Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Session
Tea Break and poster session
Time:
Tuesday, 13/June/2023:
3:30pm - 4:30pm

Location: Bologna Congress Center

Address: Piazza della Costituzione, 4/a, Bologna (BO), Italy

Session topics:
- Clinical 2: natural history, biomarkers and outcome measures
- Inflammation and Immunity as mitochondrial contributor to pathology
- Metabolic stress responses in mitochondrial diseases, ageing and cancer

Show help for 'Increase or decrease the abstract text size'
Presentations
ID: 653
Clinical 2: natural history, biomarkers and outcome measures

Evaluating functional mobility and endurance in adults with Primary Mitochondrial Myopathy (PMM); insights concerning gait protocol and outcome measure selection.

Lisa Alcock1,2, Alaa Abouhajar3, Theophile Bigirumurame4, Penny Bradley5, Philip Brown6, Laura Brown7, Ian Campbell5, Silvia Del Din1,2, Julie Faitg7, Gavin Falkous7, Gráinne S. Gorman2,7,8, Heather Hunter6, Rachel Lakey3, Robert McFarland7,8, Jane Newman2,7,8, Lynn Rochester1,2,6, Vicky Ryan4, Hesther Smith5, Alison Steel3, Renae J. Stefanetti2,7, Huizhong Su2,7, Robert W. Taylor2,7,8, Naomi J.P. Thomas2,7,8, Helen Tuppen2,7, Amy E. Vincent7, Charlotte Warren2,7, Gillian Watson3

1Translational and Clinical Research Institute, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 3Newcastle Clinical Trials Unit, Newcastle University, UK; 4Population Health Sciences Institute, Newcastle University, UK; 5Pharmacy Directorate, The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 6The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 7Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, UK; 8NHS Highly Specialised Service for Rare Mitochondrial Disorders, The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK



ID: 173
Clinical 2: natural history, biomarkers and outcome measures

Natural variability in protein expression of oxidative deficiency markers in single muscle fibres and tissue homogenate mitochondrial genetics in m.3243A>G-related myopathy

Tiago Bernardino Gomes1,2, Charlotte Warren1, Valeria Di Leo1, Jordan Childs1,3, Grainne Gorman1,2, Doug M Turnbull1, Amy E Vincent1

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom; 3Centre for Doctoral Training in Cloud Computing and Big Data, Newcastle upon Tyne, United Kingdom

Bibliography
Bernardino Gomes, T. (2019). The best care for children with facioscapulohumeral dystrophy. Dev Med Child Neurol, 61(8), 865. doi:10.1111/dmcn.14158
Bernardino Gomes, T. M., Ng, Y. S., Pickett, S. J., Turnbull, D. M., & Vincent, A. E. (2021). Mitochondrial DNA disorders: From pathogenic variants to preventing transmission. Hum Mol Genet. doi:10.1093/hmg/ddab156
Horrigan, J., Gomes, T. B., Snape, M., Nikolenko, N., McMorn, A., Evans, S., . . . Lochmuller, H. (2020). A Phase 2 Study of AMO-02 (Tideglusib) in Congenital and Childhood-Onset Myotonic Dystrophy Type 1 (DM1). Pediatric Neurology, 112, 84-93. doi:10.1016/j.pediatrneurol.2020.08.001
Leo, V. D., Lawless, C., Roussel, M.-P., Gomes, T. B., Gorman, G. S., Russell, O. M., . . . Vincent, A. E. (2023). Strength training rescues mitochondrial dysfunction in skeletal muscle of patients with myotonic dystrophy type 1. medRxiv, 2023.2001.2020.23284552. doi:10.1101/2023.01.20.23284552


ID: 402
Clinical 2: natural history, biomarkers and outcome measures

Retrospective natural history of mitochondrial deoxyguanosine kinase deficiency: a worldwide cohort of 197 patients

E. Manzoni1,2, P. Gaignard3, L.D. Schlieben4,5, S. Carli1, M. Hirano6, D. Ronchi7, E. Gonzales8, M. Shimura9, K. Murayama9, Y. Okazaki10, I. Baric11, D. Ramadza11, D. Karall12, J. Mayr13, D. Martinelli14, C. La Morgia15,16, G.A. Primiano17,18, R. Santer19, S. Servidei17,18, C. Bris20, A. Cano21, F. Furlan22, S. Gasperini23, N. Laborde24, C. Lamperti25, D. Lenz26, M. Mancuso27, F. Menni22, O. Musumeci28, V. Nesbitt29, E. Procopio30, C. Rouzier31, C. Staufner26, J.W. Taanman32, G. Tal33, C. Ticci30, V. Carelli15,16, V. Procaccio20, H. Prokisch4,5, C. Garone1,2

1Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna; 2IRCCS Istituto delle Scienze Neurologiche, Neuropsichiatria dell’età pediatrica, Bologna; 3Department of Biochemistry, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, France; 4School of Medicine, Institute of Human Genetics, Technical University of Munich,Germany; 5Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany; 6H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; 7Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 8Pediatric Hepatology and Pediatric Liver Transplantation Unit, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France; 9Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-000, Japan; 10Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; 11Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia; 12Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria; 13University Children's Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; 14Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; 15Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 16IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 17Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.; 18Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.; 19Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; 20MitoLab, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute , Angers University Hospital, Angers, France; 21Centre de référence des maladies héréditaires du métabolisme, CHU la Timone Enfants, Marseille, France; 22Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Regional Clinical Center for expanded newborn screening, Milan, Italy; 23Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy.; 24Unité de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse, France; 25Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Neurological Institute "C. Besta", Milan, Italy; 26Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; 27Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa & AOUP, Italy; 28Unit of Neurology and Neuromuscular Disorders, Department of Clinical and experimental Medicine, University of Messina, Italy; 29Department of Paediatrics, Medical Sciences Division, Oxford University, Oxford OX3 9DU, UK; 30Metabolic Unit, Meyer Children's Hospital IRCCS, Florence, Italy; 31Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France; 32Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; 33Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel



ID: 315
Clinical 2: natural history, biomarkers and outcome measures

Tissue, molecular and metabolic changes in the liver of patients with Mitochondrial Neurogastrointestinal Encephalomyopathy

Elisa Boschetti1, Leonardo Caporali1, Irene Neri1, Claudio Fiorini2, Danara Ormanbekova2, Valeria Righi3, Roberto D'Angelo2, Carolina Malagelada4, Roberta Costa1, Giovanna Cenacchi1, Rita Rinaldi2, Antonietta D'Errico5, Maria Lucia Tardio5, Stefano Ratti1, Roberto De Giorgio6, Valerio Carelli1,2, Lucia Manzoli1

1Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna. Italy; 3Department of Life Quality Studies (QuVI), University of Bologna, Bologna, Italy; 4University Hospital Vall d'Hebron. Barcelona. Spain; 5IRCCS St. Orsola. Bologna. Italy; 6Department of Translational Medicine, University of Ferrara, Ferrara, Italy

Bibliography
1. Hirano M et al. and Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mi-tochondrial disorder. Neurology 44: 721–727, 1994. doi:10.1212/wnl.44.4.721

2. Hirano M et al Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE In-ternational Network. J Inherit Metab Dis 1–12, 2020. doi:10.1002/jimd.12300.

3. De Giorgio R et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol 80: 448–455, 2016. doi:10.1002/ana.24724


ID: 206
Clinical 2: natural history, biomarkers and outcome measures

Phenotyping mtDNA-related diseases in childhood: a cohort study of 150 patients

Anna Ardisssone, Giulia Ferrera, Costanza Lamperti, Valeria Tiranti, Daniele Ghezzi, Isabella Moroni, Eleonora Lamantea

Fondazione IRCCS Besta, Milan Italy

Bibliography
Please enter recent publications by the first author.
1. Mitochondrial epilepsy: a cross-sectional nationwide Italian survey.
Ticci C, Sicca F, Ardissone A, Bertini E, Carelli V, Diodato D, Di Vito L, Filosto M, La Morgia C, Lamperti C, Martinelli D, Moroni I, Musumeci O, Orsucci D, Pancheri E, Peverelli L, Primiano G, Rubegni A, Servidei S, Siciliano G, Simoncini C, Tonin P, Toscano A, Mancuso M, Santorelli FM.
Neurogenetics. 2020 Apr;21(2):87-96

2.ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy.
Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, Baratta S, Schöls L, Schüle R, Barboni P, Cascavilla ML, Maresca A, Capristo M, Ardissone A, Pareyson D, Cammarata G, Melzi L, Zeviani M, Peverelli L, Lamperti C, Marzoli SB, Fang M, Synofzik M, Ghezzi D, Carelli V, Taroni F.
Ann Neurol. 2020 Jul;88(1):18-32

3. A homozygous MRPL24 mutation causes a complex movement disorder and affects the mitoribosome assembly.
Di Nottia M, Marchese M, Verrigni D, Mutti CD, Torraco A, Oliva R, Fernandez-Vizarra E, Morani F, Trani G, Rizza T, Ghezzi D, Ardissone A, Nesti C, Vasco G, Zeviani M, Minczuk M, Bertini E, Santorelli FM, Carrozzo R.
Neurobiol Dis. 2020 Jul;141:104880


4.Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I.
Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, Lamantea E, Meisterknecht J, Spagnolo M, He L, Alameer S, Hakami F, Almehdar A, Ardissone A, Alston CL, McFarland R, Wittig I, Ghezzi D, Taylor RW.
EMBO Mol Med. 2020 Nov 6;12(11)


