative disease

Lingling Chen

Indiana University, United States of America

Bibliography
Joseph Wang & Lingling Chen. Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60. Sci Rep 11, 14809, doi:10.1038/s41598-021-94236-y (2021)

Lingling Chen, Aiza Syed and Adhitya Balaji. Hereditary Spastic Paraplegia SPG13 Mutation Increases Structural Stability and ATPase Activity of Human Mitochondrial Chaperonin. Sci Rep 12, 18321, doi:10.1038/s41598-022-21993-9 (2022)


ID: 457
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Nucleus-associated mitochondria (NAM) control neuronal Ca2+ signalling and gene expression

Danilo Faccenda1,3, Radha Desai2, Eva Sidlauskaite3, Steven Lynham4, Jill Richardson2, Michelangelo Campanella3,5

1University of Hertfordshire, Department of Clinical, Pharmaceutical and Biological Science, Hatfield, United Kingdom; 2Discovery Research MRL UK, MSD, LBIC, London, United Kingdom; 3William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; 4Proteomics Facility, Centre of Excellence for Mass Spectrometry, King’s College London, London, United Kingdom; 5University of Padua, Department of Biomedical Sciences, Padua, Italy

Bibliography
Frison M, Faccenda D, Abeti R, Rigon M, Strobbe D, England-Rendon BS, Cash D, Barnes K, Sadeghian M, Sajic M, Wells LA, Xia D, Giunti P, Smith K, Mortiboys H, Turkheimer FE, Campanella M. The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Mol Psychiatry. 2021. 26(7):2721-2739.

Singh A*, Faccenda D*, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine. 2021. 65:103244. *Equally contributing authors.

Desai R, East DA, Hardy L, Faccenda D, Rigon M, Crosby J, Alvarez MS, Singh A, Mainenti M, Hussey LK, Bentham R, Szabadkai G, Zappulli V, Dhoot GK, Romano LE, Xia D, Coppens I, Hamacher-Brady A, Chapple JP, Abeti R, Fleck RA, Vizcay-Barrena G, Smith K, Campanella M. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020. 6(51):eabc9955.

Strobbe D, Pecorari R, Conte O, Minutolo A, Hendriks CMM, Wiezorek S, Faccenda D, Abeti R, Montesano C, Bolm C, Campanella M. NH-sulfoximine: A novel pharmacological inhibitor of the mitochondrial F1 Fo -ATPase, which suppresses viability of cancerous cells. Br J Pharmacol. 2021. 178(2):298-311.

Faccenda D, Gorini G, Jones A, Thornton C, Baracca A, Solaini G, Campanella M. The ATPase Inhibitory Factor 1 (IF1) regulates the expression of the mitochondrial Ca2+ uniporter (MCU) via the AMPK/CREB pathway. Biochim Biophys Acta Mol Cell Res. 2021. 1868(1):118860.

Faccenda D, Campanella M. Mitochondria Regulate Inflammatory Paracrine Signalling in Neurodegeneration. J Neuroimmune Pharmacol. 2020. 15(4):565-566.

Draper ACE, Wilson Z, Maile C, Faccenda D, Campanella M, Piercy RJ. Species-specific consequences of an E40K missense mutation in superoxide dismutase 1 (SOD1). FASEB J. 2020. 34(1):458-473.


ID: 500
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Autophagy controls the pathogenicity of OPA1 mutations in ADOA plus

Paola Zanfardino1, Alessandro Amati1, Easter Petracca1, Filippo M. Santorelli2, Vittoria Petruzzella1

1Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy; 2Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Pisa, Italy

Bibliography
1. Carelli, V.; Musumeci, O.; Caporali, L.; Zanna, C.; La Morgia, C.; Del Dotto, V.; Porcelli, A.M.; Rugolo, M.; Valentino, M.L.; Iommarini, L.; et al. Syndromic Parkinsonism and Dementia Associated with OPA 1 Missense Mutations. Ann Neurol. 2015, 78, 21–38, doi:10.1002/ana.24410.
2. Kane, M.S.; Alban, J.; Desquiret-Dumas, V.; Gueguen, N.; Ishak, L.; Ferre, M.; Amati-Bonneau, P.; Procaccio, V.; Bonneau, D.; Lenaers, G.; et al. Autophagy Controls the Pathogenicity of OPA1 Mutations in Dominant Optic Atrophy. J. Cell. Mol. Med. 2017, 21, 2284–2297, doi:10.1111/jcmm.13149.
3. Diot, A.; Agnew, T.; Sanderson, J.; Liao, C.; Carver, J.; Neves, R.P. das; Gupta, R.; Guo, Y.; Waters, C.; Seto, S.; et al. Validating the RedMIT/GFP-LC3 Mouse Model by Studying Mitophagy in Autosomal Dominant Optic Atrophy Due to the OPA1Q285STOP Mutation. Front. Cell Dev. Biol. 2018, 6, 103, doi:10.3389/fcell.2018.00103.


ID: 359
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Investigating the function of CHCHD2-CHCHD10 complexes in mitochondria

Kevin McAvoy1, Nicole Sayles1, Nneka Southwell1, Anna Stepanova1, Alba Pessini2, Catarina Quinzii2, Giovanni Manfredi1

1Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; 2Department of Neurology, Columbia University Medical Center, New York, NY, USA

Bibliography
Nguyen MK*, McAvoy K*, Liao SC, et al. Mouse midbrain dopaminergic neurons survive loss of the PD-associated mitochondrial protein CHCHD2. Hum Mol Genet. 2022;31(9):1500-1518.

Sayles NM, Southwell N, McAvoy K, et al. Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Rep. 2022;38(10):110475.

McAvoy K, Kawamata H. Glial mitochondrial function and dysfunction in health and neurodegeneration. Mol Cell Neurosci. 2019;101:103417.


ID: 278
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Sildenafil restores normal MMP in MILS-NPCs with impaired Complex V assembly and activity

Giulia Pedrotti1, Annika Zink2, Chiara Santanatoglia1, Marie-Thérèse Henke3, Alessia Di Donfrancesco4, Dario Brunetti4,5, Valeria Tiranti4, Markus Schuelke3, Alessandro Prigione2,6, Emanuela Bottani1

1University of Verona, Italy; 2Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany; 3Charité-Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany; 4Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy; 5Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy; 6Max Delbrueck Center for Molecular Medicine (MDC), 13125 Berlin, Germany

Bibliography
1.Bugiardini E, Bottani E, Marchet S, Poole OV, Beninca C, Horga A, Woodward C, Lam A, Hargreaves I, Chalasani A, Valerio A, Lamantea E, Venner K, Holton JL, Zeviani M, Houlden H, Quinlivan R, Lamperti C, Hanna MG, Pitceathly RDS. Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations. Neurol Genet. 2020 Jan 7;6(1):e381. doi: 10.1212/NXG.0000000000000381. PMID: 32042910; PMCID: PMC6984135.
2.Lorenz C, Lesimple P, Bukowiecki R, Zink A, Inak G, Mlody B, Singh M, Semtner M, Mah N, Auré K, Leong M, Zabiegalov O, Lyras EM, Pfiffer V, Fauler B, Eichhorst J, Wiesner B, Huebner N, Priller J, Mielke T, Meierhofer D, Izsvák Z, Meier JC, Bouillaud F, Adjaye J, Schuelke M, Wanker EE, Lombès A, Prigione A. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders. Cell Stem Cell. 2017 May 4;20(5):659-674.e9. doi: 10.1016/j.stem.2016.12.013. Epub 2017 Jan 26. PMID: 28132834.
3.Lorenz C, Zink A, Henke MT, Staege S, Mlody B, Bünning M, Wanker E, Diecke S, Schuelke M, Prigione A. Generation of four iPSC lines from four patients with Leigh syndrome carrying homoplasmic mutations m.8993T > G or m.8993T > C in the mitochondrial gene MT-ATP6. Stem Cell Res. 2022 May; 61:102742. doi: 10.1016/j.scr.2022.102742. Epub 2022 Mar 8. PMID: 35279592.
4.Wang X, Fisher PW, Xi L, Kukreja RC. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol. 2008 Jan;44(1):105-13. doi: 10.1016/j.yjmcc.2007.10.006. Epub 2007 Oct 16. PMID: 18021798.


ID: 202
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction due to mRNA transport defects as a mechanism of neurodegeneration? Unraveling the role of TBCK in a human neuronal model

Marco Flores-Mendez1, Jesus TIntos-Hernandez1, Xilma R Ortiz-Gonzalez1,2

1Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia; 2Division of Neurology, The Children's Hospital of Philadelphia



ID: 231
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Modelling COASY protein-associated neurodegeneration (CoPAN) in mice

Chiara Cavestro, Francesca Morra, Maria Nicol Colombo, Marco D’Amato, Valeria Tiranti, Ivano Di Meo

IRCCS Istituto Neurologico C. Besta, Italy

Bibliography
- Di Meo I, Cavestro C, Pedretti S, et al. Neuronal Ablation of CoA Synthase Causes Motor Deficits, Iron Dyshomeostasis, and Mitochondrial Dysfunctions in a CoPAN Mouse Model. Int J Mol Sci. 2020;21(24):9707. Published 2020 Dec 19.
- Cavestro C, Panteghini C, Reale C, et al. Novel deep intronic mutation in PLA2G6 causing early-onset Parkinson's disease with brain iron accumulation through pseudo-exon activation. Neurogenetics. 2021;22(4):347-351
- Santambrogio P, Ripamonti M, Cozzi A, et al. Massive iron accumulation in PKAN-derived neurons and astrocytes: light on the human pathological phenotype. Cell Death Dis. 2022;13(2):185. Published 2022 Feb 25
- Zanuttigh E, Derderian K, Güra MA, et al. Identification of Autophagy as a Functional Target Suitable for the Pharmacological Treatment of Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN) In Vitro. Pharmaceutics. 2023;15(1):267. Published 2023 Jan 12
- Santambrogio P, Cozzi A, Di Meo I, et al. PPAR Gamma Agonist Leriglitazone Recovers Alterations Due to Pank2-Deficiency in hiPS-Derived Astrocytes. Pharmaceutics. 2023;15(1):202. Published 2023 Jan 6. doi:10.3390/pharmaceutics15010202


ID: 644
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Neural stem cell niche-interactions in mitochondrial disease

Jelle van den Ameele

University of Cambridge, United Kingdom



ID: 398
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mutant SPART causes defects in mitochondrial protein import and bioenergetics reversed by Coenzyme Q

Chiara Diquigiovanni1,2,3, Nicola Rizzardi4, Antje Kampmeier5, Irene Liparulo4, Francesca Bianco1,6, Bianca De Nicolo1,2, Erica Cataldi-Stagetti1,2, Miriam Bertrand7, Tobias B. Haack7,8, Adela Della Marina9, Frederik Braun9, Alma Kuechler5, Romana Fato4, Christian Bergamini4, Elena Bonora1,2

1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy, 40138; 2U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, 40138; 3Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy, 40138; 4Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy, 40126; 5Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany, 45122; 6Department of Veterinary Sciences, University of Bologna, Bologna, Italy, 40064; 7Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany, 72076; 8Center for Rare Diseases, University of Tübingen, Tübingen, Germany, 72076; 9Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany, 45122



ID: 576
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Characterization of a novel brain-specific mouse model of Leigh Syndrome

Marta Luna-Sánchez, Marcos Blanco, Emma Puighermanal, Albert Quintana

Neuroscience Institute-Autonomous University of Barcelona, Spain

Bibliography
(1) N. J. Lake et al., Ann. Neurol. 79:190-203 (2016).
(2) C. Garone, C. Viscomi, Biochem. Soc. Trans. 46, 1247–1261 (2018).
(3) A. Quintana et al., Proc. Natl. Acad. Sci. U. S. A. 107, 10996–11001 (2010).
(4) C. Viscomi et al., Cell Metab, 14, 80–90. (2011).


ID: 630
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Investigating FA physiopathology in human iPSC-derived DRG organoïds

Valentine Mosbach1, Adèle Hennick1, Marek Napierala2, Hélène Puccio1

1Institut NeuroMyoGene, PGNM UMR5261, INSERM U1315, Université Claude Bernard Lyon I Faculté de médecine Rockefeller, Lyon 08 France; 2UT Southwestern Medical Center, 5323 Harry Hines Blvd. Suite NL.9.108 TX75390-8813 Dallas USA



ID: 214
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

A novel TUBB2A variant associated with pediatric neurodegeneration links microtubule stability to mitochondrial function

Jesus A Tintos-Hernandez1, Charis Ma1, Holly Dubbs2, Cesar A Alves3, Francesca Bartolini4, Xilma R Ortiz-Gonzalez1,2

1Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia; 2Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia; 3Department of Radiology, The Children’s Hospital of Philadelphia; 4Department of Pathology and Cell Biology, Columbia University



ID: 487
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Characterization and functional analysis of a zebrafish knockdown of the mitochondrial DNA replication gene ssbp1

Julian Perrin1, Vincent Gisbert1, Nicolas Cubedo2, Sandra Triacca1, Hala Alzaeem1, Dalia Chakra1, Mireille Rossel2, Marie Péquignot1, Cécile Delettre1

1Institute for Neurosciences of Montpellier (INM) U1298, France; 2Molecular Mechanisms in Neurodegenerative Dementia (MMDN) U1198, France

Bibliography
Jiang, M., Xie, X., Zhu, X., Jiang, S., Milenkovic, D., Misic, J., Shi, Y., Tandukar, N., Li, X., Atanassov, I., et al. (2021). The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Sci. Adv. 7.


ID: 584
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Deep mitochondrial genotyping reveals altered mitochondrial quality control mechanisms in advanced cellular models of Parkinson’s disease

Martin Lang, Valentina Gilmozzi, Peter P. Pramstaller, Irene Pichler

Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy

Bibliography
1.Lang et al., 2022; Cell Mol Life Sci. doi:10.1007/s00018-022-04304-3; A genome on shaky ground: exploring the impact of mitochondrial DNA integrity on Parkinson's disease by highlighting the use of cybrid models.


ID: 123
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Defining the nuclear genetic architecture of a maternally-inherited mitochondrial disorder

Róisín M Boggan1, Yi Shiau Ng1, Imogen G Franklin1, Charlotte L Alston1,2, Emma L Blakely1,2, Boriana Buchner3, Enrico Bugiardini4, Kevin Colclough5, Grainne S Gorman1, Catherine Feeney1, Michael G Hanna4, Andrew T Hattersly6, Thomas Klopstock3,7,8, Cornelia Kornblum9, Michelangelo Mancuso10, Kashyap A Patel6, Robert D S Pitceathly4, Chiara Pizzamiglio4, Holger Prokisch11,12, Jochen Schafer13, Andrew M Schaefer1, Maggie H Shepherd6, Annemarie Thaele14, Rhys Thomas1, Doug M Turnbull1, Cathy E Woodward15, Robert McFarland1, Robert W Taylor1,2, Heather J Cordell16, Sarah J Pickett1

1Wellcome Centre for Mitochondrial Research and Institute for Translational and Clinical Research, ewcastle University, United Kingdom; 2NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University (LMU Klinikum), Munich, Germany; 4Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 5Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK; 6Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; 7Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 8German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 9Department of Neurology, University Hospital Bonn, Bonn, Germany; 10Neurological Institute of Pisa, Italy; 11Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany; 12Institute of Neurogenomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; 13Department of Neurology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 14Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; 15Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London, UK; 16Population Health Sciences Institute, Newcastle University, UK

Bibliography
Boggan, R. M., Ng, Y. S., Franklin, I. G., Alston, C. L., Blakely, E. L., Büchner, B., Bugiardini, E., Colclough, K., Feeney, C., Hanna, M. G., Hattersley, A. T., Klopstock, T., Kornblum, C., Mancuso, M., Patel, K. A., Pitceathly, R. D. S., Pizzamiglio, C., Prokisch, H., Schäfer, J., … Pickett, S. J. (2022). Defining the nuclear genetic architecture of a common maternally inherited mitochondrial disorder. In medRxiv (p. 2022.11.18.22282450). https://doi.org/10.1101/2022.11.18.22282450

Boggan, R. M., Lim, A., Taylor, R. W., McFarland, R., & Pickett, S. J. (2019). Resolving complexity in mitochondrial disease: Towards precision medicine. Molecular Genetics and Metabolism, 128(1-2), 19–29.


ID: 375
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

OPA3 loss causes alterations in mitocondrial dynamics and autophagy processes

Concetta Valentina Tropeano1, Valentina Del Dotto2, Emanuela Scimonelli2, Danara Ormanbekova1, Claudio Fiorini1, Valerio Carelli1,2, Alessandra Maresca1

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy; 2Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy



ID: 481
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial fusion- and transport-specific roles in neuronal dysfunction

Elisa Motori1,2

1Institute for Biochemistry, University of Cologne, Cologne, Germany; 2Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany



ID: 468
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

ER-Mitochondria are affected during ageing in enteric neurons

Giada Delfino, Pascal Derkinderen, Michel Neunlist, Sébastien Paillusson

Inserm U1235, France

Bibliography
Delfino G, Bénardais K, Graff J, et al. Oligodendroglial primary cilium heterogeneity during development and demyelination/remyelination. Front Cell Neurosci. 2022;16:1049468. Published 2022 Nov 24. doi:10.3389/fncel.2022.1049468

Bénardais K, Delfino G, Samama B, et al. BBS4 protein has basal body/ciliary localization in sensory organs but extra-ciliary localization in oligodendrocytes during human development. Cell Tissue Res. 2021;385(1):37-48. doi:10.1007/s00441-021-03440-9


ID: 636
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Identification of dysregulated molecular pathways in Frataxin deficient Proprioceptive Neurons

Deepika Mokkachamy Chellapandi, Marie Paschaki, Helene Puccio

INMG-PGNM, France



ID: 387
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction in dorsal root ganglia in Friedreich ataxia mouse and cell models: role of SirT3

Arabela Sanz-Alcázar, Elena Britti, Fabien Delaspre, Marta Medina-Carbonero, Maria Pazos-Gil, Marta Portillo-Carrasquer, Jordi Tamarit, Joaquim Ros, Elisa Cabiscol

Dept. Ciències Mèdiques Bàsiques, Fac. Medicina, Universitat de Lleida. IRBLleida. Lleida (Spain).



ID: 239
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

MPTP-induced parkinsonism in zebrafish provokes chronodisruption-related loss of daily melatonin and locomotor activity rhythms and mitochondrial dynamics shift, which are restored by melatonin treatment

Paula Aranda Martínez1,2, Jose Fernández Martínez1,2, Yolanda Ramírez Casas1,2, Ana Guerra Librero1,2,3, Germaine Escames1,2,3, Darío Acuña Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Javier Florido Ruiz; Laura Martínez Ruiz; César Rodríguez Santana; Alba López Rodríguez; Agustín Hidalgo Gutiérrez; Cécile Cottet Rousselle; Frédéric Lamarche; Uwe Schlattner; Ana Guerra-Librero Rite; Paula Aranda Martínez; Darío Acuña Castroviejo; Luis Carlos López García; Germaine Escames. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport.Journal of Pineal Research. 73 - 3, pp. e12824. 03/10/2022.

Paula Aranda Martínez; Jose Fernández Martínez; Yolanda Ramírez Casas; Ana Guerra-Librero Rite; César Rodríguez Santana; Germaine Escames; Darío Acuña Castroviejo. The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases.International Journal of Molecular Sciences. 23 - 13, pp. 7438. MPDI, 04/07/2022.

Rammy Sayed; Marisol Fernández Ortiz; Ibtissem Rahim; Jose Fernández Martínez; Paula Aranda Martínez; Iryna Rusanova; Laura Martínez Ruiz; Reem M Alsaadawy; Germaine Escames; Darío Acuña Castroviejo. The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage. Antioxidants. 10 - 8, pp. 1269. 10/08/2021.

Rammy Sayed; Marisol Fernández Ortiz; Jose Fernández Martínez; Paula Aranda Martínez; Ana Guerra-Librero Rite; César Rodríguez Santana; Tomás de Haro; Germaine Escames; Darío Acuña Castroviejo; Iryna Rusanova. The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants. 10 - 4, pp. 524. 27/03/2021


ID: 360
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Activation of integrated mitochondrial stress response in PRKN Parkinson Disease

Francesc Josep García García1, Íngrid González Casacuberta1, Liliya Euro2, Mario Ezquerra3, Constanza Morén1, Aida Ormazabal4, Mariona Guitart Mampel1, Mercedes Casado4, Ester Tobías1, Judith Cantó Santos1, Laura Valls Roca1, Laia Farré Tarrats1, Félix Andújar Sánchez1, Lorena de Mena3, Francesc Carmona5, Manuel Palacín6, María José Martí3, Rafael Artuch4, Rubén Fernández Santiago3, Glòria Garrabou1

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), Department of Internal Medicine - Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U722), 28029 Madrid, Spain.; 2Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; HUSlab, Helsinki University Hospital, Helsinki 00290, Finland;; 3Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Hospital Clínic de Barcelona, Institut de Neurociències, UB, 08036 Barcelona, Spain and Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED CB06/05/0018), 28029 Madrid, Spain.; 4Department of Clinical Biochemistry, Institut de Recerca de Sant Joan de Deu, Esplugues de Llobregat, 08036 Barcelona, Spain, and CIBERER, 28029 Madrid, Spain.; 5Department of Statistics, Biology Faculty, UB, Barcelona, Spain; 6Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, UB, E-08028 Barcelona, Spain; U731, CIBERER, 08028 Barcelona, Spain;



ID: 159
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Delineating the neurodegenerative mechanisms underpinning epilepsy in Alpers’ syndrome

Laura Alexandra Smith1,2, Chun Chen1,2, Alasdair Blain1,2, Robert W Taylor1,2,3, Gráinne Gorman1,2,3, Nichola Z Lax1,2, Daniel Erskine1,2, Robert McFarland1,2,3

1Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; 2Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK

Bibliography
Smith LA, Erskine D, Blain A, Taylor RW, McFarland R, Lax NZ. Delineating selective vulnerability of inhibitory interneurons in Alpers' syndrome. Neuropathol Appl Neurobiol. 2022:e12833.


ID: 148
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Understanding the effects of hyperbaric oxygen therapy on Alzheimer’s disease mouse model

Nofar Schottlender, Maya Gal, Irit Gottfried, Uri Ashery

Tel-Aviv University, Israel

Bibliography
Schottlender, N., Gottfried, I., Ashery, U. Hyperbaric oxygen therapy: effects on mitochondrial function and oxidative stress (2022). Biomolecules. 11. 1827. doi: 10.3390/biom11121827

Gottfried, I., Schottlender, N., Ashery, U. Hyperbaric oxygen therapy – from Mechanism to Cognitive Improvement. (2021). Biomolecules. 11(10). 1520. doi: 10.3390/biom11101520

Rimmerman, N., Verdiger, H. Ryan, K. M., Goldenberg, H., Naggan, L., Robinson, E., Reshef, R., Ayoun, L., Refaeli, R., Ashkenazi, E., Schottlender, N., Ben Hemo-Cohen, L., Pienica, C., Abargyl, M., Lazar, K., McLoughlin, D. M., Yirmiya, R (2021). Microglia and their LAG-3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive therapy (ECT). Molecular Psychiatry. doi: 10.1038/s41380-021-01338-0

Shvarts-Serebro, I., Sheinin, A., Gotfried, I., Schottlender, N., Adler, L., Ashery, U., Barak, B. (2021). miR-128 as a Regulator of Synaptic Properties in 5xFAD Mice Hippocampal Neurons. Journal of Molecular Neuroscience. 71 (12): 2593-2607. doi: 10.1007/s12031-021-01862-2

Radomir, L., Kramer, M. P., Perpinial, M., Schottlender, N., Rabani, S., David, K., Weiner, A., Lewinsky, H., Becker Hermann, S., Aharoni, R., Milo, R., Claduai, M. and Shachar, I. (2021). The survival and function of IL-10-producing regulatory B cells are negatively controlled by SLAMF5. Nature communications. 12. 1893. doi: 10.1038/s41467-021-22230-z

Aharoni, R., Eilam, R. Schottlender, N., Radomir, L., Leistner Segal, S., Feferman, T., Hirsch, D., Sela, M. and Arnon, R. (2020). Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. Journal of Neuroimmonology. 345. doi: 10.1016/j.jneuroim.2020.577281.

Sever, L., Radomir, L., Strim, K., Wiener A., Schottlender, N., Lewinsky, H., Barak, A., Friedlander, G., Ben-Dor, S., Shay, T., Becker Hermann, S. and Shachar, I. (2019). SLAMF9 regulates pDCs homeostasis and function in health and disease. PNAS. doi: 10.1073/pnas.1900079116.

Aharoni, R., Schottlender, N., Bar Lev, D. D., Tsoory, M., Sela, M., and Arnon, R. (2019). The effect of Glatiramer Acetate (GA) on cognitive function in an animal model of multiple sclerosis. Scientific Reports. 9:4140. doi: 10.1038/s41598-019-40713-4.

Rimmerman, N., Schottlender, N. Reshef, R., Dan-Goor, N., and Yirmiya, R. (2017). The hippocampal transcriptome signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain, Behavior and Immunity. 61: 184-196. doi: 10.1016/j.bbi.2016.11.023.


ID: 252
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Analyzing the mitochondrial HPDL protein in fish and human models

Filippo M Santorelli, Valentina Naef, Matteo Baggiani, Devid Damiani

IRCCS Fondazione Stella Maris, Italy



ID: 187
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Modulation of mitophagy, mitochondrial and autophagy phenotypes in LRRK2 Parkinson’s patient fibroblast-derived dopaminergic neurons by small molecules

Francesco Capriglia1, Tia Parker1, Tom Leah1, Hasan Ali1, Katy Barnes1, Chris Frank2, Thomas Nieland2, Heather Moeriboys1

1Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK.; 2Verge Genomics, South San Francisco, CA, USA.



ID: 384
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Proinflammatory cytokines induce alterations of mitochondrial functions and dynamics in neurons

Yeou San Lim, Yi-Chun Liao, Pei-Wen Chu, Shau-Kwaun Chen

Institute of Neuroscience, National Chengchi University, Taiwan



ID: 106
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction is involved in progranulin-related frontotemporal dementia

Javier S. Bautista1, Micol Falabella1, Shanti Lu1, Cathy E. Woodward2, Robyn Labrum2, Jonathan Rohrer3, Helene Plun-Favreau4, Selina Wray4, Jan-Willam Taanman5, Robert D.S. Pitceathly1,6

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2Neurogenetics Unit, Rare and Inherited Disease Genomic Laboratory, North Thames Genomic Laboratory Hub, London, UK; 3Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; 4Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; 5Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, UK; 6NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK

Bibliography
Bautista, Javier S., Micol Falabella, Padraig J. Flannery, Michael G. Hanna, Simon J.R. Heales, Simon A.S. Pope, and Robert D.S. Pitceathly. “Advances in Methods to Analyse Cardiolipin and Their Clinical Applications.” TrAC Trends in Analytical Chemistry 157 (December 1, 2022): 116808. https://doi.org/10.1016/j.trac.2022.116808.


ID: 208
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Morphological characterization of the progression of mitochondrial encephalopathy associated with CoQ10 deficiency

Juan M. Martínez-Gálvez1,2, Laura Jiménez-Sánchez3, Pilar González-García1,3, Julia Corral-Sarasa3, Mª. Elena Díaz-Casado1,3, Luis C. López1,3

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Biofisika Institute (CSIC, UPV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain; 3Ibs.Granada, Granada, Spain

Bibliography
1.Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).
2.Herebian, D., López, L. C. & Distelmaier, F. Bypassing human CoQ10 deficiency. Mol. Genet. Metab. 123, 289–291 (2018).
3.García-Corzo, L. et al. Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum. Mol. Genet. 22, 1233–1248 (2013).


ID: 485
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The vanishing dopamine in Parkinson’s disease

Chaitanya Chintaluri, Tim P Vogels

IST Austria, Austria

Bibliography
Chintaluri C and Vogels T.P. Metabolically driven action potentials serve neuronal energy homeostasis and protect from reactive oxygen species. bioRxiv 2022.10.16.512428; doi: https://doi.org/10.1101/2022.10.16.512428


ID: 656
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Effect of UPO04 depending on GAA triplet hyperexpansion in Friedreich’s ataxia disease.

Marta Talaveron Rey, José A. Sánchez Alcázar

Universidad Pablo de Olavide, Spain

Bibliography
Li, Y. et al.,(2015). Human Molecular Genetics.
Cai K, Markley JL. (2018) Molecules.
Daman Kumari (2012).Clinical epigenetics


ID: 401
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

New cell model for studying mitochondrial dysfunction in Fragile X-associated tremor/ataxia syndrome

Izabela Broniarek, Katarzyna Tutak, Krzysztof Sobczak

Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland



ID: 191
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Development of an in vitro platform for preclinical investigations on EPM1

Shekhar Singh1, Dr. Juzoh Umemori1, Dr. Lidiia Plotnikova1, Prof. Reetta Kälviäinen1,2, Dr. Riikka Martikainen1

1University of Eastern Finland, Finland; 2Kuopio University Hospital, Finalnd



ID: 579
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Metabolic rewiring in iPSCs-derived neuron progenitor cells of patients with mutations of mitochondrial SLC25A12/AGC1 carrier

Maria Chiara Magnifico1, Simona Nicole Barile1, Eleonora Poeta2, Luigi Viggiano1, Sabrina Petralla2, Giuseppe Fiermonte1, Nicola Balboni2, Federico Manuel Giorgi2, Antonella Pignataro1, Michele Protti2, Laura Mercolini2, Vito Porcelli1, Giorgia Babini2, Isabella Pisano1, Julia Hentschel3, Giacomo Volpe4, Luigi Palmieri1, Douglas C Wallace5, Felix Distelmaier6, Stewart Anderson5, Barbara Monti2, Francesco Massimo Lasorsa1

1Department of Biosciences Biotechnologies and Environment, University of Bari, Italy; 2Department of Pharmacy and BioTechnology, University of Bologna, Italy; 3Institute of Human Genetics, University Hospital, Leipzig, Germany; 4Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori "Giovanni Paolo II, Bari, Italy; 5Children's Hospital of Philadelphia Research Institute, Philadelphia, USA; 6University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany

Bibliography
[1] M.J. Falk, et al., AGC1 Deficiency Causes Infantile Epilepsy, Abnormal Myelination, and Reduced N-Acetylaspartate, JIMD Rep, 14 (2014) 77-85.
[2] M. Dahlin, et al., The ketogenic diet compensates for AGC1 deficiency and improves myelination Epilepsia, 56 (2015) e176-81.


ID: 614
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial function at the neuromuscular junction in motor neuron disease

Adam Creigh1, Gráinne Goman1, Rickie Patani2,3, Helen Devine1

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK; 3The Francis Crick Institute, London, UK.



ID: 228
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

A novel WDR45 variant in an encephalopathy mimicking Leigh syndrome with complex I deficiency

Giulia Ferrera1,2, Eleonora Lamantea3, Andrea Legati3, Celeste Panteghini3, Manuela Spagnolo3, Barbara Maria Garavaglia3, Valeria Sonia Tiranti3, Giovanna Simonetta Zorzi1, Daniele Ghezzi3,4, Anna Ardissone1

1Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.; 2Department of Health Sciences,University of Milan, Milan, Italy; 3Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 4Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy



ID: 142
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Characterisation of mitochondrial dysfunction in Huntington’s disease patient-derived fibroblasts

Naomi Hartopp1, Anastasia Thoma1, Emily Mossman1, Laura Ellis1, Rachel Hughes1, Gauri Bhosale2, Anachiara Gandini2, Alessandro Pristera2, Christopher Doe2, Scott Allen1, Laura Ferraiuolo1, Pamela Shaw1, Oliver Bandmann1, Heather Mortiboys1

1University of Sheffield, Sheffield Institute for Translational Neuroscience, United Kingdom; 2Nanna Therapeutics, Cambridge, UK



ID: 543
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Loss of mitochondrial chaperone Trap1 in mice causes changes in synaptic mitochondria function

Aleksandra Stawikowska, Marta Magnowska, Bożena Kuźniewska, Magdalena Dziembowska

Centre of New Technologies, University of Warsaw, Poland



ID: 435
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Unveiling the metabolic signature of synaptic mitochondria

Bernardo Cetra Antunes, Vanessa A. Morais

Instituto de Medicina Molecular João Lobo Antunes, Portugal

Bibliography
Proença, Susana*; Antunes, Bernardo*; Guedes, Rita C.; Ramilo-Gomes, Filipa; Cabral, M. Fátima; Costa, Judite; Fernandes, Ana S.; et al. "Pyridine-Containing Macrocycles Display MMP-2/9 Inhibitory Activity and Distinct Effects on Migration and Invasion of 2D and 3D Breast Cancer Models". International Journal of Molecular Sciences 20 20 (2019): 5109. http://dx.doi.org/10. 3390/ijms20205109.
* both authors contributed equally to this work.

Ana S. Serras*; Sérgio P. Camões*; Bernardo Antunes*; Vera M. Costa; Flávio Dionísio; Volkan Yazar; Rui Vitorino; et al. "The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells". International Journal of Molecular Sciences (2021): https: //doi.org/10.3390/ijms222313072.
* these authors contributed equally to this work.


ID: 454
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Aberration of mitochondrial ultrastructure in the skeletal muscle in patients with Parkinson’s disease

Laura Kytövuori1,2, Ilkka Miinalainen3, Maria Gardberg4, Mikko Kärppä1,2, Hannu Tuominen5, Juhana Leppilahti6, Kari Majamaa1,2

1Neurocenter, Oulu University Hospital, Oulu, Finland; 2Research Unit of Clinical Medicine, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu Finland; 3Electron microscopy, Biocenter Oulu, University of Oulu, Oulu, Finland; 4Pathology, Turku University Hospital and University of Turku, Turku, Finland; 5Pathology, Oulu University Hospital, Oulu, Finland; 6Division of Orthopaedic and Trauma Surgery, Department of Surgery, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland

Bibliography
1) Kytövuori L, Sipilä J, Doi H, Hurme-Niiranen A, Siitonen A, Koshimizu E, Miyatake S, Matsumoto N, Tanaka F, Majamaa K. Biallelic expansion in RFC1 as a rare cause of Parkinson’s disease. NPJ Parkinsons Dis 2022;8:6. DOI: 10.1038/s41531-021-00275-7

2) Korpioja A, Krüger J, Hurme-Niiranen A, Solje E, Katisko K, Lipponen J, Lehtilahti M, Remes AM, Majamaa K, Kytövuori L. Cognitive impairment is not uncommon in patients with biallelic RFC1 AAGGG repeat expansion, but the expansion is rare in patients with cognitive disease. Parkinsonism Relat Disord 2022;103:98-101. DOI: 10.1016/j.parkreldis.2022.08.034

3) Ylikotila P, Sipilä J, Alapirtti T, Ahmasalo R, Koshimizu E, Miyatake S, Hurme-Niiranen A, Siitonen A, Doi H, Tanaka F, Matsumoto N, Majamaa K, Kytövuori L. Association of biallelic RFC1 expansion with early-onset Parkinson’s disease. Eur J Neurol 2023, early-online, https://doi.org/10.1111/ene.15717


ID: 275
The impact of mtDNA variation and environment on rare and common diseases

New insights into the pathogenicity of the MT-ATP6: m.9176T>C mutation by a patient cohort and transmitochondrial cybrids combined approach

Pablo Serrano-Lorenzo1,5, Rocío Garrido-Moraga1, Alberto Blázquez1, Óscar García-Campos2, Miguel A. Fernández-Moreno3,5, Esther Gallardo4,5, María Moran1,5, Cristina Ugalde1,5, Joaquín Arenas1,5, Miguel A. Martín1,5

1Mitochondrial Diseases Laboratory, Research Institute, Universitary Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain.; 2Department of Pediatric Neurology, Hospital General Universitario de Toledo, Toledo, Spain.; 3Biochemistry Department, Biomedical Research Institute 'Alberto Sols', CSIC, Faculty of Medicine, Autonomous University of Madrid, and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain.; 4iPS Cells Translational Research Group, Research Institute, Universitary Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain.; 5Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.

Bibliography
Ganetzky RD, Stendel C, McCormick EM, Zolkipli-Cunningham Z, Goldstein AC, Klopstock T, Falk MJ. MT-ATP6 mitochondrial disease variants: Phenotypic and biochemical features analysis in 218 published cases and cohort of 14 new cases. Hum Mutat. 2019 May;40(5):499-515.


ID: 215
The impact of mtDNA variation and environment on rare and common diseases

Determining the contribution of mitochondrial alterations to lung cancer in vivo

Mara Mennuni, Stephen Eric Wilkie, Roberta Filograna, David Alsina, Nils-Göran Larsson

Karolinska Institute, Sweden

Bibliography
1.Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 0, (2020).
2.Ždralević, M. et al. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism. J. Biol. Chem. 293, 15947–15961 (2018).
3.Hensley, C. T. et al. Metabolic Heterogeneity in Human Lung Tumors. Cell 164, 681–694 (2016).
4.Momcilovic, M. et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 1–5 (2019). doi:10.1038/s41586-019-1715-0
5.Bensard, C. L. et al. Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metab. 31, 284-300.e7 (2020).
6.Smith, A. L. M. et al. Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nature Cancer (2020). doi:10.1038/s43018-020-00112-5
7.Filograna, R., Mennuni, M., Alsina, D. & Larsson, N. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 1873-3468.14021 (2020). doi:10.1002/1873-3468.14021
8.Hofmarcher, T. et al. Comparator Report on Cancer in Europe 2019 – Disease Burden, Costs and Access to Medicines. IHE Report 65–69 (2019).
9.Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).
10.Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. Elife 5, 1–20 (2016).
11.Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).
12.Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–8 (2001).


ID: 390
The impact of mtDNA variation and environment on rare and common diseases

Gamma Peptide Nucleic Acids as a Mechanism for Targeting the Mitochondrial Genome

Lily C. Farmerie1,2, Kevin M. Redding2, Colin T. Martin3, Taewon Jeon4, Harini Nagaraj4, Vince M. Rotello4, Bruce A. Armitage3, Brett A. Kaufman2

1Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; 2Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; 3Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; 4Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA

Bibliography
Farmerie L, Rustandi RR, Loughney JW, Dawod M. Recent advances in isoelectric focusing of proteins and peptides. J Chromatogr A. 2021 Aug 16;1651:462274. doi: 10.1016/j.chroma.2021.462274. Epub 2021 May 24. PMID: 34090060.


ID: 604
The impact of mtDNA variation and environment on rare and common diseases

Physiological variability in mitochondrial rRNA may predispose to metabolic syndrome

Tomas Mracek1, Petr Pecina1, Kristýna Čunátová1, Vilma Kaplanová1, Guillermo Puertas1, Jan Šilhavý2, Marek Vrbacký1, Kateřina Tauchmannová1, Tomáš Čajka3, Michal Pravenec2, Josef Houštěk1, Alena Pecinová1

1Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 2Laboratory of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 3Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic



ID: 590
The impact of mtDNA variation and environment on rare and common diseases

The European landscape of mitogenomes from LHON patients carrying the m.14484T>C/MT-ND6 pathogenic variant

Leonardo Caporali16, Anna Olivieri2, Francesco Petrizzelli3, Flavia Palombo4, Claudio Fiorini4, Bernd Wissinger5, Patrizia Amati-Bonneau6, Julio Montoya7, Costanza Lamperti8, Thomas Klopstock9, Alfredo A Sadun10, Antonio Federico11, Gavin Hudson12, Patrick Yu-Wai-Man13,14, Patrick F Chinnery13, René De Coo15, Tommaso Biagini3, Tommaso Mazza3, Alessandro Achilli2, Antonio Torroni2, Chiara La Morgia1,4, Valerio Carelli1,4

1University of Bologna, Italy; 2University of Pavia, Pavia, Italy; 3Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Rome, Italy; 4IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; 5University of Tuebingen, Tuebingen, Germany; 6Université LUNAM, Angers, France; 7Universidad de Zaragoza, Zaragoza, Spain; 8National Neurological Institute 'C. Besta', Milano, Italy; 9Ludwig-Maximilians-Universität München, Munich, Germany; 10UCLA, Los Angeles, California, USA; 11University of Siena, Siena, Italy; 12University of Newcastle, Newcastle upon Tyne, UK; 13University of Cambridge, Cambridge, UK; 14Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK; 15Erasmus Medical Centre, Rotterdam, The Netherlands; 16PhD, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna



ID: 458
The impact of mtDNA variation and environment on rare and common diseases

Mitochondrial DNA contribution to Parkinsonism: from mtDNA maintenance defects to primary mtDNA pathogenic variants

Raffaella Minardi1, Flavia Palombo1, Leonardo Caporali2, Claudio Fiorini1, Maria Pia Giannoccaro1,2, Alessia Fiornetino1, Maria Lucia Valentino1,2, Rocco Liguori1,2, Valerio Carelli1,2, Giovanni Rizzo1, Chiara La Morgia1,2

1IRCCS Istituto delle Scienze Neurologiche, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy



ID: 460
The impact of mtDNA variation and environment on rare and common diseases

Combined fiber atrophy and impaired muscle regeneration capacity driven by mitochondrial DNA alterations underlie the development of sarcopenia

Sammy Kimoloï1, Ayesha Sen2, Stefan Guenther3, Thomas Braun3, Tobias Brügmann4,5, Philipp Sasse5, Rudolf J. Wiesner2,6,7, David Pla-Martin2,6, Olivier R. Baris2,8

1Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology - Kakamega, Kenya; 2Institute of Vegetative Physiology, University of Cologne - Cologne, Germany; 3Max Planck Institute for Heart and Lung Research - Bad Nauheim, Germany; 4Institute for Cardiovascular Physiology, University Medical Center - Göttingen, Germany; 5Institute of Physiology I, Medical Faculty, University of Bonn - Bonn, Germany; 6Center for Molecular Medicine Cologne - Cologne, Germany; 7Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) - Cologne, Germany; 8University of Angers, UMR 6015 CNRS / 1083 INSERM, Mitovasc - Angers, France



ID: 291
The impact of mtDNA variation and environment on rare and common diseases

Examining the link between diet and metabolic risk score in individuals with bipolar disorder

Kassandra Alexis Zachos, Jaehyoung Choi, Ana Cristina Andreazza

University of Toronto, Canada

Bibliography
Kuang H, Duong A, Jeong H, Zachos K, Andreazza AC. Lactate in bipolar disorder: a systematic review and meta-analysis. Psychiatry Clin Neurosci. 2018.


ID: 254
The impact of mtDNA variation and environment on rare and common diseases

Mitochondrial morphology and function in mitochondrial disease

Julie Faitg1, Tracey Davey1, Doug Turnbull1, Amy Elizabeth Vincent1, Tiago Gomes2,3

1Newcastle University, United Kingdom; 2Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom

Bibliography
The AIMM Trial Group (2022). “Acipimox in Mitochondrial Myopathy (AIMM): study protocol for a randomised, double-blinded placebo-controlled, adaptive design trial of the efficacy of Acipimox in adult patients with mitochondrial myopathy.” Trials. 23(1).
Mito, T., Vincent, A.E., Faitg, J., Taylor, R.W., Khan, N., McWilliam, T.G., Suomalainen, A. “Mosaic dysfunction of mitophagy in mitochondrial disease”. Cell Metabolism.34: 1-12.
Faitg, J., Lacefield, C., Davey, T., White, K., Laws, R., Kosmidis, S., Reeve, A.K., Kandel, E.R., Vincent, A.E.*, Picard, M*. (2021) “3D Neuronal Mitochondrial Morphology in Axons Dendrites and Somata of the Ageing mouse Hippocampus”. Cell Reports. 36:109509.
Faitg, J., Davey, T., Turnbull, D.M., White, K., Vincent, A.E. (2020) “Mitochondrial morphology and function: Two for the price of one”. Journal of Microscopy. 278(2):89-106.


ID: 620
The impact of mtDNA variation and environment on rare and common diseases

MtDNA sequence and copy number analysis of buffy coat DNA of primary open-angle glaucoma patients

Antoni Vallbona-Garcia1,2,3, Patrick J. Lindsey2, Alphons P.M. Stassen4, Rick Kamps2, Florence H.J. van Tienen2,3, Nhan Nguyen2, Ilse H.J. Hamers2, Rianne Hardij2, Marike W. van Gisbergen5, Irenaeus F.M. de Coo2, Carroll A.B. Webers1, Theo G.M.F. Gorgels1,3, Bert J.M. Smeets2,3

1University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands; 2Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; 3School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; 4Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands; 5Department of Dermatology, GROW-school for oncology and reproduction, Maastricht University Medical Center, Maastricht, The Netherlands



ID: 592
The impact of mtDNA variation and environment on rare and common diseases

MELAS syndrome pathophysiology in cellular models of the disease

Suleva Povea-Cabello, Marina Villanueva-Paz, José Antonio Sánchez-Alcázar

Universidad Pablo de Olavide, Spain



ID: 349
The impact of mtDNA variation and environment on rare and common diseases

Pathogenic mtDNA variants, in particular single large-scale mtDNA deletions, are strongly associated with post-lingual onset sensorineural hearing loss in primary mitochondrial disease

Johanna Elander1, Elizabeth M McCormick2, Maria Värendh1, Karin Stenfeldt1,3, Rebecca D Ganetzky2,4, Amy Goldstein2,4, Zarazuela Zolkipli-Cunningham2,4, Laura E MacMullen2, Rui Xiao5, Marni J Falk2,4, Johannes K Ehinger1,6

1Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Sweden; 2Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, USA; 3Logopedics, Phoniatrics and Audiology, Department of Clinical Sciences Lund, Lund University, Sweden; 4Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, USA; 5Division of Biostatistics, Department of Pediatrics, Children's Hospital of Philadelphia, USA; 6Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Sweden



ID: 612
The impact of mtDNA variation and environment on rare and common diseases

What can we learn from detrimental mitogenome mutations in cattle?

Ino Curik1, Vladimir Brajkovic1, Tanja Svara2, Mojca Simčič3, Minja Zorc3, Karmen Branovic-Cakanic4, Andreja Jungić4, Betka Logar5, Peter Dovc3, Vlatka Cubric-Curik1, Dinko Novosel1,4

1University of Zagreb - Faculty of Agriculture, 10000 Zagreb, Croatia; 2University of Ljubljana - Veterinary Faculty, 1000 Ljubljana, Slovenia; 3University of Ljubljana - Biotechnical Faculty, 1000 Ljubljana, Slovenia; 4Croatian Veterinary Institute, 10000 Zagreb, Croatia; 5Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia



ID: 312
The impact of mtDNA variation and environment on rare and common diseases

Mitochondrial DNA copy number measurements reveal systemic evidence for mitochondrial dysfunction in age-related macular degeneration

Adriana Koller1, Caroline Brandl2, Claudia Lamina1, Martina Zimmermann2, Klaus Stark2, Iris Heid2, Florian Kronenberg1

1Medical University of Innsbruck, Austria; 2University of Regensburg, Germany



ID: 114
The impact of mtDNA variation and environment on rare and common diseases

Multiple mitochondrial DNA deletions in patients with myopathy

Jing Wang1,2, Ada Chan1, James Paterson1, Zarazuela Zolkipli-Cunningham1,2, Amy Goldstein1,2, Elizabeth McCormick1, Colleen Muraresku1, Matthew Dulik1,2, Douglas Wallace1,2, Marni Falk1,2

1Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; 2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA



ID: 363
The impact of mtDNA variation and environment on rare and common diseases

Utilizing donor mitochondrial haplogroup as a potential screening tool for the risk of primary graft dysfunction

Erika Leigh Beroncal1, Gabriel Siebiger2, Aizhou Wang2, Marcelo Cypel2, Ana Andreazza1

1University of Toronto, Canada; 2University Health Network, Toronto

Bibliography
Abdelnour-Berchtold, E., Ali, A., Baciu, C., Beroncal, E. L., Wang, A., Hough, O., Kawashima, M., Chen, M., Zhang, Y., Liu, M., Waddell, T., Andreazza, A. C., Keshavjee, S., & Cypel, M. (2022). Evaluation of 10°C as the optimal storage temperature for aspiration-injured donor lungs in a large animal transplant model. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 41(12), 1679–1688. https://doi.org/10.1016/j.healun.2022.08.025

Ali, A., Nykanen, A. I., Beroncal, E., Brambate, E., Mariscal, A., Michaelsen, V., Wang, A., Kawashima, M., Ribeiro, R. V. P., Zhang, Y., Fan, E., Brochard, L., Yeung, J., Waddell, T., Liu, M., Andreazza, A. C., Keshavjee, S., & Cypel, M. (2022). Successful 3-day lung preservation using a cyclic normothermic ex vivo lung perfusion strategy. EBioMedicine, 83, 104210. https://doi.org/10.1016/j.ebiom.2022.104210

Ali, A., Wang, A., Ribeiro, R. V. P., Beroncal, E. L., Baciu, C., Galasso, M., Gomes, B., Mariscal, A., Hough, O., Brambate, E., Abdelnour-Berchtold, E., Michaelsen, V., Zhang, Y., Gazzalle, A., Fan, E., Brochard, L., Yeung, J., Waddell, T., Liu, M., Andreazza, A. C., … Cypel, M. (2021). Static lung storage at 10°C maintains mitochondrial health and preserves donor organ function. Science translational medicine, 13(611), eabf7601. https://doi.org/10.1126/scitranslmed.abf7601


ID: 313
The impact of mtDNA variation and environment on rare and common diseases

A rare variant m.4135T>C in the MT-ND1 gene leads to LHON and altered OXPHOS supercomplexes

Hana Stufkova1, Tereza Rakosnikova1, Silvie Kelifova1, Katerina Lokvencova1, Petra Liskova2, Bohdan Kousal2, Vaclav Martinek3, Tomas Honzik1, Hana Hansikova1, Marketa Tesarova1

1Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; 2Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; 3Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.



ID: 283
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitophagy is stalled in cultured fibroblasts harbouring Parkin mutations

Xiao Liang1, Nynke van Polanen1, Derek Narendra2, Nicholas Ktistakis3, Jo Poulton1

1Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK.; 2Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA.; 3Signalling Programme. The Babraham Institute, Cambridge, UK.



ID: 662
The impact of mtDNA variation and environment on rare and common diseases

Impact of mitochondrial DNA modifications in shaping personalized ETC complex activities

Sandra Monica Bach de Courtade2, Marte Eikenes1, Yngve Thomas Bliksrud2, Berit Woldseth2, Lars Lars1,2

1University of Oslo, Norway; 2Oslo University Hospital



ID: 477
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Elucidating the role of ATF3 in the neuropathology of a mouse model of Leigh Syndrome

Marcos Blanco1, Patricia Prada-Dacasa1, Adán Domínguez-Martínez1, Alex Gella1, Elisenda Sanz1,2, Albert Quintana1,2

1Institut de Neurociències, Universitat Autònoma de Barcelona. Bellaterra (Barcelona) 08193. Spain; 2Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona. Bellaterra (Barcelona) 08193. Spain



ID: 541
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Deciphering the contribution of the Parvalbumin-expressing neurons in the motor, cognitive and social alterations in a mouse model of Leigh Syndrome

Laura Cutando1, Andrea Urpi1, Anna Pallé2, Elisenda Sanz1, Albert Quintana1

1Autonomous University of Barcelona, Bellaterra, Spain; 2Scripps Research, La Jolla, CA, USA

Bibliography
Cutando L, Puighermanal E, Castell L, Tarot P, Belle M, Bertaso F, Arango-Lievano M, Ango F, Rubinstein M, Quintana A, Chédotal A, Mameli M, Valjent E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat Neurosci. 2022 Jul;25(7):900-911. doi: 10.1038/s41593-022-01092-8. Epub 2022 Jun 16. PMID: 35710984.

Cutando L, Puighermanal E, Castell L, Tarot P, Bertaso F, Bonnavion P, de Kerchove d'Exaerde A, Isingrini E, Galante M, Dallerac G, Pascoli V, Lüscher C, Giros B, Valjent E. Regulation of GluA1 phosphorylation by d-amphetamine and methylphenidate in the cerebellum. Addict Biol. 2021 Jul;26(4):e12995. doi: 10.1111/adb.12995. Epub 2020 Dec 26. PMID: 33368923.

Martínez-Torres S*, Cutando L*, Pastor A, Kato A, Sakimura K, de la Torre R, Valjent E, Maldonado R, Kano M, Ozaita A. Monoacylglycerol lipase blockade impairs fine motor coordination and triggers cerebellar neuroinflammation through cyclooxygenase-2. Brain Behav Immun. 2019 Oct;81:399-409. doi: 10.1016/j.bbi.2019.06.036. Epub 2019 Jun 25. PMID: 31251974.
* First co-authors.

Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-González M, Delgado-García JM, Gruart A, Maldonado R, Ozaita A. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest. 2013 Jul;123(7):2816-31. doi: 10.1172/JCI67569. Epub 2013 Jun 24. PMID: 23934130; PMCID: PMC3696568.


ID: 267
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

CHCHD10 and SLP2 control the stability of the PHB complex : a key factor for motor neuron viability

Emmanuelle C Genin1, Sylvie Bannwarth1, Baptiste Ropert1, Françoise Lespinasse1, Alessandra Mauri-Crouzet1, Gaelle Augé1, Konstantina Fragaki1, Charlotte Cochaud1, Erminia Donnarumma2, Sandra Lacas-Gervais3, Luc Dupuis4, Timothy Wai2, Véronique Paquis-Flucklinger1

1Université Côte d’Azur, Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice (France); 2Mitochondrial Biology Group, Institut Pasteur, CNRS UMR 3691, Paris (France); 3Université Côte d’Azur, Centre Commun de Microscopie Appliquée, Nice (France); 4Mécanismes Centraux et Périphériques de la Neurodégénérescence, Inserm U1118, UMR S1118, CRBS, Université de Strasbourg, Strasbourg (France)

Bibliography
- Genin EC*, Bannwarth S*, Ropert B, Lespinasse F, Mauri-Crouzet A, Augé G, Fragaki K, Cochaud C, Donnarumma E, Lacas-Gervais S, Wai T, Paquis-Flucklinger V. CHCHD10 and SLP2 control the stability of the PHB complex : a key role factor for motor neuron viavility. Brain 2022 Oct 21 ;145(10) :3415-3430. doi : 10.1093/brain/awac197

- Genin EC*, Madji Hounoum B*, Bannwarth S, Fragaki K, Lacas-Gervais S, Mauri-Crouzet A, Lespinasse F, Neveu J, Ropert B, Augé G, Cochaud C, Lefebvre-Omar C, Bigou S, Chiot A, Mochel F, Boillée S, Lobsiger CL, Bohl D, Ricci J-E, Paquis-Flucklinger V. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse. Acta Neuropathologica, 2019 Jul;138(1) :123-145. doi: 10.1007/s00401-019-01988-z


ID: 280
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction in peripheral blood mononuclear cells in different stages of Huntington´s disease

Marie Vanisova1, Hana Stufkova1, Michael Pasak1, Jan Roth2, Irena Rysankova2, Marte Eikenes3, Lars Eide3, Jiri Klempir2, Hana Hansikova1

1Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic; 2Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic; 3Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway.

Bibliography
Bibliography of Vanisova ( Rodinova) Marie:

Vanisova M, Stufkova H, Kohoutova M, Rakosnikova T, Krizova J, Klempir J, Rysankova I, Roth J, Zeman J, Hansikova H. Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease. Ultrastruct Pathol. 2022 Aug 10:1-14. doi: 10.1080/01913123.2022.2100951.

Rodinova M, Krizova J, Stufkova H, Bohuslavova B, Askeland G, Dosoudilova Z, Juhas S, Juhasova J, Ellederova Z, Zeman J, Eide L, Motlik J, Hansikova H. Skeletal muscle in an early manifest transgenic minipig model of Huntington's disease revealed deterioration of mitochondrial bioenergetics and ultrastructure impairment.Dis Model Mech. 2019 Jul 5. pii: dmm.038737. doi: 10.1242/dmm.038737.

Skalnikova HK, Bohuslavova B, Turnovcova K, Juhasova J, Juhas S, Rodinova M, Vodicka P. Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma. Proteomes. 2019 Apr 25;7(2). pii: E17. doi: 10.3390/proteomes7020017.

Askeland G, Rodinova M, Štufková H, Dosoudilova Z, Baxa M, Smatlikova P, Bohuslavova B, Klempir J, Nguyen TD, Kuśnierczyk A, Bjørås M, Klungland A, Hansikova H, Ellederova Z, Eide L. A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. Dis Model Mech. 2018 Oct 24;11(10). pii: dmm035949. doi: 10.1242/dmm.035949.

Askeland G, Dosoudilova Z, Rodinova M, Klempir J, Liskova I, Kuśnierczyk A, Bjørås M, Nesse G, Klungland A, Hansikova H, Eide L. Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington's disease patients. Sci Rep. 2018 Jun 29;8(1):9817. doi: 10.1038/s41598- 018-27985-y.

Krizova J, Stufkova H, Rodinova M, Macakova M, Bohuslavova B, Vidinska D, Klima J, Ellederova Z, Pavlok A, Howland DS, Zeman J, Motlik J, Hansikova H. Mitochondrial Metabolism in a Large-Animal Model of Huntington Disease: The Hunt for Biomarkers in the Spermatozoa of Presymptomatic Minipigs. Neurodegener Dis. 2017;17(4-5):213-226. doi: 10.1159/000475467. Epub 2017 Jun 21

Dušek P, Rodinová M, Lišková I, Klempíř J, Zeman J, Roth J, Hansíková H.Buccal Respiratory Chain Complexes I and IV Quantities in Huntington's Disease Patients. Folia Biol (Praha). 2018;64(1):31-34.


ID: 322
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The mitochondrial DNA depletion syndrome protein FBXL4 mediates the degradation of the mitophagy receptors BNIP3 and NIX to suppress mitophagy

Keri-Lyn Kozul1, Giang Thanh Nguyen-Dien1,2, Yi Cui1, Prajakta Gosavi Kulkarni1, Michele Pagano3,4, Brett M. Collins5, Robert W. Taylor6,7, Mathew J.K. Jones8, Julia K. Pagan1,5,8

1School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia; 2Department of Biotechnology, School of Biotechnology, Viet Nam National University-International University, Ho Chi Minh City, Vietnam; 3Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA; 4Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA; 5The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia

Bibliography
Nguyen-Dien G, Kozul K, Cui Y, Townsend B, Gosavi Kulkarni P, Ooi S, Marzio A, Carrodus N, Zuryn S, Pagano M et al. (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv 2022.10.12.511867; doi: https://doi.org/10.1101/2022.10.12.511867


ID: 467
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondria released from astrocytes contribute to the striatal neuronal vulnerability in Huntington’s disease

Laura Lopez-Molina1,2,3,4, Alba Pereda-Velarde1,2,3,4, Silvia Ginés1,2,3,4

1Departament de Biomedicina, Facultat de Medicina. Universitat de Barcelona, Spain; 2Institut de Neurociències. Universitat de Barcelona, Spain; 3Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; 4Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.

Bibliography
Cherubini M, Lopez-Molina L, Gines S. Mitochondrial fission in Huntington's disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and Reactive Oxygen Species (ROS) homeostasis. Neurobiology of Disease, 2020. IF: 5,22. DOI: 10.1016/j.nbd.2020.104741.


ID: 554
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitophagy in CHCHD10 related disorders: beneficial or a deleterious pathway?

Willian Meira, Emmanuelle C. Genin, Mélanie Abou-Ali, Alessandra Mauri, Françoise Lespinasse, Sylvie Bannwarth, Véronique Paquis-Flucklinger

Institute for Research on Cancer and Aging, Nice (IRCAN) - France



ID: 582
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor

Hélène Cwerman-Thibault1, Vassilissa Malko-Baverel1, Gwendoline Le Guilloux1, Isabel Torres-Cuevas1,2,3, Iván Millán1,2,4, Bruno Saubaméa5, Edward Ratcliffe1, Djmila Mouri1, Virginie Mignon5,6, Odile Boespflug-Tanguy1, Pierre Gressens1, Marisol Corral-Debrinski1

1Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; 2Neonatal Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; 3Department of Physiology, University of Valencia, Vicent Andrés Estellés s/n, 46100 12 Burjassot, Spain; 4Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain; 5Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France; 6Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France

Bibliography
1.Hélène Cwerman-Thibault, Christophe Lechauve, Vassilissa Malko-Baverel, Sébastien Augustin, Gwendoline Le Guilloux, Élodie Reboussin, Julie Degardin-Chicaud, Manuel Simonutti, Thomas Debeir, Marisol Corral-Debrinski. Neuroglobin effectively halts vision loss in Harlequin mice at an advanced stage of optic nerve degeneration. Neurobiology of Disease, 2021. doi.org/10.1016/j.nbd.2021.105483.