5.SARS-CoV-2 infection in patients with primary mitochondrial diseases: features and outcomes in Italy.
Mancuso M, La Morgia C, Lucia Valentino M, Ardissone A, Lamperti C, Procopio E, Garone C, Siciliano G, Musumeci O, Toscano A, Primiano G, Servidei S, Carelli V.
Mitochondrion. 2021 May;58:243-245


6.Movement Disorders in Children with a Mitochondrial Disease: A Cross-Sectional Survey from the Nationwide Italian Collaborative Network of Mitochondrial Diseases.
Ticci C, Orsucci D, Ardissone A, Bello L, Bertini E, Bonato I, Bruno C, Carelli V, Diodato D, Doccini S, Donati MA, Dosi C, Filosto M, Fiorillo C, La Morgia C, Lamperti C, Marchet S, Martinelli D, Minetti C, Moggio M, Mongini TE, Montano V, Moroni I, Musumeci O, Pancheri E, Pegoraro E, Primiano G, Procopio E, Rubegni A, Scalise R, Sciacco M, Servidei S, Siciliano G, Simoncini C, Tolomeo D, Tonin P, Toscano A, Tubili F, Mancuso M, Battini R, Santorelli FM.
J Clin Med. 2021 May 12;10(10):2063


7.Clinical, imaging, biochemical and molecular features in Leigh syndrome: a study from the Italian network of mitochondrial diseases.
Ardissone A, Bruno C, Diodato D, Donati A, Ghezzi D, Lamantea E, Lamperti C, Mancuso M, Martinelli D, Primiano G, Procopio E, Rubegni A, Santorelli F, Schiaffino MC, Servidei S, Tubili F, Bertini E, Moroni I.
Orphanet J Rare Dis. 2021 Oct 9;16(1):413

8. Kearns-Sayre syndrome: expanding spectrum of a "novel" mitochondrial leukomyeloencephalopathy.
Moscatelli M, Ardissone A (co-first author), Lamantea E, Zorzi G, Bruno C, Moroni I, Erbetta A, Chiapparini L.
Neurol Sci. 2022 Mar;43(3):2081-2084


ID: 262
Clinical 2: natural history, biomarkers and outcome measures

Carrier frequency of pathogenic and likely pathogenic variants in POLG in Eastern Norway

Linda Mathisen1, Erle Kristensen2,3, Siren Berland4, Helle Høyer5, Ying Sheng1, Trine Prescott5, Shamima Rahman6,7, Laurence A. Bindoff3,8,9, Omar Hikmat3,10

1Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; 2Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; 3Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; 4Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; 5Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway; 6Metabolic Unit, Great Ormond Street Hospital, London, UK.; 7Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.; 8Department of Neurology, Haukeland University Hospital, Bergen, Norway; 9Nasjonal kompetansetjeneste for medfødte stoffskiftesykdommer, Oslo University Hospital, Oslo, Norway; 10Department of Pediatrics, Haukeland University Hospital, Bergen, Norway



ID: 470
Clinical 2: natural history, biomarkers and outcome measures

Exercise testing and measurement of habitual physical activities in m.3243A>G-related Mitochondrial Disease

Renae J Stefanetti1,2, Sarah J Charman1, Alasdair P Blain1, Alexandra Bright1,2, Robert McFarland1,2, Yi Shiau Ng1,2, Gráinne S Gorman1,2

1Wellcome Centre for Mitochondrial Research. Clinical and Translational Research Institute. Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust

Bibliography
Cassidy S, Trenell M, Stefanetti RJ, Charman SJ, Barnes AC, Brosnahan N, McCombie L, Thom G, Peters C, Zhyzhneuskaya S, Leslie WS. Physical activity, inactivity and sleep during the Diabetes Remission Clinical Trial (DiRECT). Diabetic Medicine. 2022 Nov 18:e15010.

Abouhajar A, Alcock L, Bigirumurame T, Bradley P, Brown L, Campbell I, Del Din S, Faitg J, Falkous G, Gorman GS, Lakey R. Acipimox in Mitochondrial Myopathy (AIMM): study protocol for a randomised, double-blinded, placebo-controlled, adaptive design trial of the efficacy of acipimox in adult patients with mitochondrial myopathy. Trials. 2022 Dec;23(1):1-5.

Stefanetti RJ, Ng YS, Errington L, Blain AP, McFarland R, Gorman GS. L-arginine in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: a systematic review. Neurology. 2022 Jun 7;98(23):e2318-28.

Houghton D, Ng YS, Jackson MA, Stefanetti R, Hynd P, Mac Aogáin M, Stewart CJ, Lamb CA, Bright A, Feeney C, Newman J. Phase II Feasibility Study of the Efficacy, Tolerability, and Impact on the Gut Microbiome of a Low-Residue (Fiber) Diet in Adult Patients With Mitochondrial Disease. Gastro Hep Advances. 2022 Jan 1;1(4):666-77


ID: 568
Clinical 2: natural history, biomarkers and outcome measures

Leber’s hereditary optic neuropathy in females.

Giulia Amore1, Martina Romagnoli2, Michele Carbonelli1, Chiara La Morgia1,3, Valerio Carelli1,2

1Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy

Bibliography
1.Carelli V, D'Adamo P, Valentino ML, La Morgia C, Ross-Cisneros FN, Caporali L, Maresca A, Loguercio Polosa P, Barboni P, De Negri A, Sadun F, Karanjia R, Salomao SR, Berezovsky A, Chicani F, Moraes M, Moraes Filho M, Belfort Jr R, Sadun AA. Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain. 2016. mar; 139, e17.
2.Lopez Sanchez MIG, Kearns LS, Staffieri SE, Clarke L, McGuinness MB, Meteoukki W, Samuel S, Ruddle JB, Chen C, Fraser CL, Harrison J, Hewitt AW, Howell N, Mackey DA. Establishing risk of vision loss in Leber hereditary optic neuropathy. Am J Hum Genet. 2021 Nov 4;108(11):2159-2170. doi: 10.1016/j.ajhg.2021.09.015. Epub 2021 Oct 19. PMID: 34670133; PMCID: PMC8595929.


ID: 539
Clinical 2: natural history, biomarkers and outcome measures

Non-invasive tool for mitochondrial diseases diagnostics

Zuzana Korandová1,2, Eliška Koňaříková1, Petr Pecina1, Alena Pecinová1, Josef Houštěk1, Hana Hansíková2, Tomáš Honzík2, Tomáš Mráček1

1Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; 21st Faculty of medicine, Charles University, Prague, Czech Republic



ID: 333
Clinical 2: natural history, biomarkers and outcome measures

Obstetric history of women with m.3243A>G – a retrospective cohort study

Petra Kuikka, Hilkka Nikkinen, Kari Majamaa, Mika Henrik Martikainen

University of Oulu and Oulu University Hospital, Finland

Bibliography
n/a


ID: 429
Clinical 2: natural history, biomarkers and outcome measures

Clustering analysis with optical coherence tomography data in Leber hereditary optic neuropathy (LHON) patients by non-negative matrix factorization unsupervised learning technique

Martina Romagnoli1, Michele Carbonelli2, Giulia Amore2, Pietro D’Agati3, Piero Barboni4,5, Leonardo Caporali1, Claudio Fiorini1, Valerio Carelli1,2, Chiara La Morgia2,3

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna - Bologna (Italy); 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica - Bologna (Italy); 4Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele – Milan (Italy); 5Studio Oculistico d’Azeglio - Bologna (Italy)

Bibliography
Yu-Wai-Man P, Votruba M, Burte F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016 Dec;132(6):789-806.
Barboni P, Savini G, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber's hereditary optic neuropathy. Ophthalmology. 2005 Jan;112(1):120-6.
Balducci N, Savini G, Cascavilla ML, et al. Macular nerve fibre and ganglion cell layer changes in acute Leber's hereditary optic neuropathy. Br J Ophthalmol. 2016 Sep;100(9):1232-7.
Barboni P, Savini G, Feuer WJ, et al. Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol. 2012 Nov-Dec;22(6):985-91.
Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010 Jul 2;11:367.


ID: 135
Clinical 2: natural history, biomarkers and outcome measures

Leigh syndrome global patient registry - cure mito foundation

Sophia Zilber1, Kasey Woleben2, Danielle Boyce3, Kevin Freiert4, Courtney Boggs5, Souad Messahel6, Melinda Burnworth7, Titilola Afolabi8, Saima Kayani9

1Cure Mito Foundation, United States of America; 2Cure Mito Foundation, United States of America; 3Cure Mito Foundation, United States of America; Johns Hopkins University School of Medicine; 4Cure Mito Foundation, United States of America; 5Cure Mito Foundation, United States of America; 6Perot Foundation Neuroscience Transla-tional Research Center (PNTRC), The University of Texas Southwestern Medical Center O'Donnell Brain Institute; 7Midwestern University College of Pharmacy; 8Midwestern University College of Pharmacy; 9Cure Mito Foundation; The University of Texas Southwestern Medical Center



ID: 552
Clinical 2: natural history, biomarkers and outcome measures

Mitochondrial ATP synthase deficiency and its relationship with the urea cycle

Barbara Siri1, Diego Martinelli1, Giorgia Olivieri1, Sara Cairoli2, Bianca Goffredo2, Alessandra Torraco3, Rosalba Carrozzo3, Carlo Dionisi-Vici1

1Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy; 2Laboratory of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy; 3Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Bibliography
1.Dvorakova V, Magner M, Honzik T. Hyperammonemic crisis in a child with ATP synthase deficiency caused by mtDNA mutation m.8851T>C. Mol Genet Metab Rep. 2014;2:46. Published 2014 Dec 18.