2.Hélène Cwerman-Thibault, Vassilissa Malko-Baverel, Gwendoline Le Guilloux, Isabel Torres-Cuevas, Iván Millán, Bruno Saubaméa, Edward Ratcliffe, Djmila Mouri, Virginie Mignon, Odile Boespflug-Tanguy, Pierre Gressens, Marisol Corral-Debrinski. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Brain Pathology (In submission).


3.Hélène Cwerman-Thibault, Vassilissa Malko-Baverel, Gwendoline Le Guilloux, Edward Ratcliffe, Djmila Mouri, Isabel Torres-Cuevas, Ivan Millán, Virginie Mignon, Bruno Saubaméa, Odile Boespflug-Tanguy, Pierre Gressens, Marisol Corral-Debrinski. Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior. (In submission)


ID: 638
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction and calcium dysregulation in COQ8A-Ataxia Purkinje neurons are rescued by CoQ10 treatment

Ioannis Manolaras1, Andrea Del Bondio2, Olivier Griso1, Bianca Habermann3, Hélène Puccio1,2

1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, France; 2Institut NeuroMyoGene, UMR5310, INSERM U1217, Université Claude Bernard Lyon I Faculté de médecine, Lyon, France; 3Institut de Biologie du Développement de Marseille (IBDM), CNRS, UMR7288, Aix-Marseille Université, Marseille, France.



ID: 1556
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Macromolecular crowding: A novel player in mitochondrial physiology and disease

Elianne P Bulthuis1, Cindy EJ Dieteren1, Jesper Bergmans1, Job Berkhout1, Jori A Wagenaars1, Els MA van de Westerlo1, Emina Podhumljak1, Mark A Hink2, Laura FB Hesp1, Hannah S Rosa3, Afshan N Malik3, Mariska Kea-te Lindert1, Peter HGM Willems1, Han JGE Gardeniers4, Wouter K den Otter4, Merel JW Adjobo-Hermans1, Werner JH Koopman1,5

1Radboud University Medical Center, The Netherlands; 2University of Amsterdam, The Netherlands; 3King's College, London, UK; 4University of Twente, The Netherlands; 5Wageningen University, The Netherlands

Bibliography
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MK, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J. 2023 Feb 24:e108533. doi: 10.15252/embj.2021108533. Epub ahead of print. PMID: 36825437.

Bulthuis EP, Adjobo-Hermans MJW, Willems PHGM, Koopman WJH. Mitochondrial Morphofunction in Mammalian Cells. Antioxid Redox Signal. 2019 Jun 20;30(18):2066-2109. doi: 10.1089/ars.2018.7534. Epub 2018 Nov 29.

Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ. Solute diffusion is hindered in the mitochondrial matrix. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8657-62. doi: 10.1073/pnas.1017581108. Epub 2011 May 9. PMID: 21555543; PMCID: PMC3102363.


ID: 1342
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Preserved motor function and striatal innervation despite severe degeneration of dopamine neurons upon mitochondrial dysfunction

Thomas Paß1, Roy Chowdury2, Julien Prudent2, Yu Nie3, Patrick Chinnery3, Markus Aswendt4, Heike Endepols5, Bernd Neumaier5, Trine Riemer6, Bent Brachvogel6, Rudi Wiesner7

1Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Germany; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK; 3Medical Research Council Mitochondrial Biology Unit and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, UK; 4Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; 5Institute of Radiochemistry and Experiment Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Germany; 6Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, Germany; 7Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Center for Molecular Medicine Cologne, University of Cologne, Germany

Bibliography
(1) Ricke, K.M., T. Paß, S. Kimoloi, K. Fährmann, C. Jüngst, A. Schauss, O.R. Baris, M. Aradjanski, A. Trifunovic, T.M. Eriksson Faelker, M. Bergami and R.J. Wiesner (2020): Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. J Neuroscience 40: 1975-1986
(2) Dölle C., Flønes I., Nido G.S., Miletic H., Osuagwu N., Kristoffersen S., Lilleng P.K., Larsen J.P., Tysnes O.B., Haugarvoll K., Bindoff L.A., Tzoulis C. (2016): Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 7: 13548.


ID: 1320
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The mitochondrial DNA depletion syndrome protein FBXL4 mediates the degradation of the mitophagy receptors BNIP3 and NIX to suppress mitophagy

Keri-Lyn Kozul1, Giang Thanh Nguyen-Dien1,2, Yi Cui1, Prajakta Gosavi Kulkarni1, Michele Pagano3,4, Brett M. Collins5, Robert Taylor6,7, Mathew J.K. Jones8, Julia K. Pagan1,5,8

1School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia; 2Department of Biotechnology, School of Biotechnology, Viet Nam National University-International University, Ho Chi Minh City, Vietnam; 3Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA; 4Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA; 5The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia

Bibliography
Nguyen-Dien G, Kozul K, Cui Y, Townsend B, Gosavi Kulkarni P, Ooi S, Marzio A, Carrodus N, Zuryn S, Pagano M et al. (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv 2022.10.12.511867; doi: https://doi.org/10.1101/2022.10.12.511867


ID: 1329
The impact of mtDNA variation and environment on rare and common diseases

Parsing universal heteroplasmy in a large maternal lineage carrying the common LHON variant m.11778G>A/MT-ND4

Danara Ormanbekova1, Claudio Fiorini1, Leonardo Caporali2, Alberto Pasti1, Chiara Giannuzzi2, Francesco Musacchia3, Diego Vozzi3, Milton N Moraes-Filho4, Solange R Salomao5, Adriana Berezovsky5, Alfredo A Sadun6, Stefano Gustincich3, Patrick F Chinnery7, Valerio Carelli1,2

1Azienda USL di Bologna - IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 3Istituto Italiano di Tecnologia – IIT, Genova, Italy; 4Instituto de Olhos de Colatina, Colatina, Espírito Santo, Brazil; 5Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; 6Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 7Medical Research Council Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK



ID: 1441
The impact of mtDNA variation and environment on rare and common diseases

PNPLA3, MBOAT7 and TM6SF2 modify mitochondrial dynamics in NAFLD patients: dissecting the role of cell-free circulating mtDNA and copy number

Miriam Longo1, Erika Paolini1,2, Marica Meroni1, Michela Ripolone1, Laura Napoli1, Giada Tria1, Marco Maggioni1, Maurizio Maggio1, Anna Ludovica Fracanzani1,3, Paola Dongiovanni1

1Fondazione IRCCS Cà Granda Ospedale Policlinico, Italy; 2Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; 3Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy



ID: 444
The impact of mtDNA variation and environment on rare and common diseases

The overexpression of TM6SF2 and/or MBOAT7 wild-type genes restores the mitochondrial lifecycle and activity in an in vitro NAFLD model

Erika Paolini1,2, Miriam Longo1, Marica Meroni1, Giada Tria1, Massimiliano Ruscica2, Anna Ludovica Fracanzani1,3, Paola Dongiovanni1

1Fondazione IRCCS Cà Granda Ospedale Policlinico, Italy; 2Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; 3Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy

 

Date: Wednesday, 14/June/2023
8:00am - 6:00pmSlides Center
Location: Slides Center
8:00am - 6:00pmRegistration Desk
Location: Bologna Congress Center
9:00am - 10:30amSession 4.1: Therapy 1: preclinical developments
Location: Bologna Congress Center - Sala Europa
Session Chair: Michal Minczuk
Session Chair: Maria Falkenberg
Invited Speaker: N. Larsson; C. Viscomi
 
Invited
ID: 603
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The Organization of the Respiratory Chain and its role in Metabolism

Nils-Göran Larsson

Karolinska Institutet, Sweden



Invited
ID: 677
Invited Speakers

Developing new therapies for mitochondrial diseases

Carlo Viscomi

University of Padova, Italy



Oral presentation
ID: 193
Therapy 1: preclinical developments

AAV-mediated transduction of the nuclear-coded mitochondrial ANT1 gene can ameliorate mouse Ant1-/- pathology: a step toward the treatment of mitochondrial cardiomyopathy

Alessia Angelin1,2, Kierstin Keller1,2, Prasanth Potluri1,2, Deborah Murdock1,2, Liming Pei1,2, Douglas C Wallace1,2

1The Children's Hospital of Philadelphia, PA USA; 2Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA



Oral presentation
ID: 371
Therapy 1: preclinical developments

Preclinical studies of efficacy and genetic safety of deoxyribonucleosides as a therapy for mitochondrial DNA maintenance defects

Javier Ramón1,2, Cristina Domínguez-González2,5, Jordi Leno-Colorado3, Maria Ylla-Català1,2, Cora Blázquez-Bermejo1,2, Pau Molla-Zaragoza1,2, Anne Lombès4, Miguel A. Martín2,5, M.Dolores Sardina6, Itxaso Martí7, Adolfo López de Munain8,9, Francina Munell10, Raúl Juntas11, Juan Luis Restrepo-Vera11, Antònia Ribes2,12, Anna Karlsson13, Antonella Spinazzola14, Andrés Nascimento2,15, Marcos Madruga16, Carmen Paradas9,17, Elena García-Arumí1,2,3, Yolanda Cámara1,2, Ramon Martí1,2

1Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain; 2Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; 3Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; 4Institut Cochin, INSERM Unité 1016–Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104–Service de Biochimie Métabolique et Centre de Génétique Moléculaire et Chromosomique, Groupement Hospitalier Universitaire (GHU) Pitié-Salpétrière, Assistance Publique–Hôpitaux de Paris (AP–HP)–Université Paris Descartes, Paris, France; 5Mitochondrial and Neuromuscular Disorders Group, '12 de Octubre’ Hospital Research Institute (imas12), Madrid, Spain; 6Pediatric Neurology Department, Badajoz Hospital Complex, Badajoz, Spain; 7Pediatric Neurology Department, Donostia University Hospital, San Sebastian, Spain; 8Neurology Department, Donostia University Hospital, Osakidetza, San Sebastián. Neuromuscular Group, Neurosciences Area, Biodonostia Research Institute, San Sebastián, Spain; Neurosciences Department, Basque Country University, San Sebastián, Spain; 9Centro de Investigación en Red de Enfermedades Neurodegenerativas, CIBERNED (CIBER), Instituto Carlos III, Madrid, Spain; 10Children Neuromuscular Diseases Unit, Pediatrics, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; 11Department of Neurology, Neuromuscular Diseases Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; 12Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, Barcelona, Spain; 13Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; 14Department of Clinical Movement Neurosciences, Royal Free Campus, University College of London, Queen Square Institute of Neurology, London, UK; 15Neuromuscular Unit, Neurology Department, Sant Joan de Déu Research Institute, Sant Joan de Déu Hospital, Barcelona, Spain; 16Neuropediatra, Neurolinkia & Hospital Viamed Santa Ángela De la Cruz, Sevilla, Spain; 17Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario Virgen del Rocío/ Instituto de Biomedicina de Sevilla, Sevilla, Spain



Flash Talk
ID: 152
Therapy 1: preclinical developments

The mitoDdCBE system as a mitochondrial gene therapy approach

Jose Domingo Barrera-Paez1, Sandra R. Bacman1, Till Balla2, Beverly Mok3, David Liu3, Danny Nedialkova2, Carlos T. Moraes1

1University of Miami, United States of America; 2Max Planck Institute of Biochemistry, Germany; 3Broad Institute, Harvard University, and HHMI, United States of America

Bibliography
Mitochondrial genome engineering coming-of-age. Barrera-Paez et al. Trends Genet. 2022, May 19. PMID: 35599021.

Mitochondrial gene editing. Shoop et al (Barrera-Paez as third author). Nat Rev Methods Primers. 2023, in press (March 16).


Flash Talk
ID: 512
Therapy 1: preclinical developments

Genetic variants impact on NQO1 expression and activity driving efficacy of idebenone treatment in Leber’s hereditary optic neuropathy cell models

Valentina Del Dotto1, Serena Jasmine Aleo1, Martina Romagnoli2, Claudio Fiorini2, Giada Capirossi1, Camille Peron3, Alessandra Maresca2, Leonardo Caporali2, Mariantonietta Capristo2, Concetta Valentina Tropeano2, Claudia Zanna1, Anna Maria Porcelli4, Giulia Amore2, Chiara La Morgia1,2, Valeria Tiranti3, Valerio Carelli1,2, Anna Maria Ghelli4

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.; 3Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; 4Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.



Flash Talk
ID: 292
Therapy 1: preclinical developments

Peptide mimetic molecules as potential therapeutic agents against diseases related to mt-tRNA point mutations.

Annalinda Pisano1, Luciana Mosca2, Maria Gemma Pignataro1, Veronica Morea3, Giulia d'Amati1

1Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Italy; 2Department of Biochemical Sciences "A. Rossi Fanelli, Sapienza University of Rome, Italy; 3Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy

Bibliography
Perli E, Pisano A, Pignataro MG, Campese AF, Pelullo M, Genovese I, de Turris V, Ghelli AM, Cerbelli B, Giordano C, Colotti G, Morea V, d'Amati G. Exogenous peptides are able to penetrate human cell and mitochondrial membranes, stabilize mitochondrial tRNA structures, and rescue severe mitochondrial defects. FASEB J. 2020 Jun;34(6):7675-7686. doi: 10.1096/fj.201903270R
Italian Patent n.102021000032930 THERAPEUTICAL PEPTIDOMIMETIC
Inventors: Giulia d’Amati, Veronica Morea, Annalinda Pisano, Elena Perli, Maria Gemma Pignataro
International application No. PCT/IB2022/062354
 
10:30am - 10:45amCoffee Break
Location: Bologna Congress Center
10:45am - 12:15pmSession 4.2: Therapy 2: clinical trials
Location: Bologna Congress Center - Sala Europa
Session Chair: Caterina Garone
Session Chair: Chiara La Morgia
Invited Speaker: N. Newman; M. Hirano
 
Invited
ID: 166
Invited Speakers

Clinical trials for Leber hereditary optic neuropathy

Nancy J. Newman

Emory University School of Medicine, United States of America

Bibliography
Newman NJ, Yu-Wai-Man P, Subramanian PS, et al. Bilateral injection of lenadogene nolparvovec for m.11778G>A MT-ND4 Leber hereditary optic neuropathy. Brain 2023;awac421.doi: 10.1093/brain/awac421.

Carelli V, Newman NJ, Yu-Wai-Man P, et al. Indirect comparison of lenadogene nolparvovec gene therapy versus natural history in Leber hereditary optic neuropathy patients carrying the m.11778G>A MT-ND4 mutation. Ophthalmol Ther, 2022, https://doi.org/10.007/s40123-022-0061-x .

Newman NJ, Yu-Wai-Man P, Biousse V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol 2023;S1474-4422(22)00174-0. doi: 10.1016/S1474-4422(22)00174-0.

Sahel JA, Newman NJ, Yu-Wai-Man P, Vignal-Clermont C, Carelli V, Biousse V, Moster ML, Sergott R, Klopstock T, Sadun AA, Blouin L, Katz B, Taiel M. Gene therapies for the treatment of Leber hereditary optic neuropathy. Int Ophthalmol Clin 61:195-208 2021.

Newman NJ, Yu-Wai-Man P, Carelli V, et al, for the LHON Study Group. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology 128:649-660, 2021.

Yu-Wai-Man P, Newman NJ, Carelli V, et al. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci Transl Med 2020 Dec 9;12(573):eaaz7423.

Catarino C, von Livonious B, Gallenmuller C, Banik R, Matloob S, Tamhankar M, Castillo Campillo LC, Dahlgren N, Friedburg C, Halfpenny C, Lincoln J, Traber G, Acaroglu G, Black G, Doncel C, Fraser C, Jakubaszko J, Landau K, Langenegger S, Munoz Negrete F, Newman N, Poulton J, Scoppettuolo E, Subramanian P, Toosy A, Vidal M, Vincent A, Votruba M, Zarowski M, Zermansky A, Lob F, Rudolph G, Mikazans O, Silva M, Lloria X, Metz G, Klopstock T. Real world clinical experience with idebenone in the treatment of Leber’s hereditary optic neuropathy. J Neuro-ophthalmol 40: 558–565, 2020.


Invited
ID: 2104
Invited Speakers

Development of deoxynucleoside therapy for mitochondrial DNA depletion/deletions syndrome

Michio Hirano1, Caterina Garone2, Carlos López-Gomez3, Cristina Domínguez-Gónzalez4, Ramon Martí5, Agustin Hidalgo-Gutierrez1

1Columbia University Irving Medical Center, New York, USA, United States of America; 2University of Bologna, Bologna, Italy; 3Univerity of Malaga, Malaga, Spain; 4University Hospital, 12 de Octubre, Madrid, Spain; 5Vall d’Hebron Institut de Recerca, Barcelona, Spain

Bibliography
1.Lopez-Gomez C, Camara Y, Hirano M, Marti R, nd EWP. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord. 2022;32(7):609-20. Epub 20220514. doi: 10.1016/j.nmd.2022.05.008. PubMed PMID: 35641351.
2.Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet. 2001;29(3):342-4. PubMed PMID: 11687801.
3.Garone C, Taylor RW, Nascimento A, Poulton J, Fratter C, Dominguez-Gonzalez C, Evans JC, Loos M, Isohanni P, Suomalainen A, Ram D, Hughes MI, McFarland R, Barca E, Lopez Gomez C, Jayawant S, Thomas ND, Manzur AY, Kleinsteuber K, Martin MA, Kerr T, Gorman GS, Sommerville EW, Chinnery PF, Hofer M, Karch C, Ralph J, Camara Y, Madruga-Garrido M, Dominguez-Carral J, Ortez C, Emperador S, Montoya J, Chakrapani A, Kriger JF, Schoenaker R, Levin B, Thompson JLP, Long Y, Rahman S, Donati MA, DiMauro S, Hirano M. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet. 2018;55(8):515-21. Epub 20180330. doi: 10.1136/jmedgenet-2017-105012. PubMed PMID: 29602790; PMCID: PMC6073909.
4.Wang J, Kim E, Dai H, Stefans V, Vogel H, Al Jasmi F, Schrier Vergano SA, Castro D, Bernes S, Bhambhani V, Long C, El-Hattab AW, Wong LJ. Clinical and molecular spectrum of thymidine kinase 2-related mtDNA maintenance defect. Mol Genet Metab. 2018;124(2):124-30. Epub 20180428. doi: 10.1016/j.ymgme.2018.04.012. PubMed PMID: 29735374.
5.Hidago-Gutierrez A, Shintaku J, Barriocanal-Casado E, Saneto R, Ramon J, Garrabou G, Tort F, Millsenda JC, Gort L, Pesini A, Tadesse S, King M-C, Martí R, Ribes A, Hirano M, editors. Guanylate Kinase 1 Deficiency: A Novel and Potentially Treatable Form of Mitochondrial DNA Depletion/Deletions Syndrome. Euromit 2023; 2023; Bologna, Italy.
6.Akman HO, Dorado B, Lopez LC, Garcia-Cazorla A, Vila MR, Tanabe LM, Dauer WT, Bonilla E, Tanji K, Hirano M. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Hum Mol Genet. 2008;17(16):2433-40. Epub 20080508. doi: 10.1093/hmg/ddn143. PubMed PMID: 18467430; PMCID: PMC3115590.
7.Zhou X, Solaroli N, Bjerke M, Stewart JB, Rozell B, Johansson M, Karlsson A. Progressive loss of mitochondrial DNA in thymidine kinase 2-deficient mice. Hum Mol Genet. 2008;17(15):2329-35. Epub 20080422. doi: 10.1093/hmg/ddn133. PubMed PMID: 18434326.
8.Blazquez-Bermejo C, Molina-Granada D, Vila-Julia F, Jimenez-Heis D, Zhou X, Torres-Torronteras J, Karlsson A, Marti R, Camara Y. Age-related metabolic changes limit efficacy of deoxynucleoside-based therapy in thymidine kinase 2-deficient mice. EBioMedicine. 2019;46:342-55. Epub 20190724. doi: 10.1016/j.ebiom.2019.07.042. PubMed PMID: 31351931; PMCID: PMC6711114.
9.Garone C, Garcia-Diaz B, Emmanuele V, Lopez LC, Tadesse S, Akman HO, Tanji K, Quinzii CM, Hirano M. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med. 2014;6(8):1016-27. doi: 10.15252/emmm.201404092. PubMed PMID: 24968719; PMCID: PMC4154130.
10.Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, Juanola-Falgarona M, Barca E, Garcia-Diaz B, Tadesse S, Garone C, Hirano M. Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency. Ann Neurol. 2017;81(5):641-52. doi: 10.1002/ana.24922. PubMed PMID: 28318037.
11.Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, Akman HO, Gao G, Hirano M. Synergistic Deoxynucleoside and Gene Therapies for Thymidine Kinase 2 Deficiency. Ann Neurol. 2021;90(4):640-52. Epub 20210813. doi: 10.1002/ana.26185. PubMed PMID: 34338329; PMCID: PMC9307066.
12.Dominguez-Gonzalez C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodriguez FJ, Donati MA, Kleinsteuber K, Marti I, Martin-Hernandez E, Morealejo-Aycinena JP, Munell F, Nascimento A, Kalko SG, Sardina MD, Alvarez Del Vayo C, Serrano O, Long Y, Tu Y, Levin B, Thompson JLP, Engelstad K, Uddin J, Torres-Torronteras J, Jimenez-Mallebrera C, Marti R, Paradas C, Hirano M. Deoxynucleoside Therapy for Thymidine Kinase 2-Deficient Myopathy. Ann Neurol. 2019;86(2):293-303. Epub 20190617. doi: 10.1002/ana.25506. PubMed PMID: 31125140; PMCID: PMC7586249.


Oral presentation
ID: 110
Therapy 2: clinical trials

Histopathological and molecular characterization in ocular post-mortem analyses following AAV2 gene therapy for LHON

Valerio Carelli1, Leonardo Caporali1, Fred Ross-Cisneros2, Elisa Boschetti3, Nancy J. Newman4, Valérie Biousse4, Henry Liu5, Philippe Ancian6, Magali Taiel7, Alfredo A. Sadun2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA; 3IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 4Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA; 5Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; 6Charles River Laboratories, Evreux, France; 7Gensight Biologics, Paris, France

Bibliography
Carelli V, Newman NJ, Yu-Wai-Man P, Biousse V, Moster ML, Subramanian PS, Vignal-Clermont C, Wang AG, Donahue SP, Leroy BP, Sergott RC, Klopstock T, Sadun AA, Rebolleda Fernández G, Chwalisz BK, Banik R, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA; theLHON Study Group. Indirect Comparison of Lenadogene Nolparvovec Gene Therapy Versus Natural History in Patients with Leber Hereditary Optic Neuropathy Carrying the m.11778G>A MT-ND4 Mutation. Ophthalmol Ther. 2022 Nov 30. doi: 10.1007/s40123-022-00611-x. Epub ahead of print. PMID: 36449262.

Newman NJ, Schniederjan M, Mendoza PR, Calkins DJ, Yu-Wai-Man P, Biousse V, Carelli V, Taiel M, Rugiero F, Singh P, Rogue A, Sahel JA, Ancian P. Absence of lenadogene nolparvovec DNA in a brain tumor biopsy from a patient in the REVERSE clinical study, a case report. BMC Neurol. 2022 Jul 12;22(1):257. doi: 10.1186/s12883-022-02787-y. PMID: 35820885; PMCID: PMC9277876.

Calkins DJ, Yu-Wai-Man P, Newman NJ, Taiel M, Singh P, Chalmey C, Rogue A, Carelli V, Ancian P, Sahel JA. Biodistribution of intravitreal lenadogene nolparvovec gene therapy in nonhuman primates. Mol Ther Methods Clin Dev. 2021 Oct 1;23:307-318. doi: 10.1016/j.omtm.2021.09.013. PMID: 34729378; PMCID: PMC8526752.


Oral presentation
ID: 546
Therapy 2: clinical trials

Combatting myopathy in m.3243A>G mutation carriers: first in human transplantation of autologous mesoangioblasts

Florence H.J. van Tienen1,2, Janneke G.J. Hoeijmakers2,3, Christiaan van der Leij4,5, Erika Timmer1,5, Nikki Wanders1,2, Fong Lin6, Susanne P.M. Kortekaas6, Inge M. Westra6, Pauline Meij6, Appie Wijnen7, Wouter M.A. Franssen8, Bert O. Eijnde8, Catharina G. Faber2,3, Irenaeus F.M. de Coo1,2,9, Hubert J.M. Smeets1,2,5

1Department of Toxicogenomics, Maastricht University Medical Centre+, Maastricht, The Netherlands; 2School for Mental Health and Neurosciences (MHeNS), Maastricht University Medical Centre+, Maastricht, The Netherlands; 3Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands; 4Department of Radiology, Maastricht University Medical Centre+, Maastricht, The Netherlands; 5School for Developmental Biology and Oncology (GROW), Maastricht University Medical Centre+, Maastricht, The Netherlands; 6Center for Cell and Gene Therapy (CCG), Leiden University Medical Center, Leiden, The Netherlands; 7Department of Rehabilitation Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands; 8SMRC – Sports Medicine Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; 9Neuromuscular and Mitochondrial research center (NeMo), Rotterdam/Maastricht, The Netherlands



Flash Talk
ID: 573
Therapy 2: clinical trials

PHEMI: Phenylbutyrate Therapy in Mitochondrial Diseases with lactic acidosis: an open label clinical trial in MELAS and PDH deficiency patients.

Silvia Marchet1, Anna Ardissone2, Krisztina Einvag1, Daniele Sala1, Eleonora Lamantea1, Giulia Cecchi3, Vincenzo Montano3, Piervito Lopriore3, Maria Pia Iermito1, Michelangelo Mancuso3, Costanza Lamperti1

1Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Experimental Neuroscience, Unit of Medical Genetics and Neurogenetics, Milan, Italy; 2Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Pediatric Neurosciences, Milan, Italy; 3Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Bibliography
Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis.
Ferriero R, Manco G, Lamantea E, Nusco E, Ferrante MI, Sordino P, Stacpoole PW, Lee B, Zeviani M, Brunetti-Pierri N.
Sci Transl Med. 2013 Mar 6;5(175):175ra31. doi: 10.1126/scitranslmed.3004986.
PMID: 23467562


Flash Talk
ID: 355
Therapy 2: clinical trials

Niacin treatment improves metabolic changes in early-stage mitochondrial myopathy

Kimmo Haimilahti1,2, Lilli Pihlajamäki1, Mari Auranen3, Niina Urho3, Päivi Piirilä4, Antti Hakkarainen5, Min Ni6, Kirsi Pietiläinen7,8, Ralph DeBerardinis6, Nahid A. Khan1, Anu Suomalainen1,9

1Research Program for Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 2Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 3Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland; 4Department of Clinical Physiology and Nuclear Medicine, Laboratory of Clinical Physiology, Helsinki University Hospital, Helsinki, Finland; 5HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Helsinki, Finland; 6Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America; 7Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 8Healthy Weight Hub, Abdominal Center, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; 9Helsinki University Hospital Diagnostic Centre, Helsinki, Finland

Bibliography
Eija Pirinen, Mari Auranen, Nahid A. Khan, Virginia Brilhante, Niina Urho, Alberto Pessia, Antti Hakkarainen, Juho Kuula, Ulla Heinonen, Mark S. Schmidt, Kimmo Haimilahti, Päivi Piirilä, Nina Lundbom, Marja-Riitta Taskinen, Charles Brenner, Vidya Velagapudi, Kirsi H. Pietiläinen, Anu Suomalainen. Niacin Cures Systemic NAD + Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab 2020;31(6):1078-1090.e5.


Flash Talk
ID: 102
Therapy 2: clinical trials

Use of lenadogene nolparvovec gene therapy for Leber hereditary optic neuropathy in early access programs

Chiara La Morgia1, Catherine Vignal-Clermont2, Valerio Carelli1, Michele Carbonelli23, Rabih Hage3, Mark L. Moster4, Robert C. Sergott4, Sean P. Donahue5, Patrick Yu-Wai-Man6, Hélène Dollfus7, Thomas Klopstock8, Claudia Priglinger9, Vasily Smirnov10, Giulia Amore23, Martina Romagnoli1, Catherine Cochard11, Marie-Benedicte Rougier12, Emilie Tournaire-Marques12, Pierre Lebranchu13, Caroline Froment14, Frederic Pollet-Villard15, Marie-Alice Laville16, Claudia Prospero Ponce17, Scott D. Walter18, Francis Munier19, Pauline Zoppe20, Michel Roux21, Magali Taiel21, José-Alain Sahel22

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 3Centre Hospitalier National d’Ophtalmologie des Quinze Vingts, Paris, France; 4Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 5Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; 6Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 7Institut de Génétique Médicale d’Alsace, CHU de Strasbourg, Strasbourg, France; 8Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University, Munich, Germany; 9University Hospital, Ludwig-Maximilians-University, Munich, Germany; 10Service Explorations de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France; 11Service d'Ophtalmologie, CHU de Rennes, Rennes, France; 12Service d'Ophtalmologie, CHU de Bordeaux, Groupe Hospitalier Pellegrin, Bordeaux, France; 13Service d'Ophtalmologie, CHU de Nantes, Nantes, France; 14Service de Neuro-Cognition et Neuro-Ophtalmologie, CHU de Lyon, Lyon, France; 15Service d'Ophtalmologie, Centre Hospitalier de Valence, Valence, France; 16Service d'Ophtalmologie, CHU de Caen, Caen, France; 17Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA; 18Retina Consultants, P.C, Hartford, Connecticut, USA; 19Service d'Ophtalmologie, Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; 20Centre Hospitalier de Wallonie Picarde, Tournai, Belgium; 21GenSight Biologics, Paris, France; 22Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; 23Department of Biomedical and Neuromotor Sciences, DIBINEM, Bologna, Italy

Bibliography
Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Sadun AA, Klopstock T, Vignal-Clermont C, Sergott RC, Rudolph G, La Morgia C, Karanjia R, Taiel M, Blouin L, Burguière P, Smits G, Chevalier C, Masonson H, Salermo Y, Katz B, Picaud S, Calkins DJ, Sahel JA. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci Transl Med. 2020 Dec 9;12(573):eaaz7423. doi: 10.1126/scitranslmed.aaz7423. PMID: 33298565.

Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol. 2021 May 24;12:662838. doi: 10.3389/fneur.2021.662838. PMID: 34108929; PMCID: PMC8181419.

Biousse V, Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Vignal-Clermont C, Klopstock T, Sadun AA, Sergott RC, Hage R, Esposti S, La Morgia C, Priglinger C, Karanja R, Blouin L, Taiel M, Sahel JA; LHON Study Group. Long-Term Follow-Up After Unilateral Intravitreal Gene Therapy for Leber Hereditary Optic Neuropathy: The RESTORE Study. J Neuroophthalmol. 2021 Sep 1;41(3):309-315. doi: 10.1097/WNO.0000000000001367. PMID: 34415265; PMCID: PMC8366761.
 
12:15pm - 1:05pmIndustry Workshop: Pretzel Therapeutics
Location: Bologna Congress Center - Sala Europa
12:15pm - 1:15pmLunch
Location: Bologna Congress Center - Sala Europa
1:15pm - 2:45pmSession 4.3: Therapy 3: reproductive options and mtDNA editing
Location: Bologna Congress Center - Sala Europa
Session Chair: Carlo Viscomi
Session Chair: Daniela Zuccarello
Invited Speaker: M. Herbert; M. Minczuk
 
Invited
ID: 2109
Invited Speakers

Mitochondrial replacement in action

Mary Herbert1,2, Louise Hyslop2, Yuko Takeda1, Magomet Aushev1, Meenakshi Choudhary2, Jane Stewart2

1Newcastle University, United Kingdom; 2Newcastle Fertility Centre

Bibliography
N. Costa-Borges et al., First pilot study of maternal spindle transfer for the treatment of repeated in vitro fertilization failures in couples with idiopathic infertility. Fertil Steril, S0015-0282(23)00136-X (2023).


Invited
ID: 2108
Invited Speakers

The therapeutic potential of mitochondrial genome engineering

Michal Minczuk

MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK

Bibliography
Michal Minczuk is a MRC Investigator at the MRC Mitochondrial Biology Unit (MBU) at University of Cambridge, leading a research programme in mitochondrial genetics. His programme encompasses the development of methods for controlled editing of the mammalian mitochondrial genome, mechanistic studies of mitochondrial gene maintenance and expression in health and disease, and the development of advanced gene therapies for mtDNA dysfunction.


Oral presentation
ID: 160
Therapy 3: reproductive options and mtDNA editing

MitoKO: A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome

Pedro Silva-Pinheiro, Christian D. Mutti, Lindsey Van Haute, Christopher A. Powell, Pavel A. Nash, Keira Turner, Michal Minczuk

MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK

Bibliography
Silva-Pinheiro, P., Mutti, C.D., Van Haute, L. et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat. Biomed. Eng (2022). https://doi.org/10.1038/s41551-022-00968-1

Silva-Pinheiro, P., Nash, P.A., Van Haute, L. et al. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat Commun 13, 750 (2022). https://doi.org/10.1038/s41467-022-28358-w

Silva-Pinheiro, P., Minczuk, M. The potential of mitochondrial genome engineering. Nat Rev Genet 23, 199–214 (2022). https://doi.org/10.1038/s41576-021-00432-x


Oral presentation
ID: 174
Therapy 3: reproductive options and mtDNA editing

Risk of mtDNA reversal among children born after mitochondrial replacement therapy

Shoukhrat Mitalipov1, Nuria Marti Gutierrez2

1Oregon Health & Science University, United States of America; 2Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, United States of America

Bibliography
First pilot study of maternal spindle transfer for the treatment of repeated in vitro fertilization failures in couples with idiopathic infertility. Fertility and Sterility, 2023


Flash Talk
ID: 155
Therapy 3: reproductive options and mtDNA editing

Specific elimination of m.3243A>G mutant mitochondria DNA using mitoARCUS

Wendy K. Shoop1,2, Cassandra L. Gorsuch1, Emma Sevigny1, Sandra R. Bacman2, Janel Lape1, Jeff Smith1, Derek Jantz1, Carlos T. Moraes2

1Precision BioSciences - Durham, NC, United States of America; 2University of Miami - Miami, FL, United States of America

Bibliography
Shoop WK, Gorsuch CL, Bacman SR, Moraes CT. Precise and simultaneous quantification of mitochondrial DNA heteroplasmy and copy number by digital PCR. J Biol Chem. 2022;298(11):102574. doi:10.1016/j.jbc.2022.102574


Flash Talk
ID: 453
Therapy 3: reproductive options and mtDNA editing

MitoCRISPR/Cas9 shifts mtDNA heteroplasmy not as effective as other site-specific nucleases.

Elvira Zakirova1,2, Ilya Mazunin3, Elena Kiseleva2, Ksenia Morozova1,2, Konstantin Orishchenko1,2

1Novosibirsk State University, Novosibirsk, Russia; 2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; 3Skolkovo Institute of Science and Technology, Moscow, Russia

Bibliography
1.Tanaka, M.; Borgeld, H.-J.; Zhang, J.; Muramatsu, S.; Gong, J.-S.; Yoneda, M.; Maruyama, W.; Naoi, M.; Ibi, T.; Sahashi, K.; et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 2002, 9, 534–41. https://doi.org/10.1159/000064726.
2. Zakirova, E.G.; Vyatkin, Y.V.; Verechshagina, N.A.; Muzyka, V.V.; Mazunin, I.O.; Orishchenko, K.E. Study of the effect of the introduction of mitochondrial import determinants into the gRNA structure on the activity of the gRNA/SpCas9 complex in vitro.Vavilov Journal of Genetics and Breeding 2020, 24(5):512-518. https://doi.org/10.18699/VJ20.643.
3.Silva-Pinheiro, P., Minczuk, M. The potential of mitochondrial genome engineering. Nat Rev Genet 23, 199–214 (2022). https://doi.org/10.1038/s41576-021-00432-x.
4. Zakirova, E.G.; Muzyka, V.V.; Mazunin, I.O.; Orishchenko, K.E. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life 2021, 11, 76. https://doi.org/10.3390/life11020076.


Flash Talk
ID: 271
Therapy 3: reproductive options and mtDNA editing

Prenatal diagnostics for a family with 13513G>A mtDNA mutation associated with Leigh Syndrome

Crystal M Van Dyken1, Amy Koski1, Hong Ma1, Nuria Marti Gutierrez1, Aleksei Mikhalchenko1, Rebecca Tippner-Hedges1, Daniel Frana1, Paula Amato2, Shoukhrat Mitalipov1

1Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, United States of America; 2Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health and Science University, United States of America

 
2:45pm - 4:15pmTea Break and poster session
Location: Bologna Congress Center
Session topics:
- Late Breaking News
- mtDNA maintenance and expression
- Therapy 1: preclinical developments
- Therapy 2: clinical trials
 
ID: 694
Late breaking news

Precision Medicine Applied to Leigh Syndrome: development of an In Utero fetal gene therapy approach

Alessia Di Donfrancesco1, Anastasia Giri2, Simona Boito2, Ivano Di Meo1, Alessia Adelizzi1, Carlo Viscomi3, Massimo Zeviani4, Valeria Tiranti1, Roberto Duchi5, Cesare Galli5, Nicola Persico2, Dario Brunetti1,6

1Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy; 2Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.; 3Department of Biomedical Sciences, University of Padova, Italy; 4Department of Neurosciences, University of Padova, Italy; 5Laboratorio di Tecnologie della Riproduzione, Avantea, Cremona, Italy; 6Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy



ID: 684
Late breaking news

AAV-based liver-targeted gene therapy for MNGIE: proposal for a clinical trial

Jelle van den Ameele1,2, Emma Cutting2, Ramon Marti3

1MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; 2Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK; 3Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia



ID: 690
Late breaking news

Experimental model for studying clinical variability of Thymidine Kinase 2 deficiency with induced pluripotent stem cells

Erika Santi1, Sara Resciniti1, Gaia Tioli2, Sara Carli1, Flavia Palombo3, Luisa Iommarini2, Caterina Garone1,4

1Alma Mater Studiorum University of Bologna, Department of Medical and Surgical Sciences, Bologna, Italy; 2Alma Mater Studiorum University of Bologna, University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Italy; 3IRCCS Istituto delle Scienze Neurologiche, Programma di Neurogenetica, Bologna, Italy; 4IRCCS Istituto delle Scienze Neurologiche, UOC Neuropsichiatia dell'età pediatrica, Bologna, Italy



ID: 692
Late breaking news

Mitochondrial genome variability in COVID-19 patients

Alessia Fiorentino1, Claudio Fiorini1, Danara Ormandekova1, Alessandro Mattiaccio2, Paola Dimartino2, Edoardo Spagnolo2, Orchestra Genomics Group1, Maddalena Giannella3, Pierluigi Viale3, Zaira R. Palacios-Baena4, Tommaso Pippucci5, Marco Seri2,5, Leonardo Caporali6, Valerio Carelli1,6

1Azienda USL di Bologna - IRCCS Istituto delle scienze Neurologiche di Bologna, Italy, Italy; 2Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, BO, Italy; 3Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 4Unit of Infectious Diseases and Clinical Microbiology, University Hospital Virgen Macarena, Institute of Biomedicine of Seville (IBIS)/CSIC, Seville, Spain; 5Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 6Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy



ID: 691
Late breaking news

Decoding the role of optic atrophy1 (OPA1) non-synonymous single nucleotide polymorphisms in mitochondrial DNA maintenance defects

Cuckoo Teresa Jetto, Vissapragada Madhuri, Ritoprova Sen, Ravi Manjithaya

Jawaharlal Nehru Centre for Advanced Scientific Research, India

Bibliography
1.Gavin Hudson, Patrizia Amati-Bonneau, Emma L. Blakely, Joanna D. Stewart, Langping He, Andrew M. Schaefer, Philip G. Griffiths, Kati Ahlqvist, Anu Suomalainen, Pascal Reynier, Robert McFarland, Douglass M. Turnbull, Patrick F. Chinnery, Robert W. Taylor, Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance, Brain, Volume 131, Issue 2, February 2008, Pages 329–337, https://doi.org/10.1093/brain/awm272
2.Ayman W. El-Hattab, William J. Craigen, Fernando Scaglia, Mitochondrial DNA maintenance defects, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Volume 1863, Issue 6, 2017, Pages 1539-1555, ISSN 0925-4439, https://doi.org/10.1016/j.bbadis.2017.02.017.


ID: 688
Late breaking news

Feasibility, safety, and efficacy of Ketogenic Diet in patients with mitochondrial myopathy

Heidi. E.E. Zweers1,2, Sophie H. Kroesen3, Gijsje Beerlink1,2, Elke Buit2,4, Karlijn Gerrits1,2, Astrid Dorhout1,2, Annemiek M.J. van Wegberg1,2, Mirian C.H. Janssen2,4, Saskia B. Wortmann2,5, Silvie Timmers6, Christiaan Saris2,7

1Department of Gastroenterology and Hepatology-Dietetics, Radboudumc, Nijmegen, The Netherlands; 2Radboud Centre for Mitochondrial Medicine (RCMM) , Nijmegen, The Netherlands; 3Department of Physiology, Radboudumc, Nijmegen, The Netherlands; 4Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands; 5University Children’s Hospital, Paracelsus Medical University, Salzburg, Austria; 6Human and Animal Physiology, Wageningen University, The Netherlands; 7Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands

Bibliography
1. Ketogenic diet for mitochondrial disease: a systematic review on efficacy and safety.
Zweers H, van Wegberg AMJ, Janssen MCH, Wortmann SB.
Orphanet J Rare Dis. 2021 Jul 3;16(1):295.


ID: 266
mtDNA maintenance and expression

Degrading factors of mitoribosome quality control and their mitigation of translation-induced stress

Jonathan Meyrick1, Uwe Richter1,2, Ana Andjelkovic1, Omid Safronov2, Rob Taylor1

1Wellcome Centre for Mitochondrial Research, United Kingdom; 2University of Helsinki



ID: 530
mtDNA maintenance and expression

Mitochondrial DNA Double-Strand Breaks lead to the formation of mtDNA deletions which are increased by MgmeI knockout in vivo.

Tania Arguello-Saenz, Nadee Nissanka, Carlos Moraes

University of Miami, United States of America

Bibliography
•ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. Cell Rep. (2021) Dec 21;37(12):110139.
•Metformin delays neurological symptom onset in a mouse model of neuronal complex I deficiency. Peralta S, Pinto M, Arguello T, Garcia S, Diaz F, Moraes CT. (2020) JCI Insight. Nov 5;5(21):141183

•Myopathy reversion in mice after restauration of mitochondrial complex I. Pereira CV, Peralta S, Arguello T, Bacman SR, Diaz F, Moraes CT. (2020). EMBO Mol Med. Jan 9:e10674.


ID: 234
mtDNA maintenance and expression

Mutating the binding interphases of SLIRP and LRPPRC uncover specific roles for these proteins in optimizing mitochondrial translation.

Diana Rubalcava-Gracia1, Fredrik Levander2, Camilla Koolmeister1, Nils-Göran Larsson1

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden

Bibliography
Diana Rubalcava-Gracia, Rodolfo García-Villegas, Nils-Göran Larsson. No role for nuclear transcription regulators in mammalian mitochondria? Molecular Cell, 2022. PMID: 36182692.


ID: 145
mtDNA maintenance and expression

A disease-causing mutation (p.F907I) reveals a novel pathogenic mechanism for POLG-related diseases.

Bertil Macao1, Direnis Erdinc1, Sebastian Valenzuela1, Nicole Lesko2, Karin Naess2, Helene Bruhn2, Anna Wedell2, Anna Wredenberg3, Maria Falkenberg1

1University of Gothenburg, Sweden; 2Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; 3Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden

Bibliography
1. TWNK in Parkinson's Disease: A Movement Disorder and Mitochondrial Disease Center Perspective Study.
Percetti M, Franco G, Monfrini E, Caporali L, Minardi R, La Morgia C, Valentino ML, Liguori R, Palmieri I, Ottaviani D, Vizziello M, Ronchi D, Di Berardino F, Cocco A, Macao B, Falkenberg M, Comi GP, Albanese A, Giometto B, Valente EM, Carelli V, Di Fonzo A.
Mov Disord. 2022 Sep;37(9):1938-1943. doi: 10.1002/mds.29139.

2. The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication.
Jiang M, Xie X, Zhu X, Jiang S, Milenkovic D, Misic J, Shi Y, Tandukar N, Li X, Atanassov I, Jenninger L, Hoberg E, Albarran-Gutierrez S, Szilagyi Z, Macao B, Siira SJ, Carelli V, Griffith JD, Gustafsson CM, Nicholls TJ, Filipovska A, Larsson NG, Falkenberg M.
Sci Adv. 2021 Jul 2;7(27):eabf8631. doi: 10.1126/sciadv.abf8631.

3.DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion.
Silva-Pinheiro P, Pardo-Hernández C, Reyes A, Tilokani L, Mishra A, Cerutti R, Li S, Rozsivalova DH, Valenzuela S, Dogan SA, Peter B, Fernández-Silva P, Trifunovic A, Prudent J, Minczuk M, Bindoff L, Macao B, Zeviani M, Falkenberg M, Viscomi C.
Nucleic Acids Res. 2021 May 21;49(9):5230-5248. doi: 10.1093/nar/gkab282.


ID: 621
mtDNA maintenance and expression

Mitoribosome intrinsic GTPase mS29 acts as a non-canonical molecular switch to facilitate mitochondrial translation

Samuel Louis Del'Olio1, Vivek Singh2, Alexey Amunts2, Antoni Barrientos1

1University of Miami, United States of America; 2Stockholm University, Sweden



ID: 443
mtDNA maintenance and expression

Nucleoside supplementation in a zebrafish model of RRM2B mitochondrial DNA depletion syndrome alleviates disease associated symptoms.

Benjamin Munro, Declan Hines, Juliane Müller, Rita Horvath

Department of Clinical Neurosciences, University of Cambridge, United Kingdom

Bibliography
Van Haute, L., O’Connor, E., Díaz-Maldonado, H., Munro, B. et al. TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun 14, 1009 (2023). https://doi.org/10.1038/s41467-023-36277-7

Benjamin Munro, Rita Horvath, Juliane S Müller, Nucleoside supplementation modulates mitochondrial DNA copy number in the dguok −/− zebrafish, Human Molecular Genetics, Volume 28, Issue 5, 1 March 2019, Pages 796–803, https://doi.org/10.1093/hmg/ddy389


ID: 335
mtDNA maintenance and expression

Non-stop mRNAs generate a ground state of mitochondrial gene expression noise

Guleycan Lutfullahoglu Bal, Brendan J. Battersby

Institute of Biotechnolgy, University of Helsinki, Finland

Bibliography
K.Y. Ng, G. Lutfullahoglu Bal, U. Richter, O. Safronov, L. Paulin, C.D. Dunn, V. Paavilainen, Julie Richer, W.G. Newman, R.W. Taylor, B.J. Battersby. (2022). Non-stop mRNAs generate the ground state of mitochondrial gene expression noise. Science Advances. 8(46).


ID: 370
mtDNA maintenance and expression

Biochemical characterisation of pathological TOP3A variants associated with adult-onset mitochondrial disease

Alejandro Rodriguez Luis2,3, Direnis Erdinc1, Mahmoud R. Fassad2,4, Sarah Mackenzie5, Christopher M. Watson6,7, Sebastian Valenzuela1, Xie Xie1, Katja E. Menger2,3, Kate Sergeant8, Kate Craig2,9, Sila Hopton2,9, Gavin Falkous2,9, Joanna Poulton10, Hector Garcia-Moreno11, Paola Giunti11, Carlos A. de Moura Aschoff12, Jonas A. Morales Saute12,13,14, Amelia J. Kirby15, Camilo Toro16, Lynne Wolfe16, Danica Novacic16, Lior Greenbaum17,18,19, Aviva Eliyahu17,19, Ortal Barel20, Yair Anikster19,21, Robert McFarland2,4, Gráinne S. Gorman2,4, Andrew M. Schaefer2,9, Claes M. Gustafsson1,22, Robert W. Taylor2,4,9, Maria Falkenberg1, Thomas J. Nicholls2,3

1Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden; 2Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne; 3Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne; 4Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne; 5The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; 6North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK.; 7Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK.; 8Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.; 9NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; 10Nuffield Department of Women’s & Reproductive Health, The Women's Centre, University of Oxford, Oxford, UK.; 11Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London; 12Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; 13Department of Internal Medicine, Universidade Federal do Rio Grande do Sul - Porto Alegre, Brazil.; 14Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul - Porto Alegre, Brazil.; 15Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, USA; 16Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.; 17The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.; 18The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; 19The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.; 20Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Israel.; 21Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.; 22Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.



ID: 222
mtDNA maintenance and expression

How hot can mitochondria be? Incubation at temperatures above 43 ºC induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria

Raquel Moreno-Loshuertos1,2, Joaquín Marco-Brualla1,3, Patricia Meade1,2, Ruth Soler-Agesta1, José Antonio Enriquez4,5, Patricio Fernández-Silva1,2

1Department of Biochemistry and Molecualr and Cellular Biology, Universidad de Zaragoza, Spain; 2Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain; 3Peaches Biotech Group, Madrid, Spain; 4Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; 5Centro de Investigaciones Biomédicas en Red en Fragilidad y Envejecimiento Saludable, Madrid, Spain

Bibliography
1.- Moreno-Loshuertos, R., Marco-Brualla, J., Meade, P., Soler-Agesta, R., Enriquez, J. A., & Fernández-Silva, P. (2023). How hot can mitochondria be? Incubation at temperatures above 43 °C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion, 69, 83–94. Advance online publication. https://doi.org/10.1016/j.mito.2023.02.002


ID: 178
mtDNA maintenance and expression

Inhibition of mitochondrial protein Synthesis induces Biosynthesis of oxidative phosphorylation Complex V

Seungtae Lee, Jana Aref, Jan-Willem Taanman

University College London, United Kingdom



ID: 180
mtDNA maintenance and expression

Linear DNA driven recombination in human mitochondria.

Georgios Fragkoulis1, Anu Hangas1, Craig Mitchel2, Carlos Moraes3, Smaranda Wilcox4, Jack Griffiths4, Steffi Goffart1, Jaakko Pohjoismäki1

1University of Eastern Finland, Finland; 2King Abdullah University of Science and Technology (KAUST); 3University of Miami Miller School of Medicine; 4University of North Carolina at Chapel Hill



ID: 318
mtDNA maintenance and expression

Mitochondrial Topoisomerase 1 in ribonucleotide removal and mtDNA stability

Cyrielle Bader, Erika Kasho, Josefin M. E. Forslund, Katarzina Niedzwiecka, Paulina H. Wanrooij

Umeå University, Sweden



ID: 279
mtDNA maintenance and expression

The (in)fidelity of human mitochondrial gene expression

Brendan James Battersby

University of Helsinki, Finland

Bibliography
PEER-REVIEWED PUBLICATIONS (*** corresponding authorship)

Tomoda, E., A. Nagao, Y. Shirai, T. Suzuki, B.J. BATTERSBY, T. Suzuki. 2023. Restoration of mitochondrial function through activation of hypomodified tRNAs with pathogenic mutations associated with mitochondrial diseases. Nucleic Acids Research. In press

Jett, K. A., Z.N. Baker, A. Hossain, A. Boulet, P.A. Cobine, S. Ghosh, P. Ng, O. Yilmaz, K. Barreto, J. DeCoteau, K. Mochoruk, G.N. Ioannou, C. Savard, S. Yuan, C. Lowden, B.E. Kim, H.Y.M. Cheng, B.J. BATTERSBY, Gohil, V. M., & Leary, S. C. 2023. Mitochondrial dysfunction triggers secretion of the immunosuppressive factor α-fetoprotein. Journal of Clinical Investigation. 133:e154684

Ng, K.Y., G. Lutfullahoglu Bal, U. Richter, O. Safronov, L. Paulin, C.D. Dunn, V.O. Paavilainen, J. Richer, W.G. Newman, R.W. Taylor and B.J. BATTERSBY***. 2022. Non-stop mRNAs generate a ground state of mitochondrial gene expression noise. Science Advances. 8:eabq5234

Ng, K.Y. and B.J. BATTERSBY***. 2022. Sucrose gradient analysis of human mitochondrial ribosomes and RNA. Methods in Molecular Biology. In press.

Ng, K.Y., U. Richter, C.B. Jackson, S. Seneca, and B.J. BATTERSBY ***. 2022. Translation of MT-ATP6 pathogenic variants reveals distinct regulatory consequences from the co-translational quality control of mitochondrial protein synthesis. Human Molecular Genetics. 31:1230-1241

Hochberg, I., L.A.M. Demain, J. Richer, K. Thompson, J.E. Urquhart, A. Rea, W. Pagarkar, A. Rodríguez-Palmero, A. Schlüter, E. Verdura, A. Pujol, P. Quijada-Fraile, A. Amberger, A.J. Deutschmann, S. Demetz, M. Gillespie, I.A. Belyantseva, H.J. McMillan, M. Barzik, G.M. Beaman, R. Motha, K.Y. Ng, J. O’Sullivan, S.G. Williams, S.S. Bhaskar, I.R. Lawrence, E.M. Jenkinson, J.L. Zambonin, Z. Blumenfeld, S. Yalonetsky, S. Oerum, W. Rossmanith, Genomics England Research Consortium, W.W. Yue, J. Zschocke, K.J. Munro, B.J. BATTERSBY, T.B. Friedman, R.W. Taylor, R.T. O’Keefe, W.G. Newman. 2021. Biallelic Variants in the Mitochondrial RNase P Subunit PRORP cause mitochondrial tRNA processing defects and pleiotropic multisystem presentations. American Journal of Human Genetics. 108: 2195-2204

Itoh, Y., J. Andréll, A. Choi, U. Richter, P. Maiti, A. Barrientos, B.J. BATTERSBY***, A. Amunts. 2021. Mechanism of membrane-tethered mitochondrial protein synthesis. Science. 371:846-849.

Gorski, K., A. Spoljaric, T. Nyman, K. Kaila, B.J. BATTERSBY, A.E. Lehesjoki. 2020. Quantitative changes in the mitochondrial proteome of cerebellar synaptosomes from preclinical cystatin B-deficient mice. Frontiers in Molecular Neuroscience. 13:570640.

BATTERSBY, B.J.***, U. Richter, and O. Safronov. 2019. Mitochondrial nascent chain quality control determines organelle form and function. ACS Chemical Biology. 14:2396-2405.

Forsström, S., C.B. Jackson, C.J. Carroll, M. Kuronen, E. Pirinen, S Pradhan, A. Marmyleva, M. Auranen, I.M. Kleine, N.A. Khan, A. Roivainen, P. Marjamäki, H. Liljenbäck, L. Wang, B.J. BATTERSBY, U. Richter, V. Velagapudi, J. Nikkanen, L. Euro, A. Suomalainen. 2019. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metabolism. 30:1040-1054.

Richter U., K.Y. Ng, F. Suomi, P. Marttinen, T. Turunen, C. Jackson, A. Suomalainen, H. Vihinen, E. Jokitalo, T.A. Nyman, M.A. Isokallio, J.B. Stewart, C. Mancini, A. Brusco, S. Seneca, A. Lombès, R.W. Taylor, B.J. BATTERSBY***. 2019. Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Science Alliance. 2:e201800219.

Mancini, C., E. Hoxha, L. Iommarini, A. Brussino, U. Richter, F. Montarolo, C. Cagnoli, R. Parolisi, D.I.G. Morosini, V. Nicolò, F. Maltecca, L. Muratori, G. Ronchi, S. Geuna, F. Arnaboldi, E. Donetti, E. Giorgio, S. Cavalieri, E. Di Gregorio, E. Pozzi, M. Ferrero, E. Riberi, G. Casari, F. Altruda, E. Turco, G. Gasparre, B.J. BATTERSBY, A.M. Porcelli, E. Ferrero, A. Brusco, F. Tempia. 2019. Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity. Neurobiology of Disease. 124:14-28.

Jackson, C.B., M. Huemer, R. Bolognini, F. Martin, G. Szinnai, B.C. Donner, U. Richter, B.J. BATTERSBY, J.M. Nuoffer, A. Suomalainen, A. Schaller. 2019. Mutations in MRPS14 (uS14m) cause perinatal hypertrophic cardiomyopathy with neonatal lactic acidosis, growth retardation, dysmorphic features and neurological involvement. Human Molecular Genetics. 28:639-649.

Richter, U., M.E. Evans, W.C. Clark, P. Marttinen, E.A. Shoubridge, A. Suomalainen, A. Wredenberg, A. Wedell, T. Pan, and B.J. BATTERSBY***. 2018. RNA modification landscape of the human mitochondrial tRNALys regulates protein synthesis. Nature Communications. 9:3966.

Suomalainen, A. and B.J. BATTERSBY***. 2018. Mitochondrial diseases: contribution of organelle stress responses to pathology. Nature Reviews Molecular Cell Biology. 19: 77-92.

Thompson, K., N. Mai, M. Oláhová, F. Scialó, L.E. Formosa, D.A. Stroud, M. Garrett, N.Z. Lax, F.M. Robertson, C. Jou, A. Nascimento, C. Ortez, C. Jimenez-Mallebrera, S.A. Hardy, L. He, G.K. Brown, P. Marttinen, R. McFarland, A. Sanz, B.J. BATTERSBY, P.E. Bonnen, M.T. Ryan, Z.M.A. Chrzanowska-Lightowlers, R.N. Lightowlers, and R.W. Taylor. 2018. OXA1L mutations cause mitochondrial encephalopathy and a combined oxidative phosphorylation defect. EMBO Molecular Medicine. 10:e9060


ID: 525
mtDNA maintenance and expression

The role of mitochondrial RNA polymerase in mtDNA replication priming

Georgios Fragkoulis, Anu Hangas, Steffi Goffart

University of Eastern Finland, Finland



ID: 308
mtDNA maintenance and expression

Mitochondrial content is significantly reduced during the early stages of human pluripotent stem cell differentiation

Ruben Torregrosa-Muñumer, Jeremi Turkia, Jana Pennonen, Erika Rannila, Jonna Saarimäki-Vire, Timo Otonkoski, Henna Tyynismaa

University of Helsinki, Finland

Bibliography
# DÖHLA J & KUULUVAINEN E, GEBERT N, AMARAL A, ENGLUND JI, GOPALAKRISHNAN S, KONOVALOVA S, NIEMINEN AI, SALMINEN ES, TORREGROSA-MUÑUMER R, AHLQVIST K, YANG Y, BUI H, OTONKOSKI T, KÄKELÄ R, HIETAKANGAS V, TYYNISMAA H, ORI A & KATAJISTO P. (2022). Metabolic determination of cell fate through selective inheritance of mitochondria. Nature Cell Biol.

# TORREGROSA-MUÑUMER R & KENVIN S, REIDELBACH M, PENNONEN P, TURKIA JJ, RANNILA E, KVIST J, SAINIO MT, HUBER N, HERUKKA SK, HAAPASALO A, AURANEN M, TROKOVIC R, SHARMA V, YLIKALLIO E, TYYNISMAA H. (2021). Threshold of heteroplasmic truncating MT-ATP6 mutation in reprogramming, Notch hyperactivation and motor neuron metabolism. Human Molecular Genetics.

# TORREGROSA-MUÑUMER R, HANGAS A, GOFFART S, BLEI D, ZSURKA G, GRIFFITH J, KUNZ WS &POHJOISMÄKI J. (2019). Replication fork rescue in mammalian mitochondria. Scientific Reports.

# TORREGROSA-MUÑUMER R, FORSLUND J, GOFFART S, STOJKOVIC G, PFEIFFER A, CARVALHO G,BLANCO L, WANROOIJ S & POHJOISMÄKI J. (2017). PrimPol is required for replication re-initiation aftermitochondrial DNA damage. PNAS.

# TORREGROSA-MUÑUMER R, GOFFART S, HAIKONEN J, AND POHJOISMÄKI J. (2015). Low doses of UV and oxidative damage induce dramatic accumulation of mitochondrial DNA replication intermediates, forkregression and replication initiation shift. Mol Biol Cell.