2.Žigman T, Šikić K, Petković Ramadža D, et al. ATP synthase deficiency due to m.8528T>C mutation - a novel cause of severe neonatal hyperammonemia requiring hemodialysis. J Pediatr Endocrinol Metab. 2020;34(3):389-393. Published 2020 Nov 13.

3.Magner M, Dvorakova V, Tesarova M, et al. TMEM70 deficiency: long-term outcome of 48 patients [published correction appears in J Inherit Metab Dis. 2015 May;38(3):583-4. Morava-Kozicz, Eva [corrected to Morava, Eva]]. J Inherit Metab Dis. 2015;38(3):417-426.

4.Honzík T, Tesarová M, Mayr JA, et al. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch Dis Child. 2010;95(4):296-301.
5. Staretz-Chacham O, Wormser O, Manor E, Birk OS, Ferreira CR. TMEM70 deficiency: Novel mutation and hypercitrullinemia during metabolic decompensation. Am J Med Genet A. 2019;179(7):1293-1298.


ID: 289
Clinical 2: natural history, biomarkers and outcome measures

Quantifying ataxia in adult patients with primary mitochondrial disease

Jane Newman1,2,3,4, Lisa Alcock2,4, Harry Ingledew1, Silvia Del Din2,4, Aye-Myat Moe1,2,3,4, Yi Shiau Ng1,2,3,4

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2NIHR Newcastle Biomedical Research Centre, Newcastle University; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 4Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK



ID: 407
Clinical 2: natural history, biomarkers and outcome measures

Retrospective natural history study of MTRFR/C12orf65-related disorders

Catarina Olimpio1, Emma Harrison2, Chloe Seikus2, Allison Moore3, Heather Biggs2, Rita Horvath2

1East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; 2Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (add-tr.mitoteam@nhs.net); 3Hereditary Neuropathy Foundation, New York, NY, USA (https://www.hnf-cure.org/)



ID: 466
Clinical 2: natural history, biomarkers and outcome measures

Correlation of mitochondrial respiration in platelets, peripheral blood mononuclear cells and muscle fibres

Emil Westerlund1,2, Sigurður E. Marelsson1,3, Michael Karlsson4, Fredrik Sjövall1,5, Imen Chamkha1, Eleonor Åsander Frostner1, Johan Lundgren6, Vineta Fellman6, Erik A. Eklund6, Katarina Steding-Ehrenborg7, Niklas Darin8, Gesine Paul9, Magnus J. Hansson1, Johannes K. Ehinger1,10, Eskil Elmér1

1Lund University, Sweden; 2A&E Department, Kungälv Hospital, Kungälv, Sweden; 3Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland; 4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark; 5Skåne University Hospital, Department of Intensive- and perioperative Care, Malmö, Sweden; 6Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden; 7Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden; 8Department of Pediatrics, The Queen Silvia Children’s Hospital, University of Gothenburg, Gothenburg, Sweden; 9Lund University, Department of Clinical Sciences Lund, Translational Neurology Group and Wallenberg Center for Molecular Medicine, Lund, Sweden; 10Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Lund, Sweden



ID: 154
Clinical 2: natural history, biomarkers and outcome measures

Epidemiology and the natural history of POLG disease in Norway

Erle Kristensen1,2, Linda Mathisen3, Siren Berland4, Claus Klingenberg5,6, Eylert Brodtkorb7,8, Magnhild Rasmussen9,10, Trine Tangeraas11, Yngve Thomas Bliksrud1, Shamima Rahman12,13, Laurence Bindoff11,14, Omar Hikmat2,15

1Department of Medical Biochemistry, Oslo University Hospital, Norway; 2Department of Clinical Medicine (K1), University of Bergen, Norway; 3Department of Medical Genetics, Oslo University Hospital, Norway; 4Department of Medical Genetics, Haukeland University Hospital, Norway; 5Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, Norway; 6Department of Paediatrics, University Hospital of North Norway, Norway; 7Department of Neurology, St. Olav’s Hospital, University Hospital, Norway; 8Department of Neuroscience and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology, Norway; 9Unit for Congenital and Hereditary Neuromuscular Conditions (EMAN), Department of Neurology, Oslo University Hospital, Norway; 10Department of Clinical Neurosciences for Children, Oslo University Hospital, Norway; 11Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway. European Reference Network for Hereditary Metabolic Disorders; 12Metabolic Unit, Great Ormond Street Hospital, London, UK. European Reference Network for Hereditary Metabolic Disorders; 13Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UK; 14Department of Neurology, Haukeland University Hospital, Norway; 15Department of Pediatrics, Haukeland University Hospital, Norway

Bibliography
1.Bendiksen Skogvold H, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Haarr D, et al. A pioneer study on human 3-nitropropionic acid intoxication: Contributions from metabolomics. J Appl Toxicol. 2022;42(5):818-29.
2.Böhm HO, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Rootwelt H, et al. Global Metabolomics Discovers Two Novel Biomarkers in Pyridoxine-Dependent Epilepsy Caused by ALDH7A1 Deficiency. Int J Mol Sci. 2022;23(24).
3.Tangeraas T, Ljungblad UW, Lutvica E, Kristensen E, Rowe AD, Bjørke-Monsen AL, et al. Vitamin B12 Deficiency (Un-)Detected Using Newborn Screening in Norway. Int J Neonatal Screen. 2023;9(1).
4.Jamali A, Kristensen E, Tangeraas T, Arntsen V, Sikiric A, Kupliauskiene G, et al. The spectrum of pyridoxine dependent epilepsy across the age span: A nationwide retrospective observational study. Epilepsy Research. 2023;190:107099.


ID: 529
Clinical 2: natural history, biomarkers and outcome measures

The evolving phenotypic profile of cardiomyopathy in patients with Barth syndrome

Carolyn Taylor1, Hilary J. Vernon2, Hani N. Sabbah3, David Brown4, Anthony Abbruscato4, Jim Carr4

1Medical University of South Carolina, Charleston, SC, United States of America; 2Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; 3Henry Ford Hospital, Detroit, MI, United States of America; 4Stealth BioTherapeutics, Inc, Needham, MA, United States of America



ID: 251
Clinical 2: natural history, biomarkers and outcome measures

True or false mitochondrial disorder?

Agnes Rotig1,3, Giulia Barcia1,2,3, Zahra Assouline2,3, Arnold Munnich1, Claire-Marine Dufeu-Bérat2,3, Nathalie Boddaert1,2, Manuel Schiff1,3, Jean-Paul Bonnefont1,2,3

1INSERM UMR1163, Université Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France; 2Departments of Pediatric and Genetics, Hôpital Necker-Enfants-Malades, Paris, France; 3CARAMMEL reference center for mitochondrial diseases



ID: 629
Clinical 2: natural history, biomarkers and outcome measures

An automated processing pipeline to perform probabilistic tractography of the anterior optic pathway applied to Leber’s hereditary optic neuropathy.

Giovanni Sighinolfi1,2, Laura Ludovica Gramegna1, Chiara La Morgia2, Alessandro Carrozzi1, Cristiana Fiscone1,2, Claudia Testa2,3, Raffaele Lodi1,2, Valerio Carelli1,2, Caterina Tonon1,2, David Neil Manners1

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 3Department of Physics and Astronomy, University of Bologna, Bologna, Italy

Bibliography
1. Manners DN, Gramegna LL, La Morgia C, Sighinolfi G, Fiscone C, Carbonelli M, Romagnoli M, Carelli V, Tonon C, Lodi R. Multishell Diffusion MR Tractography Yields Morphological and Microstructural Information of the Anterior Optic Pathway: A Proof-of-Concept Study in Patients with Leber's Hereditary Optic Neuropathy. Int J Environ Res Public Health. 2022 Jun 5;19(11):6914. doi: 10.3390/ijerph19116914
2. He J, Zhang F, Xie G, Yao S, Feng Y, Bastos DCA, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Hum Brain Mapp. 2021 Aug 15;42(12):3887-3904. doi: 10.1002/hbm.25472


ID: 200
Clinical 2: natural history, biomarkers and outcome measures

Natural history of Pearson syndrome: various clinical courses with changes in clinical phenotypes

Ayami Yoshimi1, Sarah Grünert2, Aron Fisch1, Miriam Erlacher1, Arndt Borkhardt3, Holger Cario4, Daniela Karall5, Charlotte Niemeyer1

1Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; 2Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany; 3Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany; 4Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany; 5Medical University of Innsbruck, Clinic for Paediatrics, Inherited Metabolic Disorders, Innsbruck, Austria

Bibliography
,


ID: 494
Clinical 2: natural history, biomarkers and outcome measures

Phenotype and natural history of pantothenate kinase-associated neurodegeneration (PKAN)

Vassilena Iankova1, Ivan Karin1, Boriana Büchner1, Thomas Klopstock1,2,3

1Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany; 2German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 3Munich Cluster for Systems Neurology, Munich, Germany



ID: 575
Clinical 2: natural history, biomarkers and outcome measures

RARS2 disease’s morbidity and mortality correlate with the severity of brain involvement

R Restuccia1,2, L Licchetta3,4, S Resciniti1, F Ferraresi1, E Santi1, L Di Vito3,4, R Minardi4, E Ricci2, V Di Pisa2, F Palombo4, F Bisulli3,4, DM Cordelli1,2, P Tinuper3,4, V Carelli3,4, C Garone1,2

1Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Neuropsichiatria dell’età pediatrica, Bologna, Italy; 3Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, Bologna, Italy; 4IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy



ID: 172
Clinical 2: natural history, biomarkers and outcome measures

A new non-invasive diagnostic method for detection of pathogenic mitochondrial DNA variants using faecal-derived DNA samples.