ID: 393
mtDNA maintenance and expression

Loss of RNase H1 in early B cell development induces mitochondrial-based dysfunction

Robert Joseph Crouch1, Kiran Sakhuja1, Caitlin Darling1, Lionel Sanz1, Hyongi Chon1, Stella R Hartono2, James Iben1, Louis Dye1, Susana Martinez Cerritelli1, Frederic Chedin2

1DIR Eunice Kennedy Shriver National Institute of Child Health and Human Devlopment; 2Department of Molecular and Cellular Biology, University of Califofnia, Davis

Bibliography
Cerritelli SM, Sakhuja K, Crouch RJ. RNase H1, the Gold Standard for R-Loop Detection. Methods Mol Biol. 2022;2528:91-114. doi: 10.1007/978-1-0716-2477-7_7. PMID: 35704187.


ID: 212
mtDNA maintenance and expression

New insights into late-maturation steps of the human mitochondrial small ribosomal subunit

Marleen Heinrichs1,2, Anna Franziska Finke1, Hauke Hillen1,2, Ricarda Richter-Dennerlein1,2

1Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany; 2Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Goettingen, Germany



ID: 522
mtDNA maintenance and expression

Early-stages during large mitoribosomal subunit assembly

Venkatapathi Challa1, Elena Lavdovskaia1,2, Paula Prado1, Hauke Hillen1,2, Ricarda Richter-Dennerlein1,2

1University Medical Center Göttingen, Germany; 2Cluster of Excellence (MBExC), University of Göttingen, Germany



ID: 346
mtDNA maintenance and expression

Effect of post-transcriptional modifications of tRNAMet on mitochondrial codon recognition

Gantavya Arora, Kärt Denks, Ekaterina Samatova, Marina Rodnina

Max Planck Institute of Multidisciplinary Sciences, Göttingen, Germany



ID: 210
mtDNA maintenance and expression

Establishing the OPA1 role in the mtDNA maintenance in cell models of Dominant Optic Atrophy (DOA)

Penelope Magnoni1, Serena Jasmine Aleo2, Valentina Del Dotto2, Javier Ramón3, Claudia Zanna2, Ramon Martí3, Alessandra Maresca1, Valerio Carelli1,2

1IRCCS, Istituto delle Scienze Neurologiche di Bologna, Italy - Programma di Neurogenetica; 2DIBINEM, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Italy; 3Vall d'Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras-CIBERER, Autonomous University of Barcelona, Barcelona, Spain



ID: 325
mtDNA maintenance and expression

Mutations affecting the relation between mtDNA synthesis and proofreading by POLγ

Sebastian Valenzuela, Emily Hoberg, Giorgia Ortolani, Ulrika Alexandersson, Bertil Macao, Maria Falkenberg

Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden



ID: 306
mtDNA maintenance and expression

Supernumerary proteins of the human mitochondrial ribosomal small subunit are integral for assembly and translation

Taru Hilander1, Geoffray Monteuuis2, Ryan Awadhpersad2, Krystyna L. Broda1, Max Pohjanpelto3, Elizabeth Pyman1, Sachin K. Singh4, Tuula A. Nyman4, Isabelle Crevel5, Robert W. Taylor6,7, Ann Saada8, Diego Balboa9,10, Brendan J. Battersby11, Christopher B. Jackson2, Christopher J. Carroll1

1Genetics Section, Molecular and Clinical Sciences, St George’s, University of London, London, United Kingdom; 2Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 3Research Programs Unit, Molecular Neurology, Biomedicum, University of Helsinki, • Helsinki, Finland; 4Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo, University Hospital, Oslo, Norway; 5Core Facilities, St George’s, University of London, London, United Kingdom.; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research • Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8Department of Genetics, Hadassah Medical Center & Faculty of Medicine, Hebrew University of Jerusalem. 9112001 Jerusalem Israel.; 9Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; 10Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; 11Institute of Biotechnology, University of Helsinki, Helsinki, Finland



ID: 302
mtDNA maintenance and expression

The role of mL45 N-terminus in mitochondrial translation under standard and stress conditions

Eva Nyvltova, Katerina Percy, Michele Brischigliaro, Antonio Barrientos

Department of Neurology, University of Miami, Miller School of Medicine, FL, USA



ID: 314
mtDNA maintenance and expression

Characterization of human mitochondrial translation elongation and ribosome recycling factors mtEFG1 and mtEFG2

Céline Bail, Kärt Denks, Shreya A. Ayyub, Marina V. Rodnina

Max-Planck Institute for Multidisciplinary Sciences, Germany



ID: 538
mtDNA maintenance and expression

Knock-out of OGG1 in HEK293 cells does not alter the formation of single strand breaks in mitochondrial DNA upon H2O2 treatment

Afaf M. Said1, Gábor Zsurka1,2, Genevieve Trombly1, Wolfram S. Kunz1,2

1Institute of Experimental Epileptology and Cognition Research, University of Bonn, Germany; 2Department of Epileptology, University Hospital Bonn, Germany



ID: 455
mtDNA maintenance and expression

Ligase 3 is indispensable for repair of oxidative lesions of mtDNA but dispensable for circular genome end ligation

Wolfram S. Kunz, Genevieve Trombly, Afaf Milad Said, Alexei P. Kudin, Gábor Zsurka

University Bonn, Department of Epileptology, Germany

Bibliography
1. Zsurka G, Trombly G, Schöler S, Blei D, Kunz WS. Functional Assessment of Mitochondrial DNA Maintenance by Depletion and Repopulation Using 2',3'-Dideoxycytidine in Cultured Cells. Methods Mol Biol. 2023;2615:229-240
2. Mikhailova AG, Mikhailova AA, Ushakova K, Tretiakov EO, Iliushchenko D, Shamansky V, Lobanova V, Kozenkov I, Efimenko B, Yurchenko AA, Kozenkova E, Zdobnov EM, Makeev V, Yurov V, Tanaka M, Gostimskaya I, Fleischmann Z, Annis S, Franco M, Wasko K, Denisov S, Kunz WS, Knorre D, Mazunin I, Nikolaev S, Fellay J, Reymond A, Khrapko K, Gunbin K, Popadin K. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand. Nucleic Acids Res. 2022 Oct 14;50(18):10264-10277
3. Hippen M, Zsurka G, Peeva V, Machts J, Schwiecker K, Debska-Vielhaber G, Wiesner RJ, Vielhaber S, Kunz WS. Novel Pathogenic Sequence Variation m.5789T>C Causes NARP Syndrome and Promotes Formation of Deletions of the Mitochondrial Genome. Neurol Genet. 2021 Mar 3;8(2):e660.
4. Birtel J, von Landenberg C, Gliem M, Gliem C, Reimann J, Kunz WS, Herrmann P, Betz C, Caswell R, Nesbitt V, Kornblum C, Charbel Issa P. Mitochondrial Retinopathy. Ophthalmol Retina. 2022 Jan;6(1):65-79.
5. Rotko D, Kudin AP, Zsurka G, Kulawiak B, Szewczyk A, Kunz WS. Molecular and Functional Effects of Loss of Cytochrome c Oxidase Subunit 8A. Biochemistry (Mosc). 2021 Jan;86(1):33-43.
6. Torregrosa-Muñumer R, Hangas A, Goffart S, Blei D, Zsurka G, Griffith J, Kunz WS, Pohjoismäki JLO. Replication fork rescue in mammalian mitochondria. Sci Rep. 2019 Jun 19;9(1):8785.
7. Peeva V, Blei D, Trombly G, Corsi S, Szukszto MJ, Rebelo-Guiomar P, Gammage PA, Kudin AP, Becker C, Altmüller J, Minczuk M, Zsurka G, Kunz WS. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018 Apr 30;9(1):1727.


ID: 237
mtDNA maintenance and expression

Modulation of mtDNA heteroplasmy through endosomal-mitophagy

Aylin Gökmen1,2, Mari Bonse1,2, Parisa Kakanj3, Rudolf Wiesner1,2, David Pla-Martín1,2

1Institute of Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; 2Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; 3Institute of Genetics, University of Cologne, Germany

Bibliography
1. Endosomal-dependent mitophagy coordinates mitochondrial nucleoid and mtDNA elimination. Autophagy. 2023 Jan 29;1-2. doi: 10.1080/15548627.2023.2170959

2. Mitochondrial membrane proteins and VPS35 orchestrate selective removal of mtDNA. Nat Commun. 2022 Nov 7;13(1):6704. doi: 10.1038/s41467-022-34205-9.
3. Combined fibre atrophy and decreased muscle regeneration capacity driven by mitochondrial DNA alterations underlie the development of sarcopenia. Journal Cachexia Sarcopenia Muscle. 2022 Aug;13(4):2132-2145. doi: 10.1002/jcsm.13026. Epub 2022 Jun 28.


ID: 503
mtDNA maintenance and expression

The role of mitoSAM in mitochondrial gene expression

Ruth Inge Carlton Glasgow1, Florian Rosenberger2, Vivek Singh1, Alissa Willhalm3, David Moore1, Marco Moedas1,4, Miriam Cipullo1, Joanna Rorbach1, Anna Wedell4, Ilian Atanassov5, Alexey Amunts3, Christoph Freyer1, Anna Wredenberg1,4

1Division of Molecular Metabolism, Karolinska Institutet, Stockholm, Sweden; 2Max Planck Institute of Biochemistry, Munich, Germany; 3Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Sweden; 4Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; 5Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany



ID: 634
mtDNA maintenance and expression

The slumbering mitochondrion awakes: monitoring mitochondrial gene expression during oocyte and early embryo development

Olga Gumenyuk1,2, Mary Herbert1, Robert N. Lightowlers2, Zofia M. A. Chrzanowska-Lightowlers2

1Newcastle Fertility Centre, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, United Kingdom; 2Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, United Kingdom

Bibliography
Zorkau M, Albus CA, Berlinguer-Palmini R, Chrzanowska-Lightowlers ZMA, Lightowlers RN. High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cells. Proc Natl Acad Sci U S A. 2021 Feb 9;118(6):e2008778118.

Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011 Sep;11(5):797-813.

De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol. 2001;229(1):224-36.

Heyn P, Kircher M, Dahl A, Kelso J, Tomancak P, Kalinka AT, Neugebauer KM. The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep. 2014 Jan 30;6(2):285-92.

Cheng S, Altmeppen G, So C, Welp LM, Penir S, Ruhwedel T, Menelaou K, Harasimov K, Stützer A, Blayney M, Elder K, Möbius W, Urlaub H, Schuh M. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science. 2022 Oct 21;378(6617):eabq4835.

Garcia-Alonso, L., Lorenzi, V., Mazzeo, C.I. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).


ID: 373
mtDNA maintenance and expression

How mitochondrial DNA metabolism shapes cellular senescence

Valentin L'Hôte, Sjoerd Wanrooij

Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90736, Sweden

Bibliography
L'Hôte V, Mann C, Thuret JY. From the divergence of senescent cell fates to mechanisms and selectivity of senolytic drugs. Open Biol. 2022 Sep;12(9):220171. doi: 10.1098/rsob.220171

L'Hôte V, Courbeyrette R, Pinna G, Cintrat JC, Le Pavec G, Delaunay-Moisan A, Mann C, Thuret JY. Ouabain and chloroquine trigger senolysis of BRAF-V600E-induced senescent cells by targeting autophagy. Aging Cell. 2021 Sep;20(9):e13447. doi: 10.1111/acel.13447

Doimo M., Abrahamsson S., L'Hôte V., Ndi M., Nath Das R., Aasumets K., Berner A., Goffart S., Pohjoismäki J.L.O., Dávila López M., Chorell E., Wanrooij S. Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells. bioRxiv. 2022 Jun. doi: 10.1101/2022.06.08.495283


ID: 391
mtDNA maintenance and expression

Processing of stalled replication forks in mitochondria

Koit Aasumets, Jaakko Pohjoismäki, Steffi Goffart

University of Eastern Finland, Finland



ID: 496
mtDNA maintenance and expression

Stochastic survival of the densest accounts for the expansion of mitochondrial mutations in the ageing of skeletal muscle fibres

Ferdinando Insalata1, Hanne Hoitzing1, Juvid Aryaman1, Nick Jones1,2

1Department of Mathematics, Imperial College London, United Kingdom; 2EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, United Kingdom

Bibliography
https://www.pnas.org/doi/10.1073/pnas.2122073119

F. Insalata, H. Hoitzing, J. Aryaman, N. S. Jones. Stochastic survival of the densest and mitochondrial DNA clonal expansion in ageing. Proceedings of the National Academy of Sciences of the United States of America, doi: 10.1073/pnas.2122073119.


ID: 434
mtDNA maintenance and expression

Top3α is the replicative topoisomerase in mitochondrial DNA replication

Anu Hangas1, Alisa Potter1,2, Craig Michell1, Johannes Spelbrink2, Jaakko Pohjoismäki1, Steffi Goffart1

1University of Eastern Finland, Finland; 2Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboudumc, Nijmegen, The Netherlands



ID: 260
mtDNA maintenance and expression

Mitochondrial-nuclear compatibility in hare cybrids

Riikka Pauliina Tapanainen1, Jaakko Pohjoismäki1, Kateryna Gaertner2, Eric Dufour2, Craig Michell1, Sina Saari2

1University of Eastern Finland, Finland; 2Tampere University, Finland



ID: 339
mtDNA maintenance and expression

Identification of drugs for the treatment of POLG-related diseases by means of a high throughput drug repurposing approach performed in Saccharomyces cerevisiae

Enrico Baruffini1, Tiziana Lodi1, Raquel Brañas Casas2, Giovanni Risato2, Francesco Argenton2, Natascia Tiso2, Alexandru Ionut Gilea1

1Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; 2Department of Biology, University of Padova, Padova, Italy

Bibliography
Magistrati M., Gilea A.I., Ceccatelli Berti C., Baruffini E., Dallabona C. (2023) Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci. 24:2178. doi: 10.3390/ijms24032178. (Corresponding author)

Gilea A.I., Ceccatelli Berti C., Magistrati M., di Punzio G., Goffrini P., Baruffini E., Dallabona C. (2021) Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel). 12:1866. doi: 10.3390/genes12121866. (Corresponding author)

di Punzio G., Gilberti M., Baruffini E., Lodi T., Donnini C., Dallabona C. (2021) A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool. Int. J. Mol. Sci. 22:12223. doi: 10.3390/ijms222212223.

Cappuccio G., Ceccatelli Berti C., Baruffini E., Sullivan J, Shashi V., Jewett T, Stamper T., Maitz S., Canonico F., Revah-Politi A., Kupchik G.S., Anyane-Yeboa K., Aggarwal V., Benneche A., Bratland E., Berland S., D'Arco F., Alves C.A., Vanderver A., Longo D., Bertini E., Torella A., Nigro V.; D'Amico A., van der Knaap M.S., Goffrini P., Brunetti-Pierri N. (2021) Bi-allelic KARS1 pathogenic variants affecting functions of cytosolic and mitochondrial isoforms are associated with a progressive and multisystem disease. Hum. Mutat. 42:745-761. doi: 10.1002/humu.24210. (Co-first author)

Figuccia S., Degiorgi A., Ceccatelli Berti C., Baruffini E., Dallabona C., Goffrini P. (2021) Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int. J. Mol. Sci. 22:4524. doi: 10.3390/ijms22094524.

Hytönen M.K., Sarviaho R., Jackson C.B., Syrjä P., Jokinen T., Matiasek K., Rosati M., Dallabona C., Baruffini E., Quintero I., Arumilli M., Monteuuis G., Donner J., Anttila M., Suomalainen A., Bindoff LA., Lohi H. (2021) In-frame deletion in canine PITRM1 is associated with a severe early-onset epilepsy, mitochondrial dysfunction and neurodegeneration. Hum. Genet. 140:1593-1609. doi: 10.1007/s00439-021-02279-y.

Ceccatelli Berti C., di Punzio G., Dallabona C., Baruffini E., Goffrini P., Lodi T., Donnini C. (2021) The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel). 12:300. doi: 10.3390/genes12020300.

Facchinello N., Laquatra C., Locatello L., Beffagna G., Brañas Casas R., Fornetto C., Dinarello A., Martorano L., Vettori A., Risato G., Celeghin R., Meneghetti G., Santoro M.M., Delahodde A., Vanzi F., Rasola A., Dalla Valle L., Rasotto M.B., Lodi T., Baruffini E., Argenton F., Tiso N. (2021) Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell. Death Dis. 12:100. doi: 10.1038/s41419-020-03359-z. (Co-corresponding author)

Aleo S.J., Del Dotto V., Fogazza M., Maresca A., Lodi T., Goffrini P., Ghelli A., Rugolo M., Carelli V., Baruffini E., Zanna C. (2021) Drug repositioning as a therapeutic strategy for neurodegenerations associated with OPA1 mutations. Hum. Mol. Genet. 29:3631-3645. doi: 10.1093/hmg/ddaa244. (Co-senior author)

Benincá C., Zanette V., Brischigliaro M., Johnson M., Reyes A., Valle D.A.D., J Robinson A., Degiorgi A., Yeates A., Telles B.A., Prudent J., Baruffini E., S. F. Santos M.L., R. de Souza R.L., Fernandez-Vizarra .E, Whitworth A.J., Zeviani M. (2021) Mutation in the MICOS subunit gene APOO (MIC26) associated with an X-linked recessive mitochondrial myopathy, lactic acidosis, cognitive impairment and autistic features. J. Med. Genet. 58:155-167. doi: 10.1136/jmedgenet-2020-106861.

Hoyos-Gonzalez N., Trasviña-Arenas C.H., Degiorgi A., Castro-Lara A.Y., Peralta-Castro A., Jimenez-Sandoval P., Diaz-Quezada C., Lodi T., Baruffini E., Brieba LG. (2020) Modeling of pathogenic variants of mitochondrial DNA polymerase: insight into the replication defects and implication for human disease. Biochim. Biophys. Acta Gen. Subj. 1864:129608. doi: 10.1016/j.bbagen.2020.129608. (Co-corresponding author)

Trasviña-Arenas C.H., Hoyos-Gonzalez N., Castro-Lara A.I., Rodriguez-Hernandez A., Sanchez-Sandoval M.E., Jimenez-Sandoval P., Ayala-García V.M., Díaz-Quezada C., Lodi T., Baruffini E., Brieba L.G. (2019) Amino and carboxy-terminal extensions of yeast mitochondrial DNA polymerase assemble both the polymerization and exonuclease active sites. Mitochondrion, 49:166-177. doi: 10.1016/j.mito.2019.08.005. ISSN: 1567-7249

Chin H., Goh D.L., Wang F.S, Hong Tay S.K., Heng C.K., Donnini C., Baruffini E., Pines O. (2019) A combination of two novel VARS2 variants causes a mitochondrial disorder associated with failure to thrive and pulmonary hypertension. J. Mol. Med. (Berl). 97:1557-1566. doi: 10.1007/s00109-019-01834-5. (Co-corresponding author)

Verrigni D., Di Nottia M., Ardissone A., Baruffini E., Nasca A., Legati A., Bellacchio E., Fagiolari G., Martinelli D., Fusco L., Battaglia D., Trani G., Versienti G., Marchet S., Torraco A., Rizza T., Verardo M., D'Amico A., Diodato D., Moroni I., Lamperti C., Petrini S., Moggio M., Goffrini P., Ghezzi D., Carrozzo R., Bertini E. (2019) Clinical-genetic features and peculiar muscle histopathology in infantile DNM1L-related mitochondrial epileptic encephalopathy. Hum. Mutat. 40, 601-618. doi: 10.1002/humu.23729. (Co-first author)


ID: 571
Therapy 1: preclinical developments

Mitochondrial genome replacement can rejuvenate aging cells

Toshihiko Taya, Akira Shikuma, Ryotaro Maeda, Daisuke Kami, Satoshi Gojo

Kyoto prefectural University of Medicine, Japan

Bibliography
1: Suzuki Y, Kami D, Taya T, Sano A, Ogata T, Matoba S, Gojo S. ZLN005 improves
the survival of polymicrobial sepsis by increasing the bacterial killing
via inducing lysosomal acidification and biogenesis in phagocytes. Front
Immunol. 2023 Feb 3;14:1089905. doi: 10.3389/fimmu.2023.1089905.

2: Kami D, Ishizaki T, Taya T, Katoh A, Kouji H, Gojo S. A novel mRNA decay
inhibitor abolishes pathophysiological cellular transition. Cell Death Discov.
2022 Jun 7;8(1):278. doi: 10.1038/s41420-022-01076-4.

3: Shikuma A, Kami D, Maeda R, Suzuki Y, Sano A, Taya T, Ogata T, Konkel A,
Matoba S, Schunck WH, Gojo S. Amelioration of Endotoxemia by a Synthetic Analog
of Omega-3 Epoxyeicosanoids. Front Immunol. 2022 Feb 24;13:825171. doi:
10.3389/fimmu.2022.825171.

4: Maeda R, Kami D, Shikuma A, Suzuki Y, Taya T, Matoba S, Gojo S. RNA decay in
processing bodies is indispensable for adipogenesis. Cell Death Dis. 2021 Mar
17;12(4):285. doi: 10.1038/s41419-021-03537-7.


ID: 399
Therapy 1: preclinical developments

Project pearl: raising the profile of mitochondrial disease

Lyndsey Butterworth, Renae Stefanetti, Julie Murphy, Amanda Temby, Grainne Gorman

Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom

Bibliography
Rhys H. Thomas, Amy Hunter, Lyndsey Butterworth, Catherine Feeney, Tracey D. Graves, Sarah Holmes, Pushpa Hossain, Jo Lowndes, Jenny Sharpe, Sheela Upadhyaya, Kristin N. Varhaug, Marcela Votruba, Russell Wheeler, Kristina Staley, Shamima Rahman. Research priorities for mitochondrial disorders: Current landscape and patient and professional views. J Inherit Metab Dis. 2022 Jul;45(4):796-803. doi: 10.1002/jimd.12521.

Craven L, Murphy JL, Turnbull DM. Mitochondrial donation - hope for families with mitochondrial DNA disease. Emerg Top Life Sci. 2020 Sep 8;4(2):151-154. doi: 10.1042/ETLS20190196.

Ahmed ST, Craven L, Russell OM, Turnbull DM, Vincent AE. Diagnosis and Treatment of Mitochondrial Myopathies. Neurotherapeutics. 2018 Oct;15(4):943-953. doi: 10.1007/s13311-018-00674-4.

Rai PK, Craven L, Hoogewijs K, Russell OM, Lightowlers RN. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem. 2018 Jul 20;62(3):455-465. doi: 10.1042/EBC20170113.

Craven L, Murphy J, Turnbull DM, Taylor RW, Gorman GS McFarland R. Scientific and Ethical Issues in Mitochondrial Donation. The New Bioethics. In publication.

Craven L*, Tang MX*, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update. 2017 23:1-19. doi: 10.1093/humupd/dmx018.

Craven L, Alston CL, Taylor RW, Turnbull DM. Recent Advances in Mitochondrial Disease. Annu Rev Genomics Hum Genet. 2017 Aug 31;18:257-275. doi: 10.1146/annurev-genom-091416-035426.

Hyslop LA, Blakeley P, Craven L, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016 16;534 (7607):383-6. doi: 10.1038/nature18303.

Craven L, Herbert M, Murdoch A, Murphy J, Lawford Davies J, Turnbull DM. Research into Policy: A Brief History of Mitochondrial Donation. Stem Cells. 2016 Feb;34(2):265-7. doi: 10.1002/stem.2221.

Chinnery PF, Craven L, Mitalipov S, Stewart JB, Herbert M, Turnbull DM. The challenges of mitochondrial replacement. PLoS Genet. 2014 Apr 24;10(4):e1004315. doi: 10.1371/journal.pgen.1004315.

Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010 6;465 (7294):82-5. doi: 10.1038/nature08958.


ID: 113
Therapy 1: preclinical developments

Innovative technology for regulating mitochondrial function in host cells

Yuma Yamada1,2, Momo Ito1, Mitsue Hibino1,3, Daisuke Sasaki4, Hideyoshi Harashima1

1Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan; 2FOREST Program, Japan Science and Technology Agency Japan, Saitama, Japan; 3Faculty of Engineering, Hokkaido University, Sapporo, Japan; 4Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan

Bibliography
Yamada Y, Munechika R, Satrialdi, Kubota F, Sato Y, Sakurai Y, Harashima H, Mitochondrial delivery of an anticancer drug via systemic administration using a mitochondrial delivery system that inhibits the growth of drug-resistant cancer engrafted on mice. J. Pharm. Sci. ;109: 2493-2500 (2020).

Yamada Y, Somiya K, Miyauchi A, Osaka H, Harashima H, Validation of a mitochondrial RNA therapeutic strategy using fibroblasts from a Leigh syndrome patient with a mutation in the mitochondrial ND3 gene. Sci. Rep. 10: 7511 (2020).

Yamada Y, Maruyama M, Kita T, Usami S, Kitajiri S, Harashima H, The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion 55: 134-144 (2020).

Yamada Y, Satrialdi, Hibino M, Sasaki D, Jiro A, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv. Drug. Deliv. Rev. 154-155: 187-209 (2020).

Sasaki D, Abe J, Takeda A, Harashima H, Yamada Y, Transplantation of MITO cells, mitochondria activated cardiac progenitor cells, to the ischemic myocardium of mouse enhances the therapeutic effect. Sci. Rep. 12: 4344 (2022).

Yamada Y, Sato Y, Nakamura T, Harashima H. Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control J. Control. Release 348: 357-369 (2022).


ID: 153
Therapy 1: preclinical developments

CNS gene therapy in a mouse model of complex I encephalopathy

Brittni Rae Walker, Milena Pinto, Lise-Michelle Theard, Sandra R Bacman, Carlos T Moraes

University of Miami, United States of America

Bibliography
Walker, BR, Moraes, CT. Nuclear-Mitochondrial Interactions. Biomolecules, 2022, 12, 427. https://doi.org/10.3390/biom12030427


ID: 515
Therapy 1: preclinical developments

Strategies for fighting mitochondrial diseases: AAV-based gene therapy

Samantha Corra'1,2, Raffaele Cerutti1,2, Valeria Balmaceda1,3, Carlo Viscomi1,3, Massimo Zeviani1,2

1Venetian Institute of Molecular Medicine, Padova; 2Department of Neuroscience, University of Padova; 3Department of Biomedical Sciences, University of Padova



ID: 660
Therapy 1: preclinical developments

Cannabidiol ameliorates mitochondrial disease via PPARgamma activation

Emma Puighermanal1, Marta Luna1, Andrea Urpi1, Patrizia Bianchi1, Isabella Appiah1, Laura Rodríguez-Pascau2, Fabien Menardy1, Alex Gella1, Paula Tena-Morraja3, Mariona Alberola4, Maria Helena de Donato1, Gunter van der Walt1, Marc Martinell2, Elisenda Sanz1, Francesc Soriano3, Pilar Pizcueta2, Albert Quintana1

1Neuroscience Institute, Autonomous University of Barcelona, Bellaterra, Spain; 2Minoryx Therapeutics SL, Barcelona, Spain; 3Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain; 4CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain



ID: 151
Therapy 1: preclinical developments

Sonlicromanol improves phenotypic changes in models of Selenoprotein N-related myopathies

Herma Renkema1, Marnix Gorissen3, Julien Beyrath1, Gert Flik3, Jeroen Schoorl3, Xin Li1, Bas Pennings1, Svetlana Pecheritsyna1, Karlijn Bouman4, Nicol Voermans4, Ulrike Schara-Schmidt5, Jan Smeitink1,2

1Khondrion, Nijmegen, The Netherlands; 2Department of Pediatrics, RCMM, RadboudUMC, Nijmegen, The Netherlands; 3Radboud University, Radboud Institute for Biological and Environmental Sciences, Cluster Ecology & Physiology, Department of Animal Physiology, Nijmegen, The Netherlands; 4Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; 5Department of Pediatric Neurology, Centre of neuromuscular disorders in children and adolescents, University Clinic Essen, University of Duisburg-Essen, Germany



ID: 211
Therapy 1: preclinical developments

Therapeutic interventions to regulate the Q-junction, 1C metabolism and the neuroinflammatory response.

Pilar González-García1, Mª Elena Díaz-Casado1, Agustín Hidalgo-Gutiérrez1, Laura Jiménez-Sánchez2, Eliana Barriocanal-Casado1, Luis C López1

1Physiology Department, Biomedical Research Center, University of Granada, Spain; 2Ibs. Granada, Granada, Spain

Bibliography
1.Nikkanen, J., et al., Mitochondrial DNA Replication Defects Disturb Cellular dNTP Pools and Remodel One-Carbon Metabolism. Cell Metab, 2016. 23(4): p. 635-48.
2.Bao, X.R., et al., Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife, 2016. 5: p. e10575.
3.Forsström, S., et al., Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress Responses in Mitochondrial Myopathy with mtDNA Deletions. Cell Metabolism, 2019. 30(6): p. 1040-1054.e7.
4.Krug, A.K., et al., Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis, 2014. 5(5): p. e1222.
5.González-García, P., et al., Coenzyme Q10 modulates sulfide metabolism and links the mitochondrial respiratory chain to pathways associated to one carbon metabolism. Human molecular genetics, 2020. 29(19): p. 3296-3311.
6.Hidalgo-Gutierrez, A., et al., beta-RA reduces DMQ/CoQ ratio and rescues the encephalopathic phenotype in Coq9 (R239X) mice. EMBO Mol Med, 2019. 11(1).
7.Gonzalez-Garcia, P., et al., The Q-junction and the inflammatory response are critical pathological and therapeutic factors in CoQ deficiency. Redox Biol, 2022. 55: p. 102403.


ID: 350
Therapy 1: preclinical developments

Yeast as a model for searching drugs against pathologies caused by mutations in ACO2

Alexandru Ionut Gilea1, Sonia Figuccia1, Camilla Ceccatelli Berti1, Claudio Fiorini2, Valerio Carelli2,3, Leonardo Caporali3, Enrico Baruffini1

1Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy; 3Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna

Bibliography
Magistrati M., Gilea A.I., Ceccatelli Berti C., Baruffini E., Dallabona C. (2023) Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci. 24:2178. doi: 10.3390/ijms24032178. (Co-first author)

Gilea A.I., Ceccatelli Berti C., Magistrati M., di Punzio G., Goffrini P., Baruffini E., Dallabona C. (2021) Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability.Genes (Basel). 12:1866. doi: 10.3390/genes12121866.