Charlotte Warren1, Isabel Barrow1,2, Helen Tuppen1, Laura Brown1, Clare Massarella1, David Houghton1, Laura Greaves1, Robert McFarland1,2, Gráinne Gorman1,2

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute; NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; 2Department of Neurosciences, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne NE2 4HH, UK



ID: 235
Clinical 2: natural history, biomarkers and outcome measures

Complex V assembly intermediates in human muscle from patient with suspected mitochondrial disease - Potential insights into disease mechanisms.

Amanda Lam1,2,3, Robert Winter1,2,3, Simon Heales1,2,4

1Neurometabolic Unit, NHNN, University College London Hospitals; 2Chemical Pathology Laboratory, Great Ormond Street Hospital for Children; 3Queen Square Institute of Neurology, University College London; 4Great Ormond Street Institute of Child Health, University College London

Bibliography
Poole OV, et al., 2019 Adult-onset Leigh syndrome linked to the novel stop codon mutation m.6579G>A in MT-CO1. Mitochondrion. 2019 Jul;47:294-297.

Bugiardini E et al., 2020 Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations. Neurol Genet. 2020 Jan 7;6(1):e381.

Keshavan N., (2020) The natural history of infantile mitochondrial DNA depletion syndrome due to RRM2B deficiency. Genet Med. 2020 Jan;22(1):199-209.

Forny P et al., 2021 Diagnosing Mitochondrial Disorders Remains Challenging in the Omics Era. Neurol Genet. 2021 May 25;7(3):e597.

Schober FA, et al., 2022 Pathogenic SLC25A26 variants impair SAH transport activity causing mitochondrial disease. Hum Mol Genet. 2022 Jun 22;31(12):2049-2062.

Kaiyrzhanov R et al., 2022 Bi-allelic LETM1 variants perturb mitochondrial ion homeostasis leading to a clinical spectrum with predominant nervous system involvement. Am J Hum Genet. 2022 Sep 1;109(9):1692-1712.


ID: 219
Clinical 2: natural history, biomarkers and outcome measures

Prolonged gastrointestinal transit times in mitochondrial disease – a case control study

Simone Rask Nielsen1,2, Anne-Marie Wegeberg2,3, Donghua Liao2,3, Asbjørn Mohr Drewes2,3, Inge Søkilde Pedersen2,4, Anja Lisbeth Frederiksen1,2, Christina Brock2,3

1Dept. of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; 2Dept.of Clinical Medicine, Aalborg University, Aalborg, Denmark; 3Mech-Sense, Dept. of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; 4Dept. of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark

Bibliography
Bone Deformities and Kidney Failure: Coincidence of PHEX-Related Hypophosphatemic Rickets and m.3243A>G Mitochondrial Disease. Nielsen SR, Hansen SG, Bistrup C, Brusgaard K, Frederiksen AL. Calcif Tissue Int.2022 Dec;111(6):641-645

FGF21 and glycemic control in patients with T1D. Rosell Rask S, Krarup Hansen T, Bjerre M. Endocrine 2019 Aug 65(3): 550-557


ID: 129
Clinical 2: natural history, biomarkers and outcome measures

Rethinking mitochondrial diabetes: a multifaceted disease entity

Chiara Pizzamiglio1,2, Niki Margari3, Iwona Skorupinska2, Antonio Borges Neves3, Danna Nitzani3, Michael G. Hanna1,2, Umasuthan Srirangalingam3, Robert D.S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Endocrinology Department, University College London Hospital, London, UK



ID: 583
Clinical 2: natural history, biomarkers and outcome measures

Therapeutic intervention in Leber Hereditary Optic Neuropathy: later is better?

Martina Romagnoli1, Giulia Amore2, Pietro D’Agati3, Piero Barboni4,5, Valerio Carelli1,2, Chiara La Morgia2,3, Michele Carbonelli2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna - Bologna (Italy); 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica - Bologna (Italy); 4Department ofOphthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele – Milan (Italy); 5Studio Oculistico d’Azeglio - Bologna (Italy)

Bibliography
Subramanian PS, Newman NJ, Moster M, et al. Study design and baseline characteristics for the REFLECT gene therapy trial of m.11778G>A/ND4-LHON. BMJ Open Ophthalmology 2022;7:e001158. doi:10.1136/bmjophth-2022-001158.

Catarino CB, von Livonius B, Priglinger C, Banik R, Matloob S, Tamhankar MA, et al. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2020;40(4):558-65.


ID: 645
Clinical 2: natural history, biomarkers and outcome measures

Neurofilament light chain – an emerging biomarker in mitochondrial disease

Alessandra Maresca1, Valerio Carelli1,2, Monica Moresco1, Chiara La Morgia1,2, Maria Lucia Valentino1,2, Laurence Bindoff3, Kristin Varhaug4,5

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.; 2Department of Biomedical and Neuromotor Sciences, University of Bologna,; 3Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; 4Dept. of Neurology, Haukeland University Hospital, Norway; 5Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway



ID: 450
Inflammation and Immunity as mitochondrial contributor to pathology

Assessing the role of mtdsRNA as a trigger for neuroinflammation in a mouse model of Leigh syndrome

Mònica Girona1, Melania González-Torres1, Patricia Prada-Dacasa1, Patrizia Bianchi1, Elisenda Sanz1,2, Albert Quintana1,2

1Institute of Neurosciences, Autonomous University of Barcelona, Barcelona, Spain; 2Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain



ID: 406
Inflammation and Immunity as mitochondrial contributor to pathology

Concerted cell-specific neuronal programs drive neurodegeneration in Leigh Syndrome

Albert Quintana

Universitat Autònoma de Barcelona, Spain

Bibliography
* Microglial response promotes neurodegeneration in the Ndufs4 KO mouse model of Leigh syndrome. Aguilar K, Comes G, Canal C, Quintana A, Sanz E, Hidalgo J.
Glia. 2022 Nov;70(11):2032-2044. doi: 10.1002/glia.24234.

* Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. van de Wal MAE, Adjobo-Hermans MJW, Keijer J, Schirris TJJ, Homberg JR, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Brain. 2022 Mar 29;145(1):45-63. doi: 10.1093/brain/awab426.

* Mitochondria-Induced Immune Response as a Trigger for Neurodegeneration: A Pathogen from Within. Luna-Sánchez M, Bianchi P, Quintana A. Int J Mol Sci. 2021 Aug 7;22(16):8523. doi: 10.3390/ijms22168523.

* Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome. Bolea I, Gella A, Sanz E, Prada-Dacasa P, Menardy F, Bard AM, Machuca-Márquez P, Eraso-Pichot A, Mòdol-Caballero G, Navarro X, Kalume F, Quintana A. Elife. 2019 Aug 12;8:e47163. doi: 10.7554/eLife.47163.

* Mitochondrial Proteome of Affected Glutamatergic Neurons in a Mouse Model of Leigh Syndrome.
Gella A, Prada-Dacasa P, Carrascal M, Urpi A, González-Torres M, Abian J, Sanz E, Quintana A. Front Cell Dev Biol. 2020 Jul 28;8:660. doi: 10.3389/fcell.2020.00660. eCollection 2020.


ID: 526
Inflammation and Immunity as mitochondrial contributor to pathology

Parkinson’s disease genes converge at the mitochondria-lysosome interface to promote inflammatory cell death

Jack Collier, Mai Nguyen, Sidong Huang, Heidi McBride

McGill University, Canada

Bibliography
Collier JJ, Olahova M, McWilliams TG, Taylor RW. Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends in Neurosciences. 2023;46(2):137-152.

Collier JJ, Guissart C, Olahova M, Sasorith S, Piron-Prunier F, Suomi F, Zhang D, Martinez-Lopez N, Leboucq N, Bahr A, Azzarello-Burri S, Reich S, Schols L, Polvikoski TM, Meyer P, Larrieu L, Schaefer AM, Alsaif HS, Alyamani S, Zuchner S, Barbosa IA, Deshpande C, Pyle A, Rauch A, Synofzik M, Alkuraya FS, Rivier F, Ryten M, McFarland R, Delahodde A, McWilliams TG, Koenig M, Taylor RW. Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. New England Journal of Medicine. 2021;384(25):2406-2417.

Collier JJ, Suomi F, Olahova M, McWilliams TG, Taylor RW. Emerging roles of ATG7 in human health and disease. EMBO Molecular Medicine. 2021;13(12)e14824.

Thompson K*, Collier JJ*, Glasgow RIC, Robertson FM, Pyle A, Alston CL, Blakely EL, Olahova M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. Journal of Inherited Metabolic Disorders 2020;43:36-50. Review. *Co-first authors

Nolden KA, Egner JM, Collier JJ, Russell OM, Alston CL, Harwig MC, Widlansky ME, Sasorith S, Barbosa IA, Douglas AG, Baptista J, Walker M, Donnelly DE, Morris AA, Tan HJ, Kurian MA,Gorman K, Mordekar S, Deshpande C, Samanta R, McFarland R, Hill RB, Taylor RW, Olahova M. Novel DNM1L variants impair mitochondrial dynamics through divergent mechanisms. Life SciAlliance. 2022;5(12).

Olahova M, Peter B, Diaz H, Szilagyi Z, Sommerville EW, Blakely EL, Collier JJ, Stránecký V, Hartmannová H, Bleyer AJ, McBride KL, Bowden SA, Korandová Z, Pecinová A, Ropers H-H, Kahrizi K, Najmabadi H, Tarnopolsky M, Brady LI, Weaver N, Prada CE, Õunap K, Wojcik MH, Pajusalu S, Syeda SB, Pais L, Estrella EA, Bruels CC, Kunkel LM, Kang PB, Mráček T, Kmoch S, Gorman G, Falkenberg M, Gustafsson C, Taylor RW. Mutations in POLRMT cause a spectrum of neurological phenotypes through impaired mitochondrial transcription. Nature Communications 2021;12,1135

Olahova M, Ceccatelli Berti C, Collier JJ, Alston CL, Jameson E, Jones SA, Edwards N, He L, Chinnery PF, Horvath R, Goffrini P, Taylor RW, Sayer JA. Molecular genetic investigations identify new clinical phenotypes associated with BCS1L-related mitochondrial disease. Human Molecular Genetics 2019;28:3766-76.