Ceccatelli Berti C., Gilea A.I., De Gregorio M.A., Goffrini P. (2020) Exploring Yeast as a Study Model of Pantothenate Kinase-Associated Neurodegeneration and for the Identification of Therapeutic Compounds.Int J Mol Sci. 22:293. doi: 10.3390/ijms22010293.


ID: 577
Therapy 1: preclinical developments

MiR-181a/b modulation as a potential therapeutic approach for Stargardt disease treatment

Simona Brillante1,2, Anna Diana1, Volpe Mariagrazia1, Eva Cipollaro1, Marta Molinari1,2, Carla Damiano1,3, Antonietta Tarallo1,3, Sandro Banfi1,4, Sabrina Carrella5, Alessia Indrieri1,2

1Telethon Institute of Genetics and Medicine,Italy; 2Institute for Genetic and Biomedical Research, CNR, Italy; 3Department of Translational Medical Science Federico II University of Naples, Italy; 4University of Campania Luigi Vanvitelli, Italy; 5Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Italy

Bibliography
1) Jabri Y, Biber J, Diaz-Lezama N, Grosche A, Pauly D. Cell-Type-Specific Complement Profiling in the ABCA4-/- Mouse Model of Stargardt Disease. Int J Mol Sci. 2020 Nov 11;21(22):8468. doi: 10.3390/ijms21228468. PMID: 33187113; PMCID: PMC7697683.
2) Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez-Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao-Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med. 2019 May;11(5):e8734. doi: 10.15252/emmm.201708734. PMID: 30979712; PMCID: PMC6505685.
3)Barbato A, Iuliano A, Volpe M, D'Alterio R, Brillante S, Massa F, De Cegli R, Carrella S, Salati M, Russo A, Russo G, Riccardo S, Cacchiarelli D, Capone M, Madonna G, Ascierto PA, Franco B, Indrieri A, Carotenuto P. Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. Int J Mol Sci. 2021 Feb 11;22(4):1801. doi: 10.3390/ijms22041801. PMID: 33670365; PMCID: PMC7918089.
4) Carrella S, Indrieri A, Franco B, Banfi S. Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches. Front Neurosci. 2020 Sep 24;14:588234. doi: 10.3389/fnins.2020.588234. PMID: 33071752; PMCID: PMC7541846.


ID: 216
Therapy 1: preclinical developments

MitoTALEN reduces mutant mtDNA load in the mouse CNS

Sandra R Bacman1, Jose Domingo Barrera-Paez1, Milena Pinto1, James B Stewart2, Carlos T Moraes1

1Department of Neurology, University of Miami Miller School of Medicine, Miami USA; 2Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle UK

Bibliography
MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson NG, Stewart JB, Moraes CT. Nat Med. 2018 Nov;24(11):1696-1700.
Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo.
Zekonyte U, Bacman SR, Smith J, Shoop W, Pereira CV, Tomberlin G, Stewart J, Jantz D, Moraes CT. Nat Commun. 2021 May 28;12(1):3210.
Precise and simultaneous quantification of mitochondrial DNA heteroplasmy and copy number by digital PCR. Shoop WK, Gorsuch CL, Bacman SR, Moraes CT. J Biol Chem. 2022 Nov;298(11):102574.


ID: 519
Therapy 1: preclinical developments

Phosphodiesterase 5 inhibitors (PDE5i) as a promising treatment for MT-ATP6 associated mater-nally inherited Leigh Syndrome (MILS)

Marie-Thérèse Henke1, Annika Zink2, Annika Wittich3, Sonja Heiduschka2, Giulia Pedrotti4, Undine Haferkamp3, Dario Brunetti5, Caleb Jerred2, Thomas Klopstock6, Felix Distelmaier2, Chiara La Morgia7, Valerio Carelli7, Fabian Schumacher8, Emanuela Bottani4, Ole Pless3, Markus Schuelke1, Alessandro Prigione2

1Charité-Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany; 2Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine Universi-ty, Düsseldorf, Germany; 3Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, Hamburg, Germany; 4University of Verona, Italy; 5Fondazione IRCCS Instituto Neurologico "C. Besta", Milano, Italy; 6Ludwig Maximilians University (LMU), München, Germany; 7University of Bologna, Italy; 8Freie Universität Berlin, Germany

Bibliography
[1]D. Leigh, “Subacute necrotizing encephalomyelopathy in a neonatal infant,” J. Neurol. Neurosurg. Psychiat., vol. 14, pp. 216–221, 1951, doi: 10.1097/00005072-197703000-00010.
[2]S. Rahman, “Leigh syndrome,” in Handbook ofClinical Neurology, Mitochondrial Diseases, 3rd ed., vol. 194, R. Horvath, M. Hirano, and P. F. Chinnery, Eds. Elsevier B.V., 2023, pp. 43–63.
[3]C. Lorenz et al., “Generation of four iPSC lines from four patients with Leigh syndrome carrying homoplasmic mutations m.8993T > G or m.8993T > C in the mitochondrial gene MT-ATP6,” Stem Cell Res., vol. 61, p. 102742, 2022, doi: 10.1016/j.scr.2022.102742.
[4]M.-T. Henke, A. Zink, S. Diecke, A. Prigione, and M. Schuelke, “Generation of two mother – child pairs of iPSCs from maternally inherited Leigh syndrome patients with m . 8993 T > G and m . 9176 T > G MT-ATP6 mutations,” Stem Cell Res., vol. 67, no. December 2022, pp. 1–5, 2023, doi: 10.1016/j.scr.2023.103030.
[5]C. Lorenz et al., “Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders,” Cell Stem Cell, vol. 20, no. 5, pp. 659-674.e9, 2017, doi: 10.1016/j.stem.2016.12.013.


ID: 562
Therapy 1: preclinical developments

The effect of mitochondrial NMNAT3 overexpression on Alzheimer’s related proteinopathies

Milena Pinto, Carlos Moraes

University of Miami, United States of America

Bibliography
1.Zhu, Y., et al., Human Nmnat1 Promotes Autophagic Clearance of Amyloid Plaques in a Drosophila Model of Alzheimer's Disease. Front Aging Neurosci, 2022. 14: p. 852972.
2.Huang, C., et al., The mouse nicotinamide mononucleotide adenylyltransferase chaperones diverse pathological amyloid client proteins. J Biol Chem, 2022. 298(5): p. 101912.


ID: 547
Therapy 1: preclinical developments

In vitro models to test modulators of cellular NAD+ levels

Shanti Lu-Nath1, Micol Falabella1, Yidi Zhang1, Manal E. Alkahtani2, Mine Orlu2, Robert D. S. Pitceathly1,3

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2UCL School of Pharmacy, UCL, London, UK; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK



ID: 417
Therapy 1: preclinical developments

Novel small molecule improves mitochondrial function and mitophagy in a complex III deficiency model.

Cristiane Beninca1, Lucia Fernández del Rio1, Matheus Pinto Oliveira1, Karel Erion2, David Rincon Fernandez Pacheco5, Jasmine Garza2, Mathew Dugan2, Sophie Kantor1, Kathleen Rodgers3, Kevin Gaffney2, Amy Wang2, Marc Liesa-Roig1,4, Orian Shirihai1

1Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, Los Angeles, USA.; 2Capacity Bio, Los Angeles, USA; 3Department of Pharmacology, Center for Innovations in Brain Science, University of Arizona, USA; 4Institut de Biologia Molecular De Barcelona (IBMB-CSIC), Spain.; 5Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, USA

Bibliography
Fernandez-del-Rio L, Benincá C, Villalobos F, Shu C, Liesa-Roig M, Stiles L, Acín-Perez R, Shirihai OS. A Novel Approach to Measure Complex V ATP Hydrolysis in Frozen Cell Lysates and Tissue Homogenates (in press; Life Science Alliance Journal)

Acín-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel). 2021 Sep 10;11(9):949. doi: 10.3390/life11090949. PMID: 34575097; PMCID: PMC8467772.

Zanette V, Valle DD, Telles BA, Robinson AJ, Monteiro V, Santos MLSF, Souza RLR, Benincá C. NDUFV1 mutations in complex I deficiency: Case reports and review of symptoms. Genet Mol Biol. 2021 Nov 19;44(4):e20210149. doi: 10.1590/1678-4685-GMB-2021-0149. PMID: 34807224; PMCID: PMC8607527.

Gaddale Devanna KK , Gawel JM , Prime TA , Cvetko F , Benincá C , Caldwell ST , Negoda A , Harrison A , James AM , Pavlov EV , Murphy MP , Hartley RC . Tetra-arylborate lipophilic anions as targeting groups. Chem Commun (Camb). 2021 Mar 28;57(25):3147-3150. doi: 10.1039/d0cc07924c. Epub 2021 Feb 26. PMID: 33634803; PMCID: PMC8062962.

Peruzzotti-Jametti L, Bernstock JD, Willis CM, Manferrari G, Rogall R, Fernandez-Vizarra E, Williamson JC, Braga A, van den Bosch A, Leonardi T, Krzak G, Kittel Á, Benincá C, Vicario N, Tan S, Bastos C, Bicci I, Iraci N, Smith JA, Peacock B, Muller KH, Lehner PJ, Buzas EI, Faria N, Zeviani M, Frezza C, Brisson A, Matheson NJ, Viscomi C, Pluchino S. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol. 2021 Apr;19(4):e3001166. doi: 10.1371/journal.pbio.3001166. eCollection 2021 Apr. PubMed PMID: 33826607; PubMed Central PMCID: PMC8055036.

Benincá C, Zanette V, Brischigliaro M, Johnson M, Reyes A, Valle DAD, J Robinson A, Degiorgi A, Yeates A, Telles BA, Prudent J, Baruffini E, S F Santos ML, R de Souza RL, Fernandez-Vizarra E, J Whitworth A, Zeviani M. Mutation in the MICOS subunit gene APOO (MIC26) associated with an X-linked recessive mitochondrial myopathy, lactic acidosis, cognitive impairment and autistic features. J Med Genet. 2021 Mar;58(3):155-167. doi: 10.1136/jmedgenet-2020-106861. Epub 2020 May 21. PMID: 32439808; PMCID: PMC7116790.

Zanette V, Reyes A, Johnson M, do Valle D, Robinson AJ, Monteiro V, Telles BA, L R Souza R, S F Santos ML, Benincá C, Zeviani M. Neurodevelopmental regression, severe generalized dystonia, and metabolic acidosis caused by POLR3A mutations. Neurol Genet. 2020 Oct 7;6(6):e521. doi: 10.1212/NXG.0000000000000521. PMID: 33134517; PMCID: PMC7577545.

Luna-Sanchez M, Benincá C, Cerutti R, Brea-Calvo G, Yeates A, Scorrano L, Zeviani M, Viscomi C. Opa1 Overexpression Protects from Early-Onset Mpv17-/--Related Mouse Kidney Disease. Mol Ther. 2020 Aug 5;28(8):1918-1930. doi: 10.1016/j.ymthe.2020.06.010. Epub 2020 Jun 12. PMID: 32562616; PMCID: PMC7403474.


ID: 270
Therapy 1: preclinical developments

Preservation of bioenergetics and inhibition of ferroptosis with the novel compound SBT-588 in Friedreich’s Ataxia cell models

Laura Elizabeth Kropp, Alyssa Handler, Hatim Zariwala, Yunmi Park, Martin Redmon, David A. Brown

Stealth BioTherapeutics, Needham, MA, United States of America

Bibliography
1.McNeil, B., Beck, L., Sullivan, A., Kropp, LE., Abbruscato, A., Bergheanu, SC. Interventions with Potential to Mitigate Injection Site Reactions Following Subcutaneous Elamipretide Administration: Phase 1, Crossover Study in Healthy Subjects (In preparation).

2.Kropp, LE., Thomas, LM, Jackson-Thompson, B., Gable, K., McDaniels, D., Mitre, E., Chronic infection with a tissue invasive helminth causes mast cell granule depletion and protects against systemic anaphylaxis Clinical & Experimental Allergy. 2019 Dec 13. doi: 10.1111/cea.13549. Epub 2020 Jan 15.

3.Abdeladhim, M., Zhang, AH., Kropp, LE., Lindrose, AR., Venkatesha, SH., Mitre, E., Scott, DW. Engineered ovalbumin-expressing regulatory T cells protect against anaphylaxis in ovalbumin-sensitized mice. Clinical Immunology. 2019 Oct;207:49-54. doi: 10.1016/j.clim.2019.07.009. Epub 2019 Jul 17.

4.Killoran, K.*, Kropp, LE.*, Lindrose, A., Curtis, H., Cook, D., Mitre, E., Rush desensitization with a single antigen induces subclinical activation of mast cells and protects against bystander challenge in dually sensitized mice. Clinical & Experimental Allergy. 2019 Apr;49(4):484-494. doi: 10.1111/cea.13323. Epub 2019 Jan 16.
a.*contributed equally to the manuscript


ID: 109
Therapy 1: preclinical developments

The use of a coenzyme Q10 encapsulated mitochondrial targeting lipid nanoparticle formulation has therapeutic effects on a drug-induced liver injury.

Mitsue Hibino1,2, Masatoshi Maeki2, Manabu Tokeshi2, Hideyoshi Harashima1, Yuma Yamada1,3

1Faculty of Pharmaceutical Sciences, Hokkaido University, Japan; 2Faculty of Engineering, Hokkaido University, Japan; 3Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST) Japan, Saitama, Japan

Bibliography
1)Yuma Yamada, Satrialdi, Mitsue Hibino, Daisuke Sasaki, Jiro Abe, Hideyoshi Harashima, Power of mitochondrial drug delivery systems to produce innovative nanomedicines, Adv Drug Deliv Rev,154-155:187-209 (2020).
2)Yuma Yamada, Momo Ito, Manae Arai, Mitsue Hibino, Takao Tsujioka, Hideyoshi Harashima, Challenges in Promoting Mitochondrial Transplantation Therapy, Int J Mol Sci, 21(17):6365 (2020).
3)Yuma Yamada, Yuta Takano, Satrialdi, Jiro Abe, Mitsue Hibino, Hideyoshi Harashima, Therapeutic Strategies for Regulating Mitochondrial Oxidative Stress, Biomolecules, 10(1):83 (2020).
4)Eriko Kawamura, Mitsue Hibino, Hideyoshi Harashima, Yuma Yamada, Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing, Mitochondrion, 49, 178-188 (2019).
5)Takashi Katayama, Shintaro Kinugawa, Shingo Takada, Takaaki Furihata, Arata Fukushima, Takashi Yokota, Toshihisa Anzai, Mitsue Hibino, Hideyoshi Harashima, Yuma Yamada, A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells, Mitochondrion, 49, 66-72 (2019).
6)Mitsue Hibino, Yuma Yamada, Naoki Fujishita, Yusuke Sato, Masatoshi Maeki, Manabu Tokeshi, Hideyoshi Harashima, The use of a microfluidic device to encapsulate a poorly water-soluble drug CoQ10 in lipid nanoparticles and an attempt to regulate intracellular trafficking to reach mitochondria, J Pharm Sci, 108 (8), 1668-2676 (2019).


ID: 321
Therapy 1: preclinical developments

In vitro 3D model of mitochondrial myopathy human skeletal muscle

Valeria Di Leo1,2, Xiomara Fernández-Garibay3, Ainoa Tejedera3, Javier Ramón-Azcón3, Gráinne Gorman1,4, Oliver Russell1,2, Amy Vincent1,2, Juanma Fernández-Costa3

1Wellcome Centre for Mitochondrial Research, Medical School, Newcastle University, United Kingdom; 2Translational and Clinical Research Institute, Newcastle University, United Kingdom; 3Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary

Bibliography
1Di Leo V, Lawless C, Newman J, Robertson F, Chun C, Pickett S, Hudson G, Gorman GS, Tuppen HA, Vincent AE & Russell OM. Resistance exercise training induces molecular changes in mitochondrial myopathy patients. Manuscript in preparation.
2Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Feb 10;12:2041731420981339.
3Rocha MC, Grady JP, Grünewald A, Vincent A, Dobson PF, Taylor RW, Turnbull DM, Rygiel KA. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Sci Rep. 2015 Oct 15;5:15037.
413Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Feb 10;12:2041731420981339.
5Trevelyan AJ, Kirby DM, Smulders-Srinivasan TK, Nooteboom M, Acin-Perez R, Enriquez JA, Whittington MA, Lightowlers RN, Turnbull DM. Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain. 2010 Mar;133(Pt 3):787-96.
6He L, Chinnery PF, Durham SE, Blakely EL, Wardell TM, Borthwick GM, Taylor RW, Turnbull DM. Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res. 2002 Jul 15;30(14):e68.
7Lehmann D, Tuppen HAL, Campbell GE, Alston CL, Lawless C, Rosa HS, Rocha MC, Reeve AK, Nicholls TJ, Deschauer M, Zierz S, Taylor RW, Turnbull DM, Vincent AE. Understanding mitochondrial DNA maintenance disorders at the single muscle fibre level. Nucleic Acids Res. 2019 Aug 22;47(14):7430-7443.
8Fernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, Fernández-Costa JM, Ramón-Azcón J. Bioengineeredin vitro3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication. 2021 Apr 26;13(3).


ID: 449
Therapy 1: preclinical developments

Metabolic consequences for NAD+ and N- Acetyl cysteine treatment on Mitochondrial myopathy

Nahid Khan1, Liliya Euro1, Kimmo Haimilahti1, Eija Pirinen2, Min Ni4, Johan Auwerx3, Ralph DeBerardinis4, Anu Suomalainen1,5

1STEMM, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; 2Diabetes and Obesity Research Unit, Research Programs Unit, University of Helsinki, FIN-00290 Helsinki, Finland; 3Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland; 4Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America; 5Helsinki University Hospital Diagnostic Centre, Helsinki 00260, Finland



ID: 205
Therapy 1: preclinical developments

Silencing the aberrant Coq9 mRNA in the Coq9R239X model normalizes complex Q and restores the mitochondrial phenotype.

Pilar González-García1,2, Julio Ruiz-Travé1, Celia Roldán-Lozano1, Juan M. Martínez-Gálvez1,3, Eliana Barriocanal-Casado1, Luis C. López1,2, Laura Jiménez-Sánchez2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs.Granada, Spain; 3Biofisika Institute (CSIC,UPV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain

Bibliography
1.Luna‐Sánchez M, Díaz‐Casado E, Barca E, et al. The clinical heterogeneity of coenzyme Q 10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med. 2015;7(5):670-687. doi:10.15252/emmm.201404632
2.Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the Role of the Human RNase H1 in the Pharmacology of DNA-like Antisense Drugs. J Biol Chem. 2004;279(17):17181-17189. doi:10.1074/jbc.M311683200


ID: 380
Therapy 1: preclinical developments

A high-content in vitro screening to identify new mitophagy-activating compounds

Giacomo Giacchin1, Valeria Balmaceda1, Cristiane Benincá2,3, Carlo Viscomi1

1Department of Biomedical Sciences, University of Padova, Italy; 2Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, USA; 3Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, USA



ID: 285
Therapy 1: preclinical developments

B-RA targets mitochondria in white adipose tissue and reverses diet-induced obesity

Elena Díaz Casado1,2, Sergio López Herrador1, Pilar González García1,2, Laura Jiménez Sánchez2, Sara Torres Rusillo1, Agustín Hidalgo Gutiérrez1, Luis Carlos López1,2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs. Granada, Granada, Spain

Bibliography
1. Fazakerley DJ, et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife. 2018 Feb 6;7:e32111. doi: 10.7554/eLife.32111.

2.Hidalgo-Gutiérrez A, et al. β-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight. Biomedicines. 2021 Oct 13;9(10):1457. doi: 10.3390/biomedicines9101457.


ID: 378
Therapy 1: preclinical developments

HIF1α is a potentially druggable target for MNGIE disease

Silvia Sabeni, Sara Carli, Francesca Ferraresi, Caterina Garone

Alma Mater Studiorum University of Bologna, Italy



ID: 627
Therapy 1: preclinical developments

Mitochondrial modulation with Leriglitazone as a potential treatment for Rett syndrome

Uliana Musokhranova, Alfonso Oyarzábal, Cristina Grau, Àngels García Cazorla

Institut de Recerca Sant Joan de Déu, Spain



ID: 204
Therapy 1: preclinical developments

New nutritional therapies for mitochondrial diseases

Borja Fernández García1, Marcello Bellusci1,2,4,7,, Jesús González de la Aleja6, Montserrat Morales Conejo1,2,5,7, Elena Martín Hernández1,2,4,7, Pilar Quijada Fraile1,2,4,7, Delia Barrio Carreras4,7, María Paz Guerrero Molina6, Joaquín Arenas1,2, Miguel A Martín1,2,3, María Morán1,2

1Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital ‘12 de Octubre’ (‘imas12’), Madrid, Spain; 2Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain; 3Servicio de Genética, Hospital Universitario ‘12 de Octubre’, Madrid, Spain.; 4Unidad Pediátrica de Enfermedades Raras, Hospital Universitario ‘12 de Octubre’, Madrid, Spain.; 5Servicio de Medicina Interna, Hospital Universitario ‘12 de Octubre’, Madrid, Spain; 6Servicio de Neurología, Hospital Universitario ‘12 de Octubre’, Madrid, Spain; 7Centro Nacional de Referencia para Errores Congénitos del Metabolismo (CSUR) y Centro Europeo de Referencia para Enfermedades Metabólica Hereditarias (MetabERN), Madrid, Spain



ID: 245
Therapy 1: preclinical developments

Pyrroloquinoline quinone exerts neuroprotective effects on retinal ganglion cell degeneration

Alessio Canovai1,2, James R Tribble1, Melissa Jöe1, Rosario Amato2, Maurizio Cammalleri2, Massimo Dal Monte2, Pete A Williams1

1Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden; 2Department of Biology, University of Pisa, Pisa, Italy

Bibliography
1.Canovai A. Experimental model of photo-oxidative damage. Ann Eye Sci 2022. (doi: 10.21037/aes-21-50)
2.Canovai A. Experimental models of retinopathy of prematurity. Ann Eye Sci 2022. (doi: 10.21037/aes-21-49)
3.Canovai A., Amato R., Melecchi A., Dal Monte M., Rusciano D., Bagnoli P., Cammalleri M. Preventive Efficacy of an Antioxidant Compound on Blood Retinal Barrier Breakdown and Visual Dysfunction in Streptozotocin-Induced Diabetic Rats. Front. Pharmacol 2022;12:811818. (doi: 10.3389/fphar.2021.811818)
4.Pesce N.A.*, Canovai A.*, Plastino F., Lardner E., Kvanta A., Cammalleri M., André H., Dal Monte M. An imbalance in autophagy contributes to retinal damage in a rat model of oxygen-induced retinopathy. J Cell Mol Med 2021;25(22):10480-10493. (doi:10.1111/jcmm.16977)
5.Amato R.*, Canovai A.*, Melecchi A., Pezzino S., Corsaro R., Dal Monte M., Rusciano D., Bagnoli P., Cammalleri M. Dietary Supplementation of Antioxidant Compounds Prevents Light-Induced Retinal Damage in a Rat Model. Biomedicines 2021; 9(9):1177. (doi: 10.3390/biomedicines9091177)
6.Pesce N.A., Canovai A., Lardner E., Cammalleri M., Kvanta A., André H., Dal Monte M. Autophagy Involvement in the Postnatal Development of the Rat Retina. Cells 2021;10(1):177. (doi: 10.3390/cells10010177)

*Equal author contribution


ID: 459
Therapy 1: preclinical developments

Quinone compounds in primary mitochondrial disease: acute metabolic effects in human-derived cells in vitro

Shilan Alsaied1, Shusuke Sekine1,2, Irene Yee1, Imen Chamkha1,3, Sonia Simón Serrano1,3, Eleonor Åsander Frostner1,3, Magnus J. Hansson1,3, Eskil Elmér1,3

1Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; 2Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan; 3Abliva AB, Lund, Sweden



ID: 259
Therapy 1: preclinical developments

A novel therapeutic strategy for mitochondrial Leigh Syndrome

Ritsuko Nakai1, Henyun Shi1, Hisashi Ohta2, Rick Tsai2, Masashi Suganuma2, Nicholas Borcherding3, Jonathan R Brestoff3, Takafumi Yokota1,4

1Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.; 2Luca Science Inc., Tokyo, Japan.; 3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.; 4Department of Hematology, Osaka International Cancer Institute, Osaka, Japan.

Bibliography
1) Special AT-Rich Sequence-Binding Protein 1 Supports Survival and Maturation of Naive B Cells Stimulated by B Cell Receptors.
Ozawa T, Fujii K, Sudo T, Doi Y, Nakai R, Shingai Y, Ueda T, Baba Y, Hosen N, Yokota T. J Immunol. 2022 Apr 15;208(8):1937-1946.
2) Inotuzumab ozogamicin and blinatumomab sequential therapy for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Ueda T, Fukushima K, Kusakabe S, Yoshida K, Suga M, Nakai R, Koike M, Hino A, Akuta K, Toda J, Nagate Y, Doi Y, Fujita J, Yokota T, Hosen N.
Leuk Res Rep. 2022 Feb 15;17:100294.
3) Autonomous TGFβ signaling induces phenotypic variation in human acute myeloid leukemia. Shingai Y, Yokota T, Okuzaki D, Sudo T, Ishibashi T, Doi Y, Ueda T, Ozawa T, Nakai R, Tanimura A, Ichii M, Shibayama H, Kanakura Y, Hosen N. Stem Cells. 2021 Jun;39(6):723-736.
4) Alectinib, an anaplastic lymphoma kinase (ALK) inhibitor, as a bridge to allogeneic stem cell transplantation in a patient with ALK-positive anaplastic large-cell lymphoma refractory to chemotherapy and brentuximab vedotin.
Nakai R, Fukuhara S, Maeshima AM, Kim SW, Ito Y, Hatta S, Suzuki T, Yuda S, Makita S, Munakata W, Suzuki T, Maruyama D, Izutsu K. Clin Case Rep. 2019 Nov 15;7(12):2500-2504.
5) Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Ueda T, Yokota T, Okuzaki D, Uno Y, Mashimo T, Kubota Y, Sudo T, Ishibashi T, Shingai Y, Doi Y, Ozawa T, Nakai R, Tanimura A, Ichii M, Ezoe S, Shibayama H, Oritani K, Kanakura Y. Stem Cell Reports. 2019 Dec 10;13(6):992-1005.


ID: 641
Therapy 1: preclinical developments

Generation of a new neuronal model of Friedreich’s Ataxia and establishment of a drug screening strategy

Olivier Griso1, Amélie Weiss1, Deepika Mokkachamy Chellapandi2, Hélène Puccio1,2

1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, France; 2Institut NeuroMyoGene, UMR5261, INSERM U1315, Université Claude Bernard Lyon I Faculté de médecine, Lyon, France



ID: 578
Therapy 1: preclinical developments

Downregulation of miR-181a/b ameliorates the Leigh syndrome phenotype in Ndufs4 KO mice

Mariagrazia Volpe1,2, Simona Brillante1,3, Roberta Tammaro1, Mariateresa Pizzo1, Alessandra Spaziano1, Sara Barbato1, Maria De Risi1, Sabrina Carrella4, Elvira De Leonibus1,5, Sandro Banfi1,6, Brunella Franco1,7, Alessia Indrieri1,3

1Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy; 2European School of Molecular Medicine (SEMM); 3Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy; 4Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy; 5Institute of Biochemistry and Cellular Biology (IBBC), National Research Council (CNR), Monterotondo (RM), Italy; 6Dep. of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy; 7Dep. of Translational Medicine, University of Naples "Federico II", Naples, Italy

Bibliography
1) Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez-Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao-Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. miR-181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol Med. 2019 May;11(5):e8734. doi: 10.15252/emmm.201708734. PMID: 30979712; PMCID: PMC6505685.
2) Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 2008 Apr;7(4):312-20. doi: 10.1016/j.cmet.2008.02.004. PMID: 18396137; PMCID: PMC2593686.
3) Barbato A, Iuliano A, Volpe M, D'Alterio R, Brillante S, Massa F, De Cegli R, Carrella S, Salati M, Russo A, Russo G, Riccardo S, Cacchiarelli D, Capone M, Madonna G, Ascierto PA, Franco B, Indrieri A, Carotenuto P. Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. Int J Mol Sci. 2021 Feb 11;22(4):1801. doi: 10.3390/ijms22041801. PMID: 33670365; PMCID: PMC7918089.
4) Carrella S, Indrieri A, Franco B, Banfi S. Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches. Front Neurosci. 2020 Sep 24;14:588234. doi: 10.3389/fnins.2020.588234. PMID: 33071752; PMCID: PMC7541846.


ID: 461
Therapy 1: preclinical developments

Succinate does not increase reactive oxygen species generation in phosphorylating human mitochondria

Irene Yee1, Alina Lenzer1, Shusuke Sekine1,2, Tianshi Liu1, Imen Chamkha1,3, Eskil Elmér1,3, Johannes Ehinger1,4

1Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; 2Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan; 3Abliva, AB, Lund, Sweden; 4Otorhinolaryngology Head and Neck Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden

Bibliography
Ganetzky RD, Markhard AL, Yee I, Clever S, Cahill A, Shah H, Grabarek Z, To TL, Mootha VK. Congenital Hypermetabolism and Uncoupled Oxidative Phosphorylation. N Engl J Med. 2022;387(15):1395-403.