ID: 642
Inflammation and Immunity as mitochondrial contributor to pathology

[18F]ROStrace PET as a biomarker of mitochondria-induced neuroinflammation in the prodromal phase of Parkinson’s disease mouse models

Yi Zhu1, Anthony Young2, Neha Kohli1, Josh Jose1, Nisha Patel1, Hsaioju Lee2, Shihong Li2, Guilong Tian2, Eric Marsh1, Michael Robinson1, Robert Doot2, Douglas Wallace1, Robert Mach2, Meagan Joy McManus1

1Children's Hospital of Philadelphia, United States of America; 2University of Pennsylvania, United States of America

Bibliography
1.Hsieh CJ, Hou C, Zhu Y, Lee JY, Kohli N, Gallagher E, Xu K, Lee H, Li S, McManus MJ, Mach RH. [18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer's disease pathology in APP/PS1 mice. EJNMMI Res. 2022 Jul 27;12(1):43.


ID: 651
Inflammation and Immunity as mitochondrial contributor to pathology

Modulation of immune cell activation and differentiation by mitochondrial nicotinamide adenine dinucleotide levels

Aurea Oliva Herrero1,2, Andrea Alonso Gomez1,2, Javier Traba1,2

1Instituto Universitario de Biología Molecular – UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain



ID: 257
Inflammation and Immunity as mitochondrial contributor to pathology

MtDNA replication stress and innate immune signalling

Dusanka Milenkovic, Amir Bahat, Eileen Cors, Mabel Barnett, Thomas Langer

Max Planck Institute for Biology of Ageing, Germany

Bibliography
Misic J, Milenkovic D. Methods Mol Biol. 2023;2615:219-228.Studying Mitochondrial Nucleic Acid Synthesis Utilizing Intact Isolated Mitochondria.

Misic J, Milenkovic D, Al-Behadili A, Xie X, Jiang M, Jiang S, Filograna R, Koolmeister C, Siira SJ, Jenninger L, Filipovska A, Clausen AR, Caporali L, Valentino ML, La Morgia C, Carelli V, Nicholls TJ, Wredenberg A, Falkenberg M, Larsson NG. Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion.
Nucleic Acids Res. 2022 Aug 26;50(15):8749-8766.

Milenkovic D, Sanz-Moreno A, Calzada-Wack J, Rathkolb B, Veronica Amarie O, Gerlini R, Aguilar-Pimentel A, Misic J, Simard ML, Wolf E, Fuchs H, Gailus-Durner V, de Angelis MH, Larsson NG.Mice lacking the mitochondrial exonuclease MGME1 develop inflammatory kidney disease with glomerular dysfunction. PLoS Genet. 2022 May 9;18(5):e1010190.

Sprenger HG, MacVicar T, Bahat A, Fiedler KU, Hermans S, Ehrentraut D, Ried K, Milenkovic D, Bonekamp N, Larsson NG, Nolte H, Giavalisco P, Langer T.Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity. Nat Metab. 2021 May;3(5):636-650.

Matic S, Jiang M, Nicholls TJ, Uhler JP, Dirksen-Schwanenland C, Polosa PL, Simard ML, Li X, Atanassov I, Rackham O, Filipovska A, Stewart JB, Falkenberg M, Larsson NG, Milenkovic D.Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun. 2018 Mar 23;9(1):1202.


ID: 241
Inflammation and Immunity as mitochondrial contributor to pathology

Inflammatory cardiomyopathy and heart failure caused by impaired inner membrane integrity

Erminia Donnarumma1, Michael Kohlhaas2, Elodie Vimont1, Marcio Ribeiro1, Etienne Kornobis3, Thibault Chaze4, Mariette Matondo4, Christoph Maack2, Timothy Wai1

1Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France; 2Department of Translational Research, Comprehensive Heart Failure Center (CHFC), Medical Clinic 1, University ClinicWürzburg,Würzburg, Germany; 3Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France; 4Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France

Bibliography
Donnarumma, E., Kohlhaas, M., Vimont, E., Kornobis, E., Chaze, T., Gianetto, Q.G., Matondo, M., Moya-Nilges, M., Maack, C., and Wai, T. (2022). Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure. Nat. Commun. 13, 6634. 10.1038/s41467-022-34316-3.


ID: 650
Inflammation and Immunity as mitochondrial contributor to pathology

Lack of SIRT3 results in a constitutive IFNbeta release and protects against viral infection

Carolina Meroño Ortega1,2, Yara Cuesta Valero1,2, Marta Pascual Fernández1,2, Natalia García Acosta1,2, Javier Traba Domínguez1,2

1Instituto Universitario de Biología Molecular – UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain



ID: 372
Inflammation and Immunity as mitochondrial contributor to pathology

Mitochondrial DNA variation alters cell-mediated and humoral innate immune responses

Tiina Susanna Salminen1, Laura Vesala1, Yuliya Basikhina1, Megan Kutzer2, Tea Tuomela1, Katy Monteith2, Ryan Lucas2, Arun Prakash2, Pedro Vale2

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK

Bibliography
Valanne, S., Vesala, L., Maasdorp, M., Salminen T.S., and Rämet, M. 2022: The Drosophila Toll pathway in innate immunity – from the core pathway towards effector functions. J Immunol 2022; 209:1817-1825; doi: 10.4049/jimmunol.2200476

Anderson L., Camus M.F., Monteith K.M., Salminen T.S. and Vale P.F. 2022: Variation in mitochondrial DNA affects locomotor activity and sleep in Drosophila melanogaster. Heredity, 129, pages 225–232 https://doi.org/10.1038/s41437-022-00554-w

Salminen T.S. & Vale P.F. 2020: Drosophila as a model system to investigate the effects of mitochondrial variation on innate immunity. Front. Immunol. 11:521.doi: 10.3389/fimmu.2020.00521

Valanne S., Järvelä-Stölting M., Harjula S-K. E., Myllymäki H., Salminen T.S. & Rämet M. 2020: Osa-containing Brahma complex regulates innate immunity and metabolism in Drosophila. J. Immunol. DOI: https://doi.org/10.4049/jimmunol.1900571

Salminen T.S., Cannino G., Oliveira M.T., Lillsunde P., Jacobs H.T., Kaguni L.S. 2019: Lethal interaction of nuclear and mitochondrial genotypes in Drosophila melanogaster. G3: GENES, GENOMES, GENETICS 9 (7): 2225-2234: doi: https://doi.org/10.1534/g3.119.400315

Valanne S*., Salminen T.S.*, Järvelä-Stölting M., Vesala L. & Rämet M. 2019: Correction: Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster. PLoS Pathog 15(1): e1007504. DOI: 10.1371/journal.ppat.1008088 *Shared first authorship

Salminen T.S., Oliveira M.T., Cannino G., Lillsunde P., Jacobs H.T. & Kaguni L.S. 2017: Mitochondrial genotype modulates mtDNA copy number and organismal phenotype in Drosophila. Mitochondrion 34: 75-83.


ID: 177
Inflammation and Immunity as mitochondrial contributor to pathology

Iron homeostasis in mitochondria is critical for the survival of T cells

Ajay Kumar, Chenxian Yee, Afia Nkansah, Thomas Decoville, Emily Yarosz, Garrett Forgo, Young-Ah Seo, Thomas Sanderson, Cheong-Hee Chang

University of Michigan, United States of America



ID: 567
Inflammation and Immunity as mitochondrial contributor to pathology

Inflammatory conditions, redox status and c-miRNAs as potential predictors of vascular damage in type 2 diabetes mellitus patients.

Iryna Rusanova Rusanova1,2,3, Ayauly Duisenbek4, Gabriela C. Lopez-Armas5, José M. Aguilar Benítez6, María D. Avilés-Pérez3,7, Arailym Yessenbekova4, Nurzhanyat Ablaikhanova4, Germaine Escames2,3,8, Darío Acuña-Castroviejo2,3,8

1Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Spain; 2Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; 3Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; 4Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan; 5Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial; Guadalajara, Jalisco, México; 6Hospital de Alcalá la Real, Andalucia, Spain; 7Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, Granada, Spain.; 8Department of Physiology, Faculty of Medicine, University of Granada.

Bibliography
1. Acuña-Castroviejo, D.; Rahim, I.; Acuña-Fernández, C.; Fernández-Ortiz, M.; Solera-Marín, J.; Sayed, R.K.A.; Díaz-Casado, M.E.; Rusanova, I.; López, L.C.; Escames, G. Melatonin, clock genes and mitochondria in sepsis. Cell. Mol. Life Sci. 2017, 74, doi:10.1007/s00018-017-2610-1.
2. Rovira-Llopis, S.; Apostolova, N.; Bañuls, C.; Muntané, J.; Rocha, M.; Victor, V.M. Mitochondria, the NLRP3 inflammasome, and sirtuins in type 2 diabetes: New therapeutic targets. Antioxidants Redox Signal. 2018, 29, 749–791, doi:10.1089/ars.2017.7313.
3. Mensà, E.; Giuliani, A.; Matacchione, G.; Gurău, F.; Bonfigli, A.R.; Romagnoli, F.; De Luca, M.; Sabbatinelli, J.; Olivieri, F. Circulating miR-146a in healthy aging and type 2 diabetes: Age- and gender-specific trajectories. Mech. Ageing Dev. 2019, 180, 1–10, doi:10.1016/j.mad.2019.03.001.
4. Rusanova, I.; Fernández-Martínez, J.; Fernández-Ortiz, M.; Aranda-Martínez, P.; Escames, G.; García-García, F.J.; Mañas, L.; Acuña-Castroviejo, D. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp. Gerontol. 2019, 124, doi:10.1016/j.exger.2019.110637.
5. López-Armas, G. C., Yessenbekova, A., González-Castañeda, R. E., Arellano-Arteaga, K. J., Guerra-Librero, A., Ablaikhanova, N., Florido, J., Escames, G., Acuña-Castroviejo, D., & Rusanova, I. (2022 Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants 2022, 11.


ID: 664
Inflammation and Immunity as mitochondrial contributor to pathology

Loss of pathogenic mitochondrial tRNA mutations during the development of adaptive immune responses

Jingdian Zhang1,2, Camilla Koolmeister1,2, Jinming Han3, Roberta Filograna1,2, Martin Engvall4, Anna Wredenberg1,2,4, Gunilla B. Karlsson Hedestam5, Xaquin Castro Dopico5, Joanna Rorbach1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden; 2Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17165, Sweden.; 3Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm 17176, Sweden; 4Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17164, Sweden.; 5Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.



ID: 311
Inflammation and Immunity as mitochondrial contributor to pathology

Role of mitochondrial dynamics in abdominal aortic aneurysm

Alexis Richard1, Alicia Baptista-Vicente1, Maroua Eid1,2, Agnès Toutain-Barbelivien1, Linda Grimaud1, Bertrand Toutain1, Clément Tetaud1, Daniel Henrion1, Olivier Fouquet1,2, Laurent Loufrani1

1UMR CNRS 6015, INSERM U1083, MitoVasc Institute, CarMe Team, University of Angers, France; 2CHU of Angers, France



ID: 261
Inflammation and Immunity as mitochondrial contributor to pathology

Between benefit and harm – the effect of antibiotics-induced mitochondrial stress on innate immune responses

Tilman Tietz, Laura Vesala, Tea Tuomela, Mahmudul H. Tanvir, Tiina S. Salminen

Tampere University, Finland



ID: 232
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial thermo-profiles of diverse cell lines show reduction of thermo-stability at pathophysiological conditions

Mügen Terzioglu1, Kristo Veeroja1, Toni Montanen1, Maria Carretero-Junquera2, Tiina Susanna Salminen1, Takeharu Nagai3, Howard Jacobs1

1Tampere University, Finland; 2University of Copenhagen; 3Osaka University

Bibliography
Ignatenko O, Chilov D, Paetau I, de Miguel E, Jackson CB, Capin G, Paetau A, Terzioglu M, Euro L, Suomalainen A. Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy. Nat Commun. 2018 Jan 4;9(1):70. doi: 10.1038/s41467-017-01859-9. PMID: 29302033; PMCID: PMC5754366.


ID: 171
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial thermogenesis and thermal adaptation in fibroblasts

Kateryna Gaertner1, Mügen Terzioglu1, Riikka Tapanainen2, Jaakko Pohjoismäki2, Eric Dufour1, Sina Saari1

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland



ID: 507
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Effects of SIRT1 modulators in a pregnancy-induced mouse model of primary mitochondrial cardiomyopathy

Nicole M. Sayles1,2, Gabriella Casalena2, Holly E. Holmes3, Ryan W. Dellinger3, Hibiki Kawamata2, Giovanni Manfredi2

1Neuroscience Graduate Program, Will Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY 10065, USA; 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.; 3Elysium Health New York, New York, NY 10013, USA

Bibliography
Sayles, N. M., Southwell, N., McAvoy, K., Kim, K., Pesini, A., Anderson, C. J., Quinzii, C., Cloonan, S., Kawamata, H., & Manfredi. "Mutant CHCHD10 Causes an Extensive Metabolic Rewiring That Precedes OXPHOS Dysfunction in a Murine Model of Mitochondrial Cardiomyopathy." Cell Reports, 2022, https://doi.org/10.1016/j.celrep.2022.110475.


ID: 111
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance

Giulia Rossetti1,2,3, Judith Ermer1,2,3, Maike Stentenbach1,2,3, Stefan Siira1,2,3, Tara Richman1,2,3, Dusanka Milenkovic4, Kara Perks1,2,3, Laetitia Hughes1,2,3, Emma Jamieson5, Gulibaikelamu Xiafukaiti6, Natalie Ward7, Satoru Takahashi6, Nicola Gray8, Helena Viola9, Livia Hool9,10, Oliver Rackham1,2,11,12, Aleksandra Filipovska1,2,3,13,

1Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia; 2ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; 3Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia.; 4Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; 5Faculty of Health and Medical Sciences, Medical School, The Rural Clinical School of Western Australia, The University of Western Australia, Bunbury, Western Australia 6230, Australia; 6Department of Anatomy and Embryology, Faculty of Medicine, Laboratory Animal Resource Center (LARC), and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; 7Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, Western Australia, Australia; 8Australian National Phenome Centre, Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia 6150, Australia; 9School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia.; 10Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales 2010, Australia.; 11Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia; 12Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia.; 13Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.

Bibliography
1. Vos PD, Rossetti G, Mantegna JL, Siira SJ, Gandadireja AP, Bruce M, Raven SA, Khersonsky O, Fleishman SJ, Filipovska A, Rackham O. Computationally designed hyperactive Cas9 enzymes. Nat Commun. 2022 May 31;13(1):3023. doi: 10.1038/s41467-022-30598-9.

2. Rossetti, G., Ermer, J. A., Stentenbach, M., Siira, S. J., Richman, T. R., Milenkovic, D., Perks, K. L., Hughes, L. A., Jamieson, E., Xiafukaiti, G., Ward, N. C., Takahashi, S., Gray, N., Viola, H. M., Hool, L. C., Rackham, O., & Filipovska, A. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. Science Advances, 7(39), (2021). [eabi7514]. https://doi.org/10.1126/sciadv.abi7514

3. Richman, T. R., Ermer, J. A., Siira, S. J., Kuznetsova, I., Brosnan, C. A., Rossetti, G., Baker, J., Perks, K. L., Cserne Szappanos, H., Viola, H. M., Gray, N., Larance, M., Hool, L. C., Zuryn, S., Rackham, O. & Filipovska, A., Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan
Aging Cell (2021). 20, 7, e13408.

4. Ferreira, N., Andoniou, C. E., Perks, K.L., Ermer, J.A., Rudler, D.L., Rossetti, G.,
Periyakaruppiah, A., Wong, J. K. Y., Rackham, O., Noakes, P. G., Degli-Esposti, M. A., Filipovska, A. Murine cytomegalovirus infection exacerbates Complex IV deficiency in a model of mitochondrial disease. PLOS Genetics (2020) 16(3):e1008604.

5. Perks KL, Ferreira N, Ermer JA, Rudler DL, Richman TR, Rossetti G, Matthews VB, Ward NC, Rackham O, Filipovska A. Reduced mitochondrial translation prevents diet-induced metabolic dysfunction but not inflammation. EMBO J. (2019) Dec 16;38(24):e102155. doi: 10.15252/embj.2019102155. Epub 2019 Nov 13.PMID: 31721250

6. Ferreira, N, Perks, K.L., Rossetti, G., Rudler, D.L., Hughes, L., Ermer, J.A., Scott, L., Kuznetsova, I., Szappanos,H.C, Tull D., Yeoh, G.C., Hool, L.C., Filipovska, A. and Rackham, O. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation EMBO Journal (2019) 38(24):e102155.

7. Perks, K.L., Rossetti, G., Kuznetsova, I., Hughes, L., Ermer, J.A., Ferreira, N., Rudler, D., Spahr,H., Busch, J.D., Shearwood, A.M.-J., Viola, H.M, Siira, S.J., Milenković, D., Hool, L.C., Larsson, N.-G., Rackham, O. and Filipovska, A. PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Reports (2018) 23(1):127-142.

8. Siira, S.J., Rossetti, G., Richman, T.R., Perks, K.L., Ermer, J.E., Kuznetsova, I., Hughes, L., Shearwood, A.M.-J., Viola, H.M, Hool, L.C., Rackham, O. and Filipovska, A. Concerted regulation of mitochondrial and nuclear non-coding RNAs by a dual-targeted RNase Z. EMBO Reports (2018) pii: e46198. doi: 10.15252/embr.201846198

9. Butchart, L. C., Terrill, J. R., Rossetti, G., White, R., Filipovska, A., & Grounds, M. D. (2018). Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (Mdx) mouse muscles, and their response to taurine treatment. International Journal of Biochemistry and Cell Biology, 99(October 2017), 52–63. https://doi.org/10.1016/j.biocel.2018.03.016

10. Duff, R. M., Shearwood, A. M. J., Ermer, J., Rossetti, G., Gooding, R., Richman, T. R., Balasubramaniam, S., Thorburn, D.R., Rackham, O., Lamont, P.J., Filipovska, A. (2015). A mutation in MT-TW causes a tRNA processing defect and reduced mitochondrial function in a family with Leigh syndrome. Mitochondrion, 25, 113–119. https://doi.org/10.1016/j.mito.2015.10.008


ID: 609
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Metformin enhanced the Effect of Ketogenic Diet and low Dose of Cyclophosphamide in MYCN-amplified Neuroblastoma

Luca Catalano1, Sepideh Aminzadeh-Gohari1, Daniela Weber1, Julia Tevini1, Thapa Maheshwor2, Rodolphe Poupardin3, Sophia Derdak4, Victoria Stefan1, William Smiles1, Barbara Kofler1

1Paracelsus Medical University, Austria; 2Shuzhao Li Lab The Jackson Laboratory for Genomic Medicine, Farmington, USA; 3Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute; 4Core Facilities, Medical University of Vienna, Vienna, Austria

Bibliography
1.Oliynyk, G., et al., MYCN-enhanced Oxidative and Glycolytic Metabolism Reveals Vulnerabilities for Targeting Neuroblastoma. iScience, 2019. 21: 188-204.
2.Weber, D.D., et al., Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab, 2020. 33: 102-121.
3.Wheaton, W.W., et al., Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife, 2014. 3: e02242.
4.Ruiz-Perez, M.V., et al., Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma. iScience, 2021. 24(2): 102128.