ID: 555
Therapy 1: preclinical developments

Disease modeling and drug screening of mitochondrial complex I disorders: From Podospora anserina to Human

Nolwenn Bounaix1, Jérémy Richard1, Olivier Baris1, Naïg Gueguen1, Valérie Desquiret-Dumas1, Arnaud Chevrollier1, Céline Bris1, Aurélie Renaud1, Yann Bausan1, Laurent Monassier2, Guillaume Becker2, Estelle Ayme Dietrich2, Marc-Alexandre Delia3, Audrey Di Giorgio3, Dominique Bonneau1, Pascal Reynier1, Guy Lenaers1, Stépahne Azoulay3, Véronique Paquis-Flucklinger4, Déborah Tribouillard-Tanvier5, Nathalie Bonnefoy6, Agnès Delahodde6, Carole Sellem6, Vincent Procaccio1

1MITOVASC Institute, CNRS UMR 6015 INSERM U1083, Angers University - Angers (France); 2Pharmacology laboratory UR7296, Strasbourg University - Strasbourg (France); 3Côte d'Azur University, CNRS, Institute of Chemistry- Nice (France); 4IRCAN, UMR 7284 INSERM U1081/UCA - Nice (France); 5IBGC Institute, CNRS UMR 5095 - Bordeaux (France); 6Institute for Integrative Biology of the Cell I2BC, UMR9198, University of Paris-Saclay - Paris (France)



ID: 469
Therapy 1: preclinical developments

Nifuroxazide rescues deleterious effects of MICOS disassembly in disease models

Sylvie Bannwarth1, Baptiste Ropert1, Emmanuelle EC. Genin1, Sandra Lacas-Gervais2, Blandine Madji Hounoum3, Nhu Khanh Dinh4, Alessandra Mauri-Crouzet1, Marc-Alexandre D’Elia5, Gaelle Augé1, Manuel Schiff6, Deborah Tribouillard-Tanvier7, Laurent Monassier8, Vincent Procaccio9, Nathalie Bonnefoy4, Stéphane Azoulay5, Jean-Ehrland Ricci3, Agnès Delahodde4, Véronique Paquis-Flucklinger1

1IRCAN, UMR 7284/INSERM U1081/UCA, Nice, France; 2Université Côte d’Azur, Centre Commun de Microscopie Appliquée, Nice, France; 3Université Côte d’Azur, Inserm U1065, C3M, Nice, France; 4Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette, France; 5Université Côte d’Azur, CNRS UMR 7272, ICN, Nice, France; 6Université Paris Descartes-Sorbonne Paris Cité, Inserm U1163, Imagine Institute, Paris, France; 7IBGC, UMR5095 CNRS, Bordeaux, France; 8CRBS, UR7296, Strasbourg, France; 9Université d'Angers, UMR CNRS 6015 – INSERM U1083, Angers, France

Bibliography
1.Genin* EC, Bannwarth* S, Ropert B, Lespinasse F, Mauri-Crouzet A, Augé G, Fragaki K, Cochaud C, Donnarumma E, Lacas-Gervais S, Wai T, Paquis-Flucklinger V. CHCHD10 and SLP2 control the stability of the PHB complex: a key factor for motor neuron viability. Brain. 2022 Jun 3:awac197. (*co-first authors). doi: 10.1093/brain/awac197. Epub ahead of print. PMID: 35656794.
2.Baek M, Choe Y-J, Bannwarth S, Kim J, Maitra S, Dorn II GW, Taylor JP, Paquis-Flucklinger V, Kim NC. Dominant toxicity of ALS–FTD-associated CHCHD10S59L is mediated by TDP-43 and PINK1. Nat Com, 2021; 74 :20-38.
3. Genin EC, Madji Hounoum B, Bannwarth S, Fragaki K, Lacas-Gervais S, Mauri-Crouzet A, Lespinasse F, Neveu J, Ropert B, Augé G, Cochaud C, Lefebvre-Omar C, Bigou S, Chiot A, Mochel F, Boillée S, Lobsiger CS, Bohl D, Ricci JE, Paquis-Flucklinger. Mitochondrial defect in muscle precedes neuromuscular junction degradation and motor neuron death in CHCHD10S59L/+ mouse. Acta Neuropathol, 2019; 138:123-145.


ID: 420
Therapy 1: preclinical developments

Lithospermum erythrorhizon complexs extract prevents dexamethasone-induced muscle atrophy in mice

Tae Youl Ha, Jiyun Ahn

Korea Food Research Institute, Korea, Republic of (South Korea)

Bibliography
Fuzhuan brick tea extract prevents diet-induced obesity via stimulation of fat browning in mice. Food Chem. 2022 May 30;377:132006


ID: 104
Therapy 1: preclinical developments

Myocardial regeneration therapy using human cardiosphere-derived cells with activated mitochondria

Masahiro Shiraishi1,2, Daisuke Sasaki1, Atsuhito Takeda1, Mitsue Hibino2,3, Hideyoshi Harashima2, Yuma Yamada2,4

1Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; 2Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan; 3Faculty of Engineering, Hokkaido University, Sapporo, Japan; 4Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST) Japan, Saitama, Japan



ID: 464
Therapy 1: preclinical developments

Quinone compounds in primary mitochondrial disease: in vitro characterization of NQO1-mediated NAD+/NADH modulation

Imen Chamkha1,3, Lee Webster2, Steven J. Moss2, Magnus J. Hansson1,3, Eskil Elmer1,3

1Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; 2Isomerase Therapeutics Ltd, Chesterford Research Park, Cambridge, UK; 3Abliva AB, Lund, Sweden

Bibliography
Åsander Frostner E, Simón Serrano S, Chamkha I, Donnelly E, Elmér E, Hansson MJ (2022) Towards a treatment for mitochondrial disease: current compounds in clinical development. https://doi.org/10.26124/mitofit:2022-0014 — 2022-06-28 published in Bioenerg Commun 2022.4.


ID: 248
Therapy 1: preclinical developments

Metformin in mitochondrial disease patients cardiac cells

Outi Sanna Elina Ryytty, Katriina Kukka-Maaria Nurminen, Riikka Helena Hämäläinen

University of Eastern Finland, Finland

Bibliography
Ryytty S, Modi SR, Naumenko N, et al. Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes. Cells. 2022;11(16):2593. Published 2022 Aug 19. doi:10.3390/cells11162593


ID: 386
Therapy 2: clinical trials

Mavodelpar clinical development program in adult patients with primary mitochondrial myopathy (PMM): results from Phase 1b study and design of ongoing pivotal study (STRIDE).

Robert D.S. Pitceathly1,2, Renae J. Stefanetti3,4, Jane Newman3,4, Alasdair Blain3,4, Gary Layton5, Nicola Regan6, Lynn Purkins6, Madhu Davies6, Alejandro Dorenbaum7, Michelangelo Mancuso8, Amel Karaa9, Gráinne Gorman3,4

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Wellcome Centre for Mitochondrial Research, Newcastle University, UK; 4NIHR Newcastle Biomedical Research Centre, Newcastle University, UK; 5Paramstat Ltd., UK; 6Reneo Pharma Ltd., UK; 7Reneo Pharmaceuticals Inc., USA; 8Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Italy; 9Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA



ID: 509
Therapy 2: clinical trials

Rationale and design of a clinical phase 2a study to evaluate the safety and efficiency of OMT-28 in primary mitochondrial disease

Anne Konkel1, Janine Lossie1, Luciana Summo1, Henk Streefkerk1, John M Seubert2, Wolf-Hagen Schunck3, Robert Fischer1

1OMEICOS Therapeutics GmbH, Germany; 2University of Alberta, Canada; 3Max-Delbrueck Center for Molecular Medicine, Germany



ID: 101
Therapy 2: clinical trials

Treatment with lenadogene nolparvovec gene therapy results in sustained visual improvement in m.11778G>A MT-ND4-LHON patients: the RESTORE study

Patrick Yu-Wai-Man1, Nancy J. Newman2, Valerie Biousse2, Valerio Carelli3, Mark L. Moster4, Catherine Vignal-Clermont5, Thomas Klopstock6, Alfredo A. Sadun7, Robert C. Sergott4, Magali Taiel8, José-Alain Sahel9

1Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 2Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 4Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 5Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 6Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; 7Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA; 8GenSight Biologics, Paris, France; 9Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

Bibliography
Newman NJ, Yu-Wai-Man P, Subramanian PS, Moster ML, Wang AG, Donahue SP, Leroy BP, Carelli V, Biousse V, Vignal-Clermont C, Sergott RC, Sadun AA, Fernández GR, Chwalisz BK, Banik R, Bazin F, Roux M, Cox ED, Taiel M, Sahel JA; LHON REFLECT Study Group. Randomized trial of bilateral gene therapy injection for m.11778G > A MT-ND4 Leber optic neuropathy. Brain. 2022 Nov 9:awac421. doi: 10.1093/brain/awac421. Epub ahead of print. PMID: 36350566.

Chen BS, Holzinger E, Taiel M, Yu-Wai-Man P. The Impact of Leber Hereditary Optic Neuropathy on the Quality of Life of Patients and Their Relatives: A Qualitative Study. J Neuroophthalmol. 2022 Sep 1;42(3):316-322. doi: 10.1097/WNO.0000000000001564. Epub 2022 Apr 27. PMID: 35483081.

Biousse V, Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Vignal-Clermont C, Klopstock T, Sadun AA, Sergott RC, Hage R, Esposti S, La Morgia C, Priglinger C, Karanja R, Blouin L, Taiel M, Sahel JA; LHON Study Group. Long-Term Follow-Up After Unilateral Intravitreal Gene Therapy for Leber Hereditary Optic Neuropathy: The RESTORE Study. J Neuroophthalmol. 2021 Sep 1;41(3):309-315. doi: 10.1097/WNO.0000000000001367. PMID: 34415265; PMCID: PMC8366761.


ID: 124
Therapy 2: clinical trials

Current status of the phase 3 trial of dichloroacetate (DCA) for pyruvate dehydrogenase complex deficiency (PDCD)

Peter W Stacpoole1, Kathy Dorsey2

1University of Florida, United States of America; 2Saol Therapeutics, United States of America



ID: 272
Therapy 2: clinical trials

Efficacy and safety of elamipretide in subjects with primary mitochondrial disease resulting from pathogenic nuclear DNA mutations (nPMD): phase 3 study design

Amel Karaa1, Michelangelo Mancuso2

1Massachusetts General Hospital, Harvard Medical School Boston, MA, United States of America; 2Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Italy



ID: 354
Therapy 2: clinical trials

Long-term efficacy of idebenone in patients with LHON in the LEROS study: Analyzing change in visual acuity categories according to mitochondrial DNA mutation and disease phase

Patrick Yu-Wai-Man1,2,3,4, Valerio Carelli5,6, Berthold Pemp7, Neringa Jurkutė3,4,8, Livia Tomasso9, Xavier Llòria9, Thomas Klopstock10,11,12

1John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; 2Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; 3Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; 4Institute of Ophthalmology, University College London, London, United Kingdom; 5IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 6Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 7Department of Ophthalmology, Medical University of Vienna, Vienna, Austria; 8The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; 9Chiesi Farmaceutici S.p.A., Parma, Italy; 10German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 11Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 12Department of Neurology, Friedrich‑Baur Institute, University Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany



ID: 352
Therapy 2: clinical trials

Long-term efficacy of idebenone in patients with LHON in the LEROS study: Analyzing change in visual acuity over time according to mitochondrial DNA mutation and disease phase

Berthold Pemp1, Patrick Yu-Wai-Man2,3,4,5, Valerio Carelli6,7, Neringa Jurkutė4,5,8, Livia Tomasso9, Xavier Llòria9, Thomas Klopstock10,11,12

1Department of Ophthalmology, Medical University of Vienna, Vienna, Austria; 2John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; 3Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; 4Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; 5Institute of Ophthalmology, University College London, London, United Kingdom; 6IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 7Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 8The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; 9Chiesi Farmaceutici S.p.A., Parma, Italy; 10German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 11Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 12Department of Neurology, Friedrich‑Baur Institute, University Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany



ID: 220
Therapy 2: clinical trials

Long-term efficacy of idebenone in patients with LHON in the LEROS study: Analyzing the impact of idebenone on rates of recovery and worsening of vision according to primary mitochondrial DNA mutation

Neringa Jurkutė1,2,3, Patrick Yu-Wai-Man1,2,4,5, Berthold Pemp6, Valerio Carelli7,8, Xavier Llòria9, Livia Tomasso9, Thomas Klopstock10,11,12, Alessio Amadasi9

1Moorfields Eye Hospital NHS Foundation Trust, United Kingdom; 2Institute of Ophthalmology, University College London, London, United Kingdom; 3The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; 4John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; 5Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; 6Department of Ophthalmology, Medical University of Vienna, Vienna, Austria; 7IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 8Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 9Chiesi Farmaceutici S.p.A., Parma, Italy; 10German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 11Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 12Department of Neurology, Friedrich‑Baur Institute, University Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany



ID: 330
Therapy 2: clinical trials

Enzyme replacement strategy by transplantation in MNGIE: lessons from the updated Bologna case series

Roberto D'Angelo1, Elisa Boschetti1, Leonardo Caporali1, Laura Ludovica Gramegna1, Giovanna Cenacchi1, Raffaele Lodi1, Maria Cristina Morelli2, Matteo Cescon2, Caterina Tonon1, Alessia Pugliese3, Maria Teresa Dotti4, Francesco Sicurelli4, Mauro Scarpelli5, Massimiliano Filosto6, Carlo Casali7, Loris Pironi2, Valerio Carelli1, Roberto De Giorgio8, Rita Rinaldi1

1IRCCS Istituto Scienze Neurologiche di Bologna, Italy; 2IRCCS Policlinico Sant’Orsola-Malpighi di Bologna, Bologna, Italy; 3Department of Clinical and experimental Medicine, University of Messina, Messina, Italy; 4Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena; 5Institute of Neurology, University of Verona, Verona, Italy; 6Center for Neuromuscular Diseases, Unit of Neurology, ASST "Spedali Civili", Brescia, Italy; 7Department of Medico-Surgical Sciences and Biotechnologies, University ‘La Sapienza’, Roma, Italy; 8Department of Morphology, Surgery and Experimental Medicine, St. Anna Hospital, University of Ferrara, Ferrara, Italy

Bibliography
•D'Angelo R, Rinaldi R, Carelli V, et al. ITA-MNGIE: an Italian regional and national survey for mitochondrial neuro-gastro-intestinal encephalomyopathy. Neurol Sci. 2016; 37:1149-1151
•De Giorgio R, Pironi L, Rinaldi R, Boschetti E, Caporali L, Capristo M, Casali C, Cenacchi G, Contin M, D'Angelo R, et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol. 2016;80:448-455
•D'Angelo R, Rinaldi R, Pironi L, et al. Liver transplant reverses biochemical imbalance in mitochondrial neurogastrointestinal encephalomyopathy. Mitochondrion. 2017;34:101-102
•Gramegna LL, Pisano A, Testa C, Manners DN, D'Angelo R, et al. Cerebral Mitochondrial Microangiopathy Leads to Leukoencephalopathy in Mitochondrial Neurogastrointestinal Encephalopathy. AJNR Am J Neuroradiol. 2018; 39:427-434
•D'Angelo R, Boschetti E, Amore G et al. Liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical long-term follow-up and pathogenic implications. J Neurol. 2020;267:3702-3710
•Hirano M, Carelli V, De Giorgio R, Pironi L, Accarino A, Cenacchi G, D'Alessandro R, Filosto M, Martí R, Nonino F, Pinna AD, Baldin E, Bax BE, Bolletta A, Bolletta R, Boschetti E, Cescon M, D'Angelo R, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE International Network.J Inherit Metab Dis. 2021; 44:376-387
•Boschetti E, D'Angelo R, Tardio ML, et al. Evidence of enteric angiopathy and neuromuscular hypoxia in patients with mitochondrial neurogastrointestinal encephalomyopathy. Am J Physiol Gastrointest Liver Physiol. 2021; 320:G768-G779
•Boschetti E, Caporali L, D'Angelo R, et al. Anatomical Laser Microdissection of the Ileum Reveals mtDNA Depletion Recovery in A Mitochondrial Neuro-Gastrointestinal Encephalomyopathy (MNGIE) Patient Receiving Liver Transplant. Int J Mol Sci. 2022; 23:8792


ID: 517
mtDNA maintenance and expression

Developing mouse models to investigate the molecular mechanisms of POLG-related diseases

Samantha Corra'1,2, Alessandro Zuppardo1,3, Louise Jenninger4, Raffaele Cerutti1,2, Pedro Silva-Pinheiro5, Valeria Balmaceda1,3, Sara Volta1, Massimo Zeviani1,2, Maria Falkenberg4, Carlo Viscomi1,3

1Venetian Institute of Molecular Medicine, Padova; 2Department of Neuroscience, University of Padova; 3Department of Biomedical Sciences, University of Padova; 4Dept. Medical Chemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg; 5Mitochondrial Biology Unit, MRC/University of Cambridge, Cambridge, UK



ID: 361
Therapy 2: clinical trials

Long-term efficacy of idebenone in patients with LHON in the LEROS study: Analyzing the impact of idebenone on rates of recovery and worsening of vision according to disease phase

Xavier Llòria1, Patrick Yu-Wai-Man2,3,4,5, Valerio Carelli6,7, Berthold Pemp8, Neringa Jurkutė4,5,9, Livia Tomasso1, Thomas Klopstock10,11,12

1Chiesi Farmaceutici S.p.A., Parma, Italy; 2John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; 3Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; 4Moorfields Eye Hospital NHS Foundation Trust, United Kingdom; 5Institute of Ophthalmology, University College London, London, United Kingdom; 6IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 7Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 8Department of Ophthalmology, Medical University of Vienna, Vienna, Austria; 9The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; 10German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 11Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 12Department of Neurology, Friedrich Baur Institute, University Hospital of the Ludwig-Maximilians-University (LMU), Munich, Germany



ID: 122
Therapy 1: preclinical developments

Validation of drug delivery and functional activation to mitochondria in skeletal muscle cell

Itsumi Sato1,2, Mitsue Hibino1,3, Daisuke Sasaki1,2, Atsuhito Takeda2, Hideyoshi Harashima3, Yuma Yamada1,4

1Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan; 2Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; 3Faculty of Engineering, Hokkaido University, Sapporo, Japan; 4Fusion Oriented research for disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST) Japan, Saitama, Japan



ID: 132
mtDNA maintenance and expression

Novel approaches to modulate mutant mitochondrial DNA in patient-derived induced-pluripotent stem cells

David F Bodenstein1, Zoe S Thompson2, Jonathan M Palozzi2, Thomas R Hurd2, Ana C Andreazza1,3

1Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; 2Department of Molecular Genetics, University of Toronto, Toronto, Canada; 3Department of Psychiatry, University of Toronto, Toronto, ON, Canada

Bibliography
Bodenstein DF, Kim HK, Brown NC, Navaid B, Young LT, Andreazza AC. Mitochondrial DNA content and oxidation in bipolar disorder and its role across brain regions. NPJ Schizophr. 2019 Dec 4;5(1):21. doi: 10.1038/s41537-019-0089-5. PMID: 31797868; PMCID: PMC6892804.

Choi J, Bodenstein DF, Geraci J, Andreazza AC. Evaluation of postmortem microarray data in bipolar disorder using traditional data comparison and artificial intelligence reveals novel gene targets. J Psychiatr Res. 2021 Oct;142:328-336. doi: 10.1016/j.jpsychires.2021.08.011. Epub 2021 Aug 15. PMID: 34419753.

Cadoná FC, de Souza DV, Fontana T, Bodenstein DF, Ramos AP, Sagrillo MR, Salvador M, Mota K, Davidson CB, Ribeiro EE, Andreazza AC, Machado AK. Açaí (Euterpe oleracea Mart.) as a Potential Anti-neuroinflammatory Agent: NLRP3 Priming and Activating Signal Pathway Modulation. Mol Neurobiol. 2021 Sep;58(9):4460-4476. doi: 10.1007/s12035-021-02394-x. Epub 2021 May 22. PMID: 34021869.

de Souza DV, Pappis L, Bandeira TT, Sangoi GG, Fontana T, Rissi VB, Sagrillo MR, Duarte MM, Duarte T, Bodenstein DF, Andreazza AC, Cruz IBMD, Ribeiro EE, Antoniazzi A, Ourique AF, Machado AK. Açaí (Euterpe oleracea Mart.) presents anti-neuroinflammatory capacity in LPS-activated microglia cells. Nutr Neurosci. 2022 Jun;25(6):1188-1199. doi: 10.1080/1028415X.2020.1842044. Epub 2020 Nov 10. PMID: 33170113.


ID: 309
mtDNA maintenance and expression

Evaluation of mtDNA copy number assessment in patients with suspected mitochondrial disease

Kate Sergeant1,2, Carl Fratter1,2, Louisa Kent1,3, Tom Vale3, Anca Alungulese4, Conrad Smith1,2, Philip Hodsdon1,2, Stefen Brady1,3, Joanna Poulton1,5, Victoria Nesbitt1

1NHS Highly Specialised Services for Rare Mitochondrial Disorders, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 2Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 3Department of Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 4Department of Neurology, Gregorio Marañón University Hospital, Madrid, Spain; 5Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK

Bibliography
PMID: 36513735
PMID: 35141356
PMID: 35024855


ID: 382
Therapy 1: preclinical developments

Hepatoencephalopathy due to GFM1 mutations: generation of a mouse model and preclinical study of an AAV-based gene therapy for the disease

Miguel Molina-Berenguer1,2, Ferran Vila-Julià1,2, Sandra Pérez-Ramos1,2, Maria Teresa Salcedo-Allende3, Yolanda Cámara1,2, Diego Herrero-Martínez4,5, África Vales4,5, Gloria González-Aseguinolaza4,5, Javier Torres-Torronteras1,2, Ramon Martí1,2

1Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona - Barcelona (Spain); 2Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III - Madrid (Spain); 3Pathology Department, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona - Barcelona (Spain); 4Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra - Pamplona (Spain); 5Instituto de Investigación Sanitaria de Navarra, IdiSNA - Pamplona (Spain)

Bibliography
Molina-Berenguer M, Vila-Julià F, Pérez-Ramos S, Salcedo-Allende MT, Cámara Y, Torres-Torronteras J, Martí R. Dysfunctional mitochondrial translation and combined oxidative phosphorylation deficiency in a mouse model of hepatoencephalopathy due to Gfm1 mutations. FASEB J. 2022 Jan;36(1):e22091. doi: 10.1096/fj.202100819RRR. PMID: 34919756.


ID: 549
Therapy 1: preclinical developments

Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior

Hélène Cwerman-Thibault1, Vassilissa Malko-Baverel1, Gwendoline Le Guilloux1, Edward Ratcliffe1, Djmila Mouri1, Isabel Torres-Cuevas1,2,3, Ivan Millan1,2,3, Virginie Mignon4, Bruno Saubaméa4,5, Odile Boespflug-Tanguy1, Pierre Gressens1, Marisol Corral-Debrinski1

1Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; 2Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; 3Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain; 4Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France; 5Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France

Bibliography
1.Hélène Cwerman-Thibault, Christophe Lechauve, Vassilissa Malko-Baverel, Sébastien Augustin, Gwendoline Le Guilloux, Élodie Reboussin, Julie Degardin-Chicaud, Manuel Simonutti, Thomas Debeir, Marisol Corral-Debrinski. Neuroglobin effectively halts vision loss in Harlequin mice at an advanced stage of optic nerve degeneration. Neurobiology of Disease, 2021. doi.org/10.1016/j.nbd.2021.105483.

2.Hélène Cwerman-Thibault, Vassilissa Malko-Baverel, Gwendoline Le Guilloux, Isabel Torres-Cuevas, Bruno Saubaméa, Edward Ratcliffe, Djmila Mouri, Virginie Mignon, Odile Boespflug-Tanguy, Pierre Gressens, Marisol Corral-Debrinski. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Brain Pathology (In submission).

3.Hélène Cwerman-Thibault, Vassilissa Malko-Baverel, Gwendoline Le Guilloux, Edward Ratcliffe, Djmila Mouri, Isabel Torres-Cuevas, Ivan Millán, Virginie Mignon, Bruno Saubaméa, Odile Boespflug-Tanguy, Pierre Gressens, Marisol Corral-Debrinski. Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior. (In submission)


ID: 1411
mtDNA maintenance and expression

Guanylate kinase 1 deficiency: a novel and potentially treatable form of mitochondrial DNA depletion/deletions syndrome

Agustin Hidalgo-Gutierrez1, Jonathan Shintaku1, Eliana Barriocanal-Casado1, Russ Saneto2, Javier Ramon4,7, Gloria Garrabou4,5, Frederic Tort3,4, Jose Cesar Milisenda6, Laura Gort3,4, Alba Pesini1, Saba Tadesse1, Mary-Claire King8, Ramon Marti4,7, Antonia Ribes3,4, Michio Hirano1

1Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; 2Seattle Children’s Hospital, Seattle, WA, USA; 3Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS, Barcelona.; 4Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona; 5Muscle Research and Mitochondrial Function Lab, Cellex - IDIBAPS. Faculty of Medicine and Health Science - University of Barcelona (UB), Barcelona.; 6Department of Internal Medicine, Hospital Clínic of Barcelona.; 7Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.; 8Department of Genome Sciences, University of Washington, Seattle, WA, U.S.A.

Bibliography
1DiMauro, S., Schon, E. A., Carelli, V. & Hirano, M. The clinical maze of mitochondrial neurology. Nat Rev Neurol 9, 429-444, doi:10.1038/nrneurol.2013.126 (2013).
2Lopez-Gomez, C., Camara, Y., Hirano, M., Marti, R. & nd, E. W. P. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 32, 609-620, doi:10.1016/j.nmd.2022.05.008 (2022).
3Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43, 2466-2485, doi:10.1093/nar/gkv047 (2015).
4Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S. & Elpeleg, O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29, 342-344, doi:10.1038/ng751 (2001).
5Mandel, H., Szargel, R., Labay, V., Elpeleg, O., Saada, A., Shalata, A., Anbinder, Y., Berkowitz, D., Hartman, C., Barak, M., Eriksson, S. & Cohen, N. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29, 337-341, doi:10.1038/ng746 (2001).
6Ostergaard, E., Christensen, E., Kristensen, E., Mogensen, B., Duno, M., Shoubridge, E. A. & Wibrand, F. Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81, 383-387, doi:10.1086/519222 (2007).
7Besse, A., Wu, P., Bruni, F., Donti, T., Graham, B. H., Craigen, W. J., McFarland, R., Moretti, P., Lalani, S., Scott, K. L., Taylor, R. W. & Bonnen, P. E. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab 21, 417-427, doi:10.1016/j.cmet.2015.02.008 (2015).
8Sommerville, E. W., Dalla Rosa, I., Rosenberg, M. M., Bruni, F., Thompson, K., Rocha, M., Blakely, E. L., He, L., Falkous, G., Schaefer, A. M., Yu-Wai-Man, P., Chinnery, P. F., Hedstrom, L., Spinazzola, A., Taylor, R. W. & Gorman, G. S. Identification of a novel heterozygous guanosine monophosphate reductase (GMPR) variant in a patient with a late-onset disorder of mitochondrial DNA maintenance. Clin Genet 97, 276-286, doi:10.1111/cge.13652 (2020).
9Shintaku, J., Pernice, W. M., Eyaid, W., Gc, J. B., Brown, Z. P., Juanola-Falgarona, M., Torres-Torronteras, J., Sommerville, E. W., Hellebrekers, D. M., Blakely, E. L., Donaldson, A., van de Laar, I., Leu, C. S., Marti, R., Frank, J., Tanji, K., Koolen, D. A., Rodenburg, R. J., Chinnery, P. F., Smeets, H. J. M., Gorman, G. S., Bonnen, P. E., Taylor, R. W. & Hirano, M. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. J Clin Invest 132, doi:10.1172/JCI145660 (2022).
10Bourdon, A., Minai, L., Serre, V., Jais, J. P., Sarzi, E., Aubert, S., Chretien, D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A. & Rotig, A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39, 776-780, doi:10.1038/ng2040 (2007).
11Khan, N., Shah, P. P., Ban, D., Trigo-Mourino, P., Carneiro, M. G., DeLeeuw, L., Dean, W. L., Trent, J. O., Beverly, L. J., Konrad, M., Lee, D. & Sabo, T. M. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J Biol Chem 294, 11920-11933, doi:10.1074/jbc.RA119.009251 (2019).
12Li, Y., Zhang, Y. & Yan, H. Kinetic and thermodynamic characterizations of yeast guanylate kinase. J Biol Chem 271, 28038-28044, doi:10.1074/jbc.271.45.28038 (1996).
13Agarwal, K. C., Miech, R. P. & Parks, R. E., Jr. Guanylate kinases from human erythrocytes, hog brain, and rat liver. Methods Enzymol 51, 483-490, doi:10.1016/s0076-6879(78)51066-5 (1978).
14Dummer, R., Duvic, M., Scarisbrick, J., Olsen, E. A., Rozati, S., Eggmann, N., Goldinger, S. M., Hutchinson, K., Geskin, L., Illidge, T. M., Giuliano, E., Elder, J. & Kim, Y. H. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous T-cell lymphomas (CTCL) (Mycosis fungoides and Sezary syndrome). Ann Oncol 25, 1807-1812, doi:10.1093/annonc/mdu231 (2014).


ID: 1524
mtDNA maintenance and expression

Mechanisms of mtDNA maintenance and segregation in the female germline

Laura Kremer1, Lyuba Bozhilova2,3, Diana Rubalcava-Garcia1, Roberta Filograna1, Mamta Upadhyay1, Camilla Koolmeister1, Patrick Chinnery2,3, Nils-Göran Larsson1

1Karolinska Institutet, Stockholm, Sweden; 2MRC Mitochondrial Biology Unit, Cambridge, United Kingdom; 3Department of Clinical Neurosciences, University of Cambridge, United Kingdom



ID: 1127
mtDNA maintenance and expression

Processing of mitochondrial RNA in health and disease: the role of FASTKD5.

Hana Antonicka1, James B. Gibson2, Eric A. Shoubridge1

1The Neuro & McGill University, Montreal, Quebec, Canada; 2Dell School of Medicine, University of Texas at Austin, Austin, TX, USA

Bibliography
1.Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. (2021) ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 2021 Dec 21;37(12):110139. doi: 10.1016/j.celrep.2021.110139.

2.Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, Youn JY, Samavarchi-Tehrani P, Zhang H, Zhu LY, Popiel E, Lambert JP, Coyaud É, Cheung SWT, Rajendran D, Wong CJ, Antonicka H, Pelletier L, Palazzo AF, Shoubridge EA, Raught B, Gingras AC. (2021) A proximity-dependent biotinylation map of a human cell. Nature. 2021 Jul;595(7865):120-124. doi: 10.1038/s41586-021-03592-2.

3.Antonicka H, Lin ZY, Janer A, Aaltonen MJ, Weraarpachai W, Gingras AC, Shoubridge EA. (2020) A High-Density Human Mitochondrial Proximity Interaction Network. Cell Metab. 2020 Sep 1;32(3):479-497.e9. doi: 10.1016/j.cmet.2020.07.017.