ID: 293
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Respiratory complex I deficiency triggers integrated stress response upon metabolic challenge

Sara Milioni1,2, Manuela Sollazzo1, Claudia Zanna3, Ivana Kurelac2, Monica De Luise2, Luigi D'Angelo1, Erika Fernandez-Vizarra4, Anna Ghelli1, Giuseppe Gasparre2, Anna Maria Porcelli1, Luisa Iommarini1

1University of Bologna, Department of Pharmacy and Biotechnology, Italy; 2University of Bologna, Department of Medical and Surgical Sciences, Italy; 3University of Bologna, Department of Biomedical and Neuromotor Sciences, Italy; 4University of Padua, Department of Biomedical Sciences, Italy



ID: 288
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Stress responses in a novel mitochondrial myopathy mouse model

Sukru Anil Dogan

Bogazici University, Turkey



ID: 597
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The multifaceted role of GDF15 in mitochondrial muscle disease and its synergistic action with FGF21

Anastasiia Marmyleva1, Nahid Khan1, Liliya Euro1,2, Sonja Jansson1,2, Harding Luan3, Anu Suomalanen1,2

1University of Helsinki, Finland; 2Nadmed Ltd, Helsinki, Finland; 3NGM Biopharmaceuticals, South San Francisco, CA 94080, USA



ID: 596
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Red 630 light transcranial LED therapy (RL-TCLT) stimulates bioenergetic mitochondrial function, enhancing neuronal arborization and reducing hippocampal memory loss in aged SAMP8 mice.

Claudia Jara1, Italo Fuentes1, Matías Lira1,2, Debora Buendía3, Cheril Tapia-Rojas1,2

1Neurobiology of Aging Lab, CEBICEM, Universidad San Sebastián, Chile; 2Centro Ciencia & Vida, Fundación Ciencia & Vida, Chile.; 3Escuela de Ingeniería Civil Biomédica, Universidad de Valparaíso, Chile.



ID: 357
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitokine GDF15 correlates with differentially dietary fat intake in pregnancies with intrauterine growth restriction

Mariona Guitart-Mampel1,2,3, Sara Castro-Barquero4, Ana María Ruiz-Leon5, Judith Cantó-Santos1,2,3, Laura Valls-Roca1,2,3, Laia Farré-Tarrats1,2,3, Félix Andújar-Sánchez1,2,3, Lina Youssef3,4, Laura Garcia-Otero3,4, Kilian Vellvé3,4, Ana Sandra Hernández3,4, Ester Tobias1,2,3, Rosa Casas5, Fàtima Crispi3,4, Eduard Gratacós3,4, Francesc Cardellach1,2,3, Francesc Josep García-García1,2,3, Glòria Garrabou1,2,3

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), 08036 Barcelona, Spain; 2Internal Medicine Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; 3Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; 4BCNatal—Barcelona Centre for Maternal-Foetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; 5Medicine Department, Faculty of Medicine. CIBEROBN Obesity and Nutrition Physiopathology. Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB). University of Barcelona, Barcelona, Spain. Fundación Dieta Mediterránea, Barcelona, Spain,



ID: 179
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Telomerase is crucial for mitochondrial function in human cardiomyocytes

Shambhabi Chatterjee1,2,3, Megan Leach-Mehrwald1, Cheng-Kai Huang1, Ke Xiao1,3, Dongchao Lu1, Thomas Thum1,2,3, Christian Bär1,2,3

1Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany; 2REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; 3Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany

Bibliography
1.Lu D*, Chatterjee S*, Xiao K*, et al. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. (2022) European Heart Journal. doi: 10.1093/eurheartj/ehac337 *equal contribution

2.Olliges L, Chatterjee S, Jia L, et al. Multiformin-type azaphilones prevent SARS-CoV-2 binding to ACE2 receptor. (2022) Cells. doi: 10.3390/cells12010083

3.Bei Y†, Lu D†, Bär C†, Chatterjee S, et al. MiR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection (2022) Mol. Ther. doi: 10.1016/j.ymthe.2022.01.031 †equal contribution

4.Chatterjee S*, Hofer T*, Costa A, et. al. Telomerase therapy attenuates cardiotoxic effects of doxorubicin (2020) Mol. Ther. doi: 10.1016/j.ymthe.2020.12.035 *equal contribution

5.Lu D*, Chatterjee S*, Xiao K, et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes (2020) J Mol Cell Cardiol. 2020;148:46-49. doi: 10.1016/j.yjmcc.2020.08.017 *equal contribution


ID: 535
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Drug repositioning as a mitochondrial-targeted therapeutic approach for neurodegenerations associated with OPA1 mutations

Valentina Del Dotto1, Serena J. Aleo1, Alessandra Maresca2, Anna Ghelli3, Michela Rugolo3, Anna Maria Porcelli3, Enrico Baruffini4, Alessandra Baracca1, Valerio Carelli1,2, Claudia Zanna1

1Dept. Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3Dept. Pharmacy and Biotechnology (FABIT), University of Bologna, Italy; 4Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy



ID: 602
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondria hormesis delays aging and associated diseases in C. elegans impacting on key ferroptosis players

Alfonso Schiavi1, Eva Salveridou1, Vanessa Brinkmann1, Anjumara Shaik1, Ralph Menzel2, Sumana Kalyanasundaram3, Ståle Nygård3, Hilde Nilsen3, Natascia Ventura1,4

1Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; 2Humboldt-Universität zu Berlin, Berlin, Germany; 3Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Norway; 4Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Germany



ID: 230
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Cross-talk between mitochondria and immunoproteasomes upon mitochondrial dysfunction

Vyshnavi Tallapaneni, Agnieszka Chacinska

IMol Polish Academy of Sciences, Warsaw, Poland



ID: 585
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Diagnostic examination of kinase inhibitors by bioenergetic profiling of cancer cell models reveals off-target drug effects

Omar Torres-Quesada1,2, Sophie Strich2, Andreas Feichtner2,3, Selina Schwaighofer3, Carolina Doerrier4, Sabine Schmitt4, Erich Gnaiger4, Eduard Stefan2,3

1Division of Medical Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; 2Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria.; 3Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; 4Oroboros Instruments, Schoepfstrasse 18, 6020 Innsbruck, Austria

Bibliography
1.Cohen, P, Cross, D, Jänne, PA (2021). Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 20(7):551-569. https://doi.org/10.1038/s41573-021-00195-4
2.Zhang J, Yang PL, Gray NS (2009). Targeting cancer with small molecule kinase inhibitors. https://doi.org/10.1038/nrc2559
3.Ubersax JA, Ferrell JE, Jr. (2007). Mechanisms of specificity in protein phosphorylation. https://doi.org/10.1038/nrm2203
4.Wallace, DC Mitochondria and Cancer (2012). Nat. Rev. Cancer, 12, 685–698. https://doi.org/10.1038/nrc3365
5.Torres-Quesada O, Strich S, Stefan E (2022). Kinase perturbations redirect mitochondrial function in cancer. BEC 2022.13. https://doi.org/10.26124/bec:2022-0013
6.Torres-Quesada, O, Doerrier, C, Strich, S, Gnaiger, E, Stefan, E (2022). Physiological Cell Culture Media Tune Mitochondrial Bioenergetics and Drug Sensitivity in Cancer Cell Models. Cancers, 14, 3917. https://doi.org/10.3390/cancers14163917


ID: 121
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Leukemia cells undergo metabolic remodeling and become vulnerable to mitochondrial translation inhibition

Eva Nyvltova, Priyanka Maiti, Tyler A. Cunningham, Paola Manara, Matthew D. Wiefels, Jonathan H. Schatz, Antoni Barrientos, Flavia Fontanesi

University of Miami, United States of America



ID: 400
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Metabolic reprogramming of bone-marrow mesenchymal stem cells leads to impaired bone formation in m.3243A>G carriers

Paula Fernandez Guerra1,2, Ahmed Sayed1,2, Pernille Kjær1,2, Tina K. Nielsen1,2, Nicholas Ditzel1,2, Simone K. Terp3, Charlotte Ejersted1, Jesper S. Thomsen4, Herma Renkema5, Jan Smeitink5,6, John Vissing7, Per H. Andersen8, Kent Søe9,10,11, Thomas L. Andersen9,10,12, Moustapha Kassem1,2, Morten Frost1,2,13, Anja L. Frederiksen14