4.Maiti P, Antonicka H, Gingras AC, Shoubridge EA, Barrientos A. (2020) Human GTPBP5 (MTG2) fuels mitoribosome large subunit maturation by facilitating 16S rRNA methylation. Nucleic Acids Res. 2020 Aug 20;48(14):7924-7943. doi: 10.1093/nar/gkaa592.

5.Antonicka H, Choquet K, Lin ZY, Gingras AC, Kleinman CL, Shoubridge EA. (2017) A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 2017 Jan;18(1):28-38. doi: 10.15252/embr.201643391.


ID: 1116
mtDNA maintenance and expression

The human Mitochondrial mRNA Structurome reveals Mechanisms of Gene Expression in Physiology and Pathology

Antoni Barrientos1, Conor Moran1, Amir Brivanlou2, Flavia Fontanesi1, Silvi Rouskin2

1University of Miami, United States of America; 2Harvard Medical School, United States of America

Bibliography
1- Structural basis of LRPPRC-SLIRP-1 dependent translation by the
mitoribosome. Vivek Singh, J. Conor Moran, Yuzuru Itoh, Iliana C. Soto, Flavia Fontanesi, Mary Couvillion, Martijn A. Huynen4, Stirling Churchman, Antoni Barrientos*, Alexey Amunts*. Nat Struct Mol Bill. 2023 (in press)
2-Tissue-specific mitochondrial HIGD1C promotes oxygen sensitivity in carotid body chemoreceptors. Timón-Gómez A, Scharr AL, Wong NY, Ni E, Roy A, Liu M, Chau J, Lampert JL, Hireed H, Kim NS, Jan M, Gupta AR, Day RW, Gardner JM, Wilson RJA, Barrientos A, Chang AJ. Elife. 2022 Oct 18;11:e78915. doi: 10.7554/eLife.78915.
2- Coordination of metal center biogenesis in human cytochrome c oxidase.
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A.
Nat Commun. 2022 Jun 24;13(1):3615. doi: 10.1038/s41467-022-31413-1.


ID: 1693
Late breaking news

Host-microbiome co-adaptation to severe nutritional challenge

Subhajit Singha1, Maxim Itkin2, Sergey Malitsky2, Yoav Soen1

1Department of Biomolecular Sciences, Weizmann Institute of Science, Israel; 2Life Sciences Core Facilities, Weizmann Institute of Science, Israel



ID: 1686
Late breaking news

The heme exporter FLVCR1a regulates ER-mitochondria membranes tethering and mitochondrial calcium handling

Francesca Bertino1, Dibyanti Mukherjee2, Massimo Bonora3, Jeannette Nardelli4, Nicolas Santander Grez5, Andreas Hentschel6, Elisa Quarta1, Pierre Gressens4, Chiara Riganti7, Paolo P Pinton3, Andreas Roos8, Thomas Arnold2, Emanuela Tolosano1, Deborah Chiabrando1

1University of Turin, Department of Molecular Biotechnology and Health Sciences; 2Department of Pediatrics, University of California San Francisco, San Francisco, United States; 3Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy; 4Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; 5Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile; 6Leibniz Institute of Analytical Sciences, ISAS, Dortmund, Germany; 7Department of Oncology, University of Torino, Italy; 8Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, University of Duisburg-Essen, Essen, Germany



ID: 1512
Therapy 1: preclinical developments

Genetic variants impact on NQO1 expression and activity driving efficacy of idebenone treatment in Leber’s hereditary optic neuropathy cell models

Valentina Del Dotto1, Serena Jasmine Aleo1, Martina Romagnoli2, Claudio Fiorini2, Giada Capirossi1, Camille Peron3, Alessandra Maresca2, Leonardo Caporali2, Mariantonietta Capristo2, Concetta Valentina Tropeano2, Claudia Zanna1, Anna Maria Porcelli4, Giulia Amore2, Chiara La Morgia1,2, Valeria Tiranti3, Valerio Carelli1,2, Anna Maria Ghelli4

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.; 3Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; 4Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.



ID: 1292
Therapy 1: preclinical developments

Peptide mimetic molecules as potential therapeutic agents against diseases related to mt-tRNA point mutations.

Annalinda Pisano1, Luciana Mosca2, Maria Gemma Pignataro1, Veronica Morea3, Giulia d'Amati1

1Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Italy; 2Department of Biochemical Sciences "A. Rossi Fanelli, Sapienza University of Rome, Italy; 3Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy

Bibliography
Perli E, Pisano A, Pignataro MG, Campese AF, Pelullo M, Genovese I, de Turris V, Ghelli AM, Cerbelli B, Giordano C, Colotti G, Morea V, d'Amati G. Exogenous peptides are able to penetrate human cell and mitochondrial membranes, stabilize mitochondrial tRNA structures, and rescue severe mitochondrial defects. FASEB J. 2020 Jun;34(6):7675-7686. doi: 10.1096/fj.201903270R
Italian Patent n.102021000032930 THERAPEUTICAL PEPTIDOMIMETIC
Inventors: Giulia d’Amati, Veronica Morea, Annalinda Pisano, Elena Perli, Maria Gemma Pignataro
International application No. PCT/IB2022/062354


ID: 1152
Therapy 1: preclinical developments

The mitoDdCBE system as a mitochondrial gene therapy approach

Jose Domingo Barrera-Paez1, Sandra R. Bacman1, Till Balla2, Beverly Mok3, David Liu3, Danny Nedialkova2, Carlos T. Moraes1

1University of Miami, United States of America; 2Max Planck Institute of Biochemistry, Germany; 3Broad Institute, Harvard University, and HHMI, United States of America

Bibliography
Mitochondrial genome engineering coming-of-age. Barrera-Paez et al. Trends Genet. 2022, May 19. PMID: 35599021.

Mitochondrial gene editing. Shoop et al (Barrera-Paez as third author). Nat Rev Methods Primers. 2023, in press (March 16).


ID: 1355
Therapy 2: clinical trials

Niacin treatment improves metabolic changes in early-stage mitochondrial myopathy

Kimmo Haimilahti1,2, Lilli Pihlajamäki1, Mari Auranen3, Niina Urho3, Päivi Piirilä4, Antti Hakkarainen5, Min Ni6, Kirsi Pietiläinen7,8, Ralph DeBerardinis6, Nahid A. Khan1, Anu Suomalainen1,9

1Research Program for Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 2Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 3Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland; 4Department of Clinical Physiology and Nuclear Medicine, Laboratory of Clinical Physiology, Helsinki University Hospital, Helsinki, Finland; 5HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Helsinki, Finland; 6Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America; 7Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 8Healthy Weight Hub, Abdominal Center, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; 9Helsinki University Hospital Diagnostic Centre, Helsinki, Finland

Bibliography
Eija Pirinen, Mari Auranen, Nahid A. Khan, Virginia Brilhante, Niina Urho, Alberto Pessia, Antti Hakkarainen, Juho Kuula, Ulla Heinonen, Mark S. Schmidt, Kimmo Haimilahti, Päivi Piirilä, Nina Lundbom, Marja-Riitta Taskinen, Charles Brenner, Vidya Velagapudi, Kirsi H. Pietiläinen, Anu Suomalainen. Niacin Cures Systemic NAD + Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab 2020;31(6):1078-1090.e5.


ID: 1573
Therapy 2: clinical trials

PHEMI: Phenylbutyrate Therapy in Mitochondrial Diseases with lactic acidosis: an open label clinical trial in MELAS and PDH deficiency patients.

Silvia Marchet1, Anna Ardissone2, Krisztina Einvag1, Daniele Sala1, Eleonora Lamantea1, Giulia Cecchi3, Vincenzo Montano3, Piervito Lopriore3, Maria Pia Iermito1, Michelangelo Mancuso3, Costanza Lamperti1

1Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Experimental Neuroscience, Unit of Medical Genetics and Neurogenetics, Milan, Italy; 2Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Pediatric Neurosciences, Milan, Italy; 3Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Bibliography
Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis.
Ferriero R, Manco G, Lamantea E, Nusco E, Ferrante MI, Sordino P, Stacpoole PW, Lee B, Zeviani M, Brunetti-Pierri N.
Sci Transl Med. 2013 Mar 6;5(175):175ra31. doi: 10.1126/scitranslmed.3004986.
PMID: 23467562


ID: 1102
Therapy 2: clinical trials

Use of lenadogene nolparvovec gene therapy for Leber hereditary optic neuropathy in early access programs

Chiara La Morgia1, Catherine Vignal-Clermont2, Valerio Carelli1, Michele Carbonelli23, Rabih Hage3, Mark L. Moster4, Robert C. Sergott4, Sean P. Donahue5, Patrick Yu-Wai-Man6, Hélène Dollfus7, Thomas Klopstock8, Claudia Priglinger9, Vasily Smirnov10, Giulia Amore23, Martina Romagnoli1, Catherine Cochard11, Marie-Benedicte Rougier12, Emilie Tournaire-Marques12, Pierre Lebranchu13, Caroline Froment14, Frederic Pollet-Villard15, Marie-Alice Laville16, Claudia Prospero Ponce17, Scott D. Walter18, Francis Munier19, Pauline Zoppe20, Michel Roux21, Magali Taiel21, José-Alain Sahel22

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 3Centre Hospitalier National d’Ophtalmologie des Quinze Vingts, Paris, France; 4Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 5Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; 6Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 7Institut de Génétique Médicale d’Alsace, CHU de Strasbourg, Strasbourg, France; 8Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University, Munich, Germany; 9University Hospital, Ludwig-Maximilians-University, Munich, Germany; 10Service Explorations de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France; 11Service d'Ophtalmologie, CHU de Rennes, Rennes, France; 12Service d'Ophtalmologie, CHU de Bordeaux, Groupe Hospitalier Pellegrin, Bordeaux, France; 13Service d'Ophtalmologie, CHU de Nantes, Nantes, France; 14Service de Neuro-Cognition et Neuro-Ophtalmologie, CHU de Lyon, Lyon, France; 15Service d'Ophtalmologie, Centre Hospitalier de Valence, Valence, France; 16Service d'Ophtalmologie, CHU de Caen, Caen, France; 17Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA; 18Retina Consultants, P.C, Hartford, Connecticut, USA; 19Service d'Ophtalmologie, Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; 20Centre Hospitalier de Wallonie Picarde, Tournai, Belgium; 21GenSight Biologics, Paris, France; 22Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; 23Department of Biomedical and Neuromotor Sciences, DIBINEM, Bologna, Italy

Bibliography
Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Sadun AA, Klopstock T, Vignal-Clermont C, Sergott RC, Rudolph G, La Morgia C, Karanjia R, Taiel M, Blouin L, Burguière P, Smits G, Chevalier C, Masonson H, Salermo Y, Katz B, Picaud S, Calkins DJ, Sahel JA. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci Transl Med. 2020 Dec 9;12(573):eaaz7423. doi: 10.1126/scitranslmed.aaz7423. PMID: 33298565.

Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol. 2021 May 24;12:662838. doi: 10.3389/fneur.2021.662838. PMID: 34108929; PMCID: PMC8181419.

Biousse V, Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Vignal-Clermont C, Klopstock T, Sadun AA, Sergott RC, Hage R, Esposti S, La Morgia C, Priglinger C, Karanja R, Blouin L, Taiel M, Sahel JA; LHON Study Group. Long-Term Follow-Up After Unilateral Intravitreal Gene Therapy for Leber Hereditary Optic Neuropathy: The RESTORE Study. J Neuroophthalmol. 2021 Sep 1;41(3):309-315. doi: 10.1097/WNO.0000000000001367. PMID: 34415265; PMCID: PMC8366761.


ID: 1453
Therapy 3: reproductive options and mtDNA editing

MitoCRISPR/Cas9 shifts mtDNA heteroplasmy not as effective as other site-specific nucleases.

Elvira Zakirova1,2, Ilya Mazunin3, Elena Kiseleva2, Ksenia Morozova1,2, Konstantin Orishchenko1,2

1Novosibirsk State University, Novosibirsk, Russia; 2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; 3Skolkovo Institute of Science and Technology, Moscow, Russia

Bibliography
1.Tanaka, M.; Borgeld, H.-J.; Zhang, J.; Muramatsu, S.; Gong, J.-S.; Yoneda, M.; Maruyama, W.; Naoi, M.; Ibi, T.; Sahashi, K.; et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 2002, 9, 534–41. https://doi.org/10.1159/000064726.
2. Zakirova, E.G.; Vyatkin, Y.V.; Verechshagina, N.A.; Muzyka, V.V.; Mazunin, I.O.; Orishchenko, K.E. Study of the effect of the introduction of mitochondrial import determinants into the gRNA structure on the activity of the gRNA/SpCas9 complex in vitro.Vavilov Journal of Genetics and Breeding 2020, 24(5):512-518. https://doi.org/10.18699/VJ20.643.
3.Silva-Pinheiro, P., Minczuk, M. The potential of mitochondrial genome engineering. Nat Rev Genet 23, 199–214 (2022). https://doi.org/10.1038/s41576-021-00432-x.
4. Zakirova, E.G.; Muzyka, V.V.; Mazunin, I.O.; Orishchenko, K.E. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life 2021, 11, 76. https://doi.org/10.3390/life11020076.


ID: 1271
Therapy 3: reproductive options and mtDNA editing

Prenatal diagnostics for a family with 13513G>A mtDNA mutation associated with Leigh Syndrome

Crystal M Van Dyken1, Amy Koski1, Hong Ma1, Nuria Marti Gutierrez1, Aleksei Mikhalchenko1, Rebecca Tippner-Hedges1, Daniel Frana1, Paula Amato2, Shoukhrat Mitalipov1

1Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, United States of America; 2Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health and Science University, United States of America



ID: 1155
Therapy 3: reproductive options and mtDNA editing

Specific elimination of m.3243A>G mutant mitochondria DNA using mitoARCUS

Wendy K. Shoop1,2, Cassandra L. Gorsuch1, Emma Sevigny1, Sandra R. Bacman2, Janel Lape1, Jeff Smith1, Derek Jantz1, Carlos T. Moraes2

1Precision BioSciences - Durham, NC, United States of America; 2University of Miami - Miami, FL, United States of America

Bibliography
Shoop WK, Gorsuch CL, Bacman SR, Moraes CT. Precise and simultaneous quantification of mitochondrial DNA heteroplasmy and copy number by digital PCR. J Biol Chem. 2022;298(11):102574. doi:10.1016/j.jbc.2022.102574


ID: 2103
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Identification of autophagy as a functional target suitable for the pharmacological treatment of MPAN in vitro

Enrica Zanuttigh1, Kevork Derderian1, Miriam A. Güra1, Arie Geerlof2, Ivano Di Meo3, Chiara Cavestro3, Stefan Hempfling4,5, Stephanie Ortiz-Collazos4,5, Mario Mauthe6,7, Tomasz Kmieć8, Eugenia Cammarota9, Maria Carla Panzeri9, Thomas Klopstock10,11,12, Michael Sattler4,5, Juliane Winkelmann1,13, Ana C. Messias4,5, Arcangela Iuso1,13

1Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; 2Protein Expression and Purification Facility, Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; 3Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; 4Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; 5Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; 6Molecular Cell Biology Section, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; 7Expertise Center Movement Disorders Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; 8Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; 9Alembic, Experimental Imaging Center, IRCCS San Raffaele Hospital, 20132 Milan, Italy; 10Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; 11Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; 12German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; 13Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany



ID: 246
Therapy 1: preclinical developments

PPAR Gamma Agonist Pioglitazone restores Mitochondrial Quality Control in fibroblasts of PITRM1 deficient patients

Alessia Di Donfrancesco1, Christian Berlingieri1, Marta Giacomello2, Laurence Bindoff3, Segel Reeval4, Paul Renbaum4, Filippo Santorelli5, Carlo Viscomi6, Massimo Zeviani7, Daniele Ghezzi1, Dario Brunetti1

1Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy; 2Department of Biology, University of Padua, Italy; 3Department of Clinical Medicine, University of Bergen, Norway; 4Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Israel; 5Molecular Medicine, IRCCS Fondazione Stella Maris, Italy; 6Department of Biomedical Sciences, University of Padova, Italy; 7Department of Neurosciences, University of Padova, Italy



ID: 169
Therapy 1: preclinical developments

Mitochondrial derived vesicles retain membrane potential and contain a functional ATP synthase

‪Reut Hazan‬‏1, Dvora Lintzer1, Tamar Ziv2, Koyeli Das1, Irit Rosenhek-Goldian3, Ziv Porat3, Hila Ben Ami Pilo3, Sharon Karniely4, Ann Saada5, Neta Regev-Rudzki3, Ophry Pines1

1Hebrew university, Israel; 2Technion, Haifa, Israel; 3Weizmann Institute of Science, Rehovot, Israel; 4Kimron Veterinary Institute, Bet Dagan, Israel; 5Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem Israel

Bibliography
Weill U1, Yofe I1, Sass E2, Stynen B3, Davidi D4, Natarajan J5, Ben-Menachem R6, Avihou Z1, Goldman O1, Harpaz N1, Chuartzman S1, Kniazev K1, Knoblach B7, Laborenz J8, Boos F8, Kowarzyk J3, Ben-Dor S9, Zalckvar E1, Herrmann JM8, Rachubinski RA7, Pines O6, Rapaport D5, Michnick SW3, Levy ED2, Schuldiner M10. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nat Methods. 2018 Jul 9. doi: 10.1038/s41592-018-0044-9
Ben-Menachem R, Wang K, Marcu O, Yu Z, Lim TK, Lin Q, Schueler-Furman O, Pines O. Yeast aconitase mitochondrial import is modulated by interactions of its C and N terminal domains and Ssa1/2 (Hsp70). Scientific Reports volume 8, Article number: 5903(2018)
Ben-Menachem R, Pines O. 2017. Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast. Methods Mol Biol. 2017;1567:179-195

Ben-Menachem R, Tal M, Shadur T and Pines O. 2011. A third of the yeast mitochondrial proteome is dual localized: a question of evolution. Proteomics. 11(23):4468-76. Impact Factor-4.815.

Ben-Menachem R, Regev-rudzki N and Pines O. 2011. The aconitase C-terminal domain is an independent dual targeting element. J Mol Biol. 409(2):113-23. Impact Factor-4.0.


ID: 516
mtDNA maintenance and expression

Metabolic modulation of mitochondrial DNA release in cellular models of Parkin-associated Parkinson’s disease

Gideon Agyeah1, Paul Antony1, Kobi Wasner1, Aleksandar Rakovic2, Sandro L Pereira1, Anne Grünewald1,2

1Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; 2Institute of Neurogenetics, University of Lübeck, Lübeck, Germany

Bibliography
1. Parkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation.
Wasner, Kobi; Smajic, Semra; Ghelfi, Jenny; Delcambre, Sylvie; Prada-Medina, Cesar A.; Knappe, Evelyn; Arena, Giuseppe; Mulica, Patrycja; Agyeah, Gideon; Rakovic, Aleksandar; Boussaad, Ibrahim; Badanjak, Katja; Ohnmacht, Jochen; Gerardy, Jean-Jacques; Takanashi, Masashi; Trinh, Joanne; Mittelbronn, Michel; Hattori, Nobutaka; Klein, Christine; Antony, Paul; Seibler, Philip; Spielmann, Malte; Pereira, Sandro L.; Grünewald, Anne
in Movement disorders : official journal of the Movement Disorder Society (2022)

2. Neurodegeneration and Neuroinflammation in Parkinson’s Disease: a Self-Sustained Loop
Arena, Giuseppe; Sharma, K.; Agyeah, Gideon; Krüger, Rejko; Grünewald, Anne; Fitzgerald, J. C.
in Current Neurology and Neuroscience Reports (2022), 22(8), 427440


ID: 327
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

ATP synthase c-subunit leak metabolism associated with abnormal mitophagic clearance

Bledi Petriti1,2, Shobana Subramanian2, Pawel Licznerski2, K Y Chau1, Lascaratos Gerassimos1, Garway-Heath David1, Jonas Elizabeth2

1University College London, United Kingdom; 2Yale University , USA



ID: 362
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Investigating the role of mitochondrial regulators in sorafenib and lenvatinib resistance in HCC cell line

Silvia Pedretti1, Francesca Palermo1, Gabriele Imperato1, Donatella Caruso1, Maurizio Crestani1, Emma De Fabiani1, Nico Mitro1,2

1Department of Pharmacological and Biomolecular Sciences - DiSFeB, University of Milan, Italy; 2Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy



ID: 310
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Glucose-derived glutamate drives neuronal differentiation

Laura D'Andrea1, Matteo Audano1, Silvia Pedretti1, Gabriele Imperato1, Giulia De Cesare1, Clara Cambria2, Flavia Antonucci2,3, Marine Laporte4, Monica Di Luca1, Elena Marcello1, Nico Mitro1,5

1Department of Pharmacological and Biomolecular Sciences -DiSFeB, Università degli Studi di Milano, Milan, Italy; 2Department of Medical Biotechnology and Translational Medicine - BIOMETRA, Università degli Studi di Milano, Milan, Italy; 3Institute of Neuroscience, IN-CNR, Milan, Italy; 4Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland; 5Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.

 
4:15pm - 6:15pmPatients' session
Location: Bologna Congress Center - Sala Europa
Chairs: Kira Mann, Paula Morandi
16:15 – 16:35 Mitochondrial Diseases in childhood: hope for the future – Robert McFarland
16:35 – 16:55 Advances in clinical diagnosis and management of mitochondrial disorders, Holger Prokish
16:55 – 17:15 New therapies for mitochondrial diseases – an update, Carlo Viscomi
17:15 – 17:35 Gene therapy for mitochondrial optic neuropathies – an update, Patrick Yu Wai Man
17:35 – 18:05 Ask the Mito Doc. Discussion with patients and experts
18:05 – 18:15 Q&A
8:00pm - 10:00pmConference Dinner
Location: Palazzo Re Enzo

Date: Thursday, 15/June/2023
8:00am - 5:30pmRegistration Desk
Location: Bologna Congress Center
9:00am - 10:40amSession 5.1: Late breaking news session
Location: Bologna Congress Center - Sala Europa
Session Chair: Valeria Tiranti
Session Chair: Valerio Carelli
 
Oral presentation
ID: 689
Late breaking news

Improving the diagnosis of mitochondrial disease with public funding for whole genome sequencing

Carolyn M Sue

Neuroscience Research Australia

Bibliography
(1). Davis RL, Kumar KR, Puttick C, Liang C, Ahmad KE, Edema-Hildebrand F, Park JS, Minoche AE, Gayevskiy V, Mallawaarachchi AC, Christodoulou J, Schofield D, Dinger ME, Cowley MJ, Sue CM. Use of Whole-Genome Sequencing for Mitochondrial Disease Diagnosis. Neurology. 2022 Aug 16;99(7):e730-e742.


Oral presentation
ID: 687
Late breaking news

SLC25A38 is Necessary for Mitochondrial Pyridoxal 5’-Phosphate (PLP) Accumulation

Izabella A. Pena1,2, Jeffrey S. Shi1,2, Sarah M. Chang3,4,5, Samuel Block3,4, Jason Yang4,6, Charles H. Adelmann4,6,7,8, Heather R. Keys6, Preston Ge1,2,5, Isabella Witham1,2, Grzegorz Sienski6, David M. Sabatini9, Caroline A. Lewis6, Nora Kory10, Matthew G. Vander Heiden3,4,11, Myriam Heiman1,2

1Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA; 2Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; 3David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; 4Department of Biology, MIT, Cambridge, MA, USA; 5Harvard-MIT MD/PhD Program, Boston, MA, USA; 6Whitehead Institute for Biomedical Research, Cambridge, MA, USA; 7Cancer Research, Massachusetts General Hospital, Boston MA, USA; 8Cutaneous Biology Research Center, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, Boston, MA; 9Unafilliated; 10Harvard T.H. Chan School of Public Health, Boston, MA, USA; 11Dana-Farber Cancer Institute, Boston, MA, USA

Bibliography
(article in revision at Nature Metabolism)


Oral presentation
ID: 685
Late breaking news

The transcriptional effects of thyroid hormone T3 on mitochondrial metabolism during neurodevelopment

Chiara Santanatoglia1, Francesca Ciarpella1, Giulia Pedrotti1, Benedetta Lucidi1, Eros Rossi1, Elisa De Tomi2, Raluca Georgiana Zamfir1, Giovanni Malerba2, Giorgio Malpeli3, Ilaria Decimo1, Emanuela Bottani1

1Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy; 2Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; 3Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy

Bibliography
1.Lanni A, Moreno M, Goglia F. Mitochondrial Actions of Thyroid Hormone. In: Terjung R, ed. Comprehensive Physiology. 1st ed. Wiley; 2016:1591-1607. doi:10.1002/cphy.c150019
2.Bifari F, Dolci S, Bottani E, et al. Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism. Pharmacol Res. 2020;158. doi:10.1016/j.phrs.2020.104863
3.Knobloch M, Pilz GA, Ghesquière B, et al. A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity. Cell Rep. 2017;20(9):2144-2155. doi:https://doi.org/10.1016/j.celrep.2017.08.029
4.Brunetti D, Dykstra W, Le S, Zink A, Prigione A. Mitochondria in Neurogenesis: Implications for Mitochondrial Diseases. Stem Cells. 2021;39(10):1289-1297. doi:10.1002/stem.3425
5.Schwartz CE, Stevenson RE. The MCT8 thyroid hormone transporter and Allan–Herndon–Dudley syndrome. Best Pract Res Clin Endocrinol Metab. 2007;21(2):307-321. doi:10.1016/j.beem.2007.03.009
6.Cantó C, Houtkooper RH, Pirinen E, et al. The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metab. 2012;15(6):838-847. doi:10.1016/j.cmet.2012.04.022


Oral presentation
ID: 681
Late breaking news

Transplanting ipsc-derived mitochondria: a promising approach for treating mitochondrial optic neuropathies

Jasmine Harley, Jeremy Pang, Queenie Tan, Alexander Han, Winanto Ng, Cheryl Lee, Zheng Shan Chong, Cheryl Lee, Su Xinyi, Boon Seng Soh, Shi-Yan Ng

Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore 138673, Singapore



Flash Talk
ID: 686
Late breaking news

The heme exporter FLVCR1a regulates ER-mitochondria membranes tethering and mitochondrial calcium handling

Francesca Bertino1, Dibyanti Mukherjee2, Massimo Bonora3, Jeannette Nardelli4, Nicolas Santander Grez5, Andreas Hentschel6, Elisa Quarta1, Pierre Gressens4, Chiara Riganti7, Paolo P Pinton3, Andreas Roos8, Thomas Arnold2, Emanuela Tolosano1, Deborah Chiabrando1

1University of Turin, Department of Molecular Biotechnology and Health Sciences; 2Department of Pediatrics, University of California San Francisco, San Francisco, United States; 3Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy; 4Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; 5Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile; 6Leibniz Institute of Analytical Sciences, ISAS, Dortmund, Germany; 7Department of Oncology, University of Torino, Italy; 8Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, University of Duisburg-Essen, Essen, Germany



Flash Talk
ID: 693
Late breaking news

Host-microbiome co-adaptation to severe nutritional challenge

Subhajit Singha1, Maxim Itkin2, Sergey Malitsky2, Yoav Soen1

1Department of Biomolecular Sciences, Weizmann Institute of Science, Israel; 2Life Sciences Core Facilities, Weizmann Institute of Science, Israel



Flash Talk
ID: 103
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Identification of autophagy as a functional target suitable for the pharmacological treatment of MPAN in vitro

Enrica Zanuttigh1, Kevork Derderian1, Miriam A. Güra1, Arie Geerlof2, Ivano Di Meo3, Chiara Cavestro3, Stefan Hempfling4,5, Stephanie Ortiz-Collazos4,5, Mario Mauthe6,7, Tomasz Kmieć8, Eugenia Cammarota9, Maria Carla Panzeri9, Thomas Klopstock10,11,12, Michael Sattler4,5, Juliane Winkelmann1,13, Ana C. Messias4,5, Arcangela Iuso1,13

1Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; 2Protein Expression and Purification Facility, Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; 3Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; 4Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; 5Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; 6Molecular Cell Biology Section, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; 7Expertise Center Movement Disorders Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; 8Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; 9Alembic, Experimental Imaging Center, IRCCS San Raffaele Hospital, 20132 Milan, Italy; 10Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; 11Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; 12German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; 13Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany



Remote connection - Oral Presentation
ID: 2106
Late breaking news

Nuclear genetic control of mtDNA homeostasis revealed from >250,000 human genomes

Rahul Gupta

Broad Institute; Mass Gen Hospital, Harvard Medical School

 
10:40am - 10:55amCoffee Break
Location: Bologna Congress Center
10:55am - 12:10pmKeynote Lectures: Carlos Moraes - Thomas Becker
Location: Bologna Congress Center - Sala Europa
Session Chair: Luigi Palmieri
Session Chair: Nils-Göran Larsson
 
Invited
ID: 674
Invited Speakers

Promises and Perils of mitochondrial DNA Gene Editing

Carlos Moraes1, Bacman Sandra1, Wendy Shoop2, Jose Domingo Barrera Paez1, Milena Pinto1, Jeff Smith2, Derek Jantz2, Cassandra Gorsuch2

1University of Miami, United States of America; 2Precision Biosciences, United States of America

Bibliography
1- Mitochondrial genome engineering coming-of-age: Barrera-Paez JD, Moraes CT.
Trends Genet. 2023 Jan;39(1):89.


Invited
ID: 671
Invited Speakers

Control of mitochondrial protein import

Thomas Becker

University of Bonn, Germany

 
12:10pm - 12:50pmClosing Lecture: Anu Suomalainen
Location: Bologna Congress Center - Sala Europa
 
Invited
ID: 704
Invited Speakers

Quo vadis, mitochondrial medicine

Anu Suomalainen

Helsinki-Finland

 
12:50pm - 1:00pmAnnouncement of Award Winners
Location: Bologna Congress Center - Sala Europa
1:00pm - 1:10pmPresentation of the next Euromit Conference
Location: Bologna Congress Center - Sala Europa
1:30pm - 2:30pmLunch
Location: Bologna Congress Center - Sala Europa
2:30pm - 6:00pmSatellite Symposium: Mitochondrial optic neuropathies, the tip of the mito-iceberg
Location: Bologna Congress Center - Sala Europa
To see the full programme of this Meeting, visit our website on this page.