1Dept. of Endocrinology, Odense University Hospital (OUH), Odense, Denmark; 2The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Molecular Endocrinology, University of Southern (SDU), Denmark; 3Dept. of Molecular Diagnostics, Aalborg University Hospital, Aalborg; 4Department of Biomedicine, Aarhus University, Aarhus, Denmark; 5Khondrion BV, Nijmegen, The Netherlands; 6Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; 7Dept. of Neurology, Rigshospitalet, Copenhagen, Denmark; 8Dept. of Endocrinology, Hospital of Southwest, Esbjerg, Denmark; 9Dept. of Clinical Research, SDU, Denmark; 10Clinical Cell Biology, Dept. of Pathology, OUH, Denmark; 11Dept. of Molecular Medicine, SDU, Denmark; 12Dept. of Forensic Medicine, AU, Denmark; 13Steno Diabetes Centre Odense, OUH, Denmark; 14Dept. of Clinical Genetics, Aalborg University Hospital, Denmark



ID: 404
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Nucleus Associated Mitochondria (NAM) drive a cholesterol-mediated mechanism of Temozolomide resistance in glioblastoma cells

Daniela Strobbe1, Mardja Bueno2, Claudia De Vitis3, Danilo Faccenda4, Krenare Bruqi1, Elena Romano1, Gurtej K Dhoot4, Ivi J Bistrot5, Fabio Klamt5, Luana S Lenz2, Eduardo Cremonese Filippi-Chiela2,11, Pietro Ivo D'Urso6, Imogen Lally7, Laura Falasca8, Rita Mancini3, Federico Roncaroli9, Guido Lenz2, Michelangelo Campanella4,10

1Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy; 2Department of Biophysics, and Centre of Biotechnology, Universida de Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; 3Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00198 Rome, Italy; 4Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London; 5Department of Biochemistry, Universidade Federal do Rio Grandedo Sul (UFRGS), Porto Alegre, RS, Brazil; 6Department of Neurosurgery, Manchester Academic Health Science Centre, Northern Care Alliance, Salford UK; 7Department of Cellular Pathology, Northern Care Alliance, Salford UK; 8Laboratory of Electron Microscopy, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy; 9Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; 10UCL Consortium for Mitochondrial Research, University College London, WC1 6BT, London, UK; 11Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil

Bibliography
- Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. Published online 2018. doi:10.1016/j.jocn.2018.05.002
- Michaelsen SR, Christensen IJ, Grunnet K, et al. Clinical variables serve as prognostic factors in a model for survival from glioblastoma multiforme: an observational study of a cohort of consecutive non-selected patients from a single institution. BMC Cancer. 2013;13(1):402. doi:10.1186/1471-2407-13-402
- Colwell N, Larion M, Giles AJ, et al. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro Oncol. 2017;19(7):887-896. doi:10.1093/neuonc/now258
- Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumors. Nat Rev Clin Oncol. 2019;16(8):509-520. doi:10.1038/s41571-019-0177-5
- Desai R, East DA, Hardy L, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020;6(51). doi:10.1126/sciadv.abc9955
- Kim S, Koh H. Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus. J Bioenerg Biomembr. 2017;49. doi:10.1007/s10863-017-9705-0
- Strobbe D, Sharma S, Campanella M. Links between mitochondrial retrograde response and mitophagy in pathogenic cell signaling. Cell Mol Life Sci. 2021. doi:10.1007/s00018-021-03770-5


ID: 108
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Upregulation of COX4-2 via HIF-1α and replicative stress and impaired nuclear DNA damage response in mitochondrial COX4-1 deficiency

Liza Douiev (Charpak), Chaya Miller, Ann Saada (Reisch)

Hadassah Medical Center and Hebrew University of Jerusalem, Israel

Bibliography
Douiev L, Miller C, Keller G, Benyamini H, Abu-Libdeh B, Saada A. Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4-1 Deficiency. Int J Mol Sci. 2022;23(8):4149. Published 2022 Apr 8. doi:10.3390/ijms23084149

Douiev L, Miller C, Ruppo S, Benyamini H, Abu-Libdeh B, Saada A. Upregulation of COX4-2 via HIF-1α in Mitochondrial COX4-1 Deficiency. Cells. 2021;10(2):452. Published 2021 Feb 20. doi:10.3390/cells10020452

Douiev L, Saada A. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochim Biophys Acta Bioenerg. 2018;1859(9):893-900. doi:10.1016/j.bbabio.2018.06.004


ID: 221
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Analysis of mitochondrial function using novel detection reagents

Yasuka Komatsu1, Masaki Murai1, Naoko Yamamoto1, Masakazu Nakakubo1, Munetaka Ishiyama1, Toshitada Yoshihara2

1DOJINDO LABORATORIES; 2Gunma University



ID: 536
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial dynamics in cancer cells: relationship between the F1Fo-ATPase inhibitor IF1 and the mitochondrial the fusion-fission machinery

Claudia Zanna, Silvia Grillini, Riccardo Righetti, Valentina Del Dotto, Giancarlo Solaini, Alessandra Baracca

Department of Biomedical and Neuromotor Sciences, University of Bologna



ID: 463
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Melatonin overcomes resistance to CDDP treatment associated with the overexpression of the ATP-driven transmembrane efflux pumps

Alba López Rodríguez1,2,3, César Rodríguez Santana1,2,3, Laura Martínez Ruíz1,2,3, Javier Florido Ruiz1,2,3, Germaine Escames Rosa1,2,3

1Institute of Biotechnology; 2Biomedical Research Centre; 3University of Granada, Spain

Bibliography
Florido, J., Martínez-Ruíz, L., Rodríguez-Santana, C., López-Rodríguez, A., Hidalgo-Gutiérrez, A., Cottet-Rousselle, C., Lamarche, F., Schlattner, U., Guerra-Librero, A., Aranda-Martínez, P., Acuña-Castroviejo, D., López, L.C., and Escames, G. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. Journal of Pineal Research (2022). 73(3). https://doi.org/10.1111/jpi.12824


ID: 250
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Therapeutic capacity of exercise and melatonin against inflammation and mitochondrial dysfunction in the iMS-Bmal1-/- model of sarcopenia.

Yolanda Ramírez Casas1,2, José Fernández Martínez1,2, Paula Aranda Martínez1,2, Germaine Escames Rosa1,2,3, Darío Acuña Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Marisol Fernández-Ortiz; Ramy K. A. Sayed; Yolanda Román-Montoya; María Ángeles Rol deLama; José Fernández-Martínez; Yolanda Ramírez-Casas; Javier Florido-Ruiz; Iryna Rusanova;Germaine Escames; Darío Acuña-Castroviejo. Age and
Chronodisruption in Mouse Heart: Effectof the NLRP3 Inflammasome and Melatonin Therapy. International Journal of MolecularSciences 2022, 23, 6846.


Aranda-Martínez, P.; Fernández-Martínez, J.; Ramírez-Casas, Y.; Guerra-Librero, A.; Rodríguez-Santana, C.; Escames, G.; Acuña-Castroviejo, D. The Zebrafish, an Outstanding Model forBiomedical Research in the Field of Melatonin and Human Diseases. Int. J. Mol. Sci. 2022, 23,7438. https://doi.org/10.3390/ijms23137438


ID: 445
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Astrocytic CREB neuroprotection in experimental traumatic brain injury is associated with regulation of energetics and lipid metabolism: role of lactate

Irene Fernández González1, Abel Eraso Pichot2, Mariona Jové3, Manel Portero Otin3, Levi Wood4, Mercé Giralt1, Juan Manuel Hidalgo1, Luis Pardo1,5, Arantxa Golbano1, Roser Masgrau1, Elena Galea1,6, Elisenda Sanz1, Albert Quintana1

1Universitat Autònoma de Barcelona, Institut de Neurociències, Bellaterra, Spain; 2Neurocentre Magendie, Inserm U1215, Bordeaux, France; 3Universitat de Lleida, Institut de Recerca Biomèdica, Lleida, Spain; 4Georgia Institute of Technology, Georgia, United States of America; 5Beatson Institute for Cancer Research, Glasgow, United Kingdom; 6ICREA, Barcelona, Spain

Bibliography
Fernández-González, I., & Galea, E. (2022). Astrocyte strategies in the energy-efficient brain. Essays in biochemistry, EBC20220077. Advance online publication. https://doi.org/10.1042/EBC20220077

Navarro-Romero, A., Fernandez-Gonzalez, I., Riera, J., Montpeyo, M., Albert-Bayo, M., Lopez-Royo, T., Castillo-Sanchez, P., Carnicer-Caceres, C., Arranz-Amo, J. A., Castillo-Ribelles, L., Pradas, E., Casas, J., Vila, M., & Martinez-Vicente, M. (2022). Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinson's disease, 8(1), 126. https://doi.org/10.1038/s41531-022-00397-6


ID: 164
Metabolic stress responses in mitochondrial diseases, ageing and cancer

ROS induced mitochondrial hormesis partially protects from SGAs mitochondrial toxicity and cardiovascular disease.

Maria Monsalve1, Laura Doblado1, Gaurangkumar Patel1, Salvador Pérez2, Antonio Martínez3, Susana Cadenas4, Juan Sastre2, Francisco Abad Santos3, Ángel Luis García-Villalón5, Miriam Granado5

1Instituto de Investigaciones Biomédicas Alberto Sols, Spain; 2Universidad de Valencia; 3Instituto de Investigación Sanitaria La Princesa; 4CBMSO; 5Universidad Autónoma de Madrid



ID: 396
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial metabolism in breast cancer and cancer-associated adipose tissue

Aleksandra Jankovic1, Tamara Zakic1, Marta Budnar Soskic1, Biljana Srdic Galic2, Aleksandra Korac3, Bato Korac1,3

1Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Serbia; 2Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; 3Faculty of Biology, University of Belgrade, Belgrade, Serbia



ID: 197
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Reorganization of the energy metabolism: from colon polyps to colorectal cancer

Tuuli Käämbre1, Leenu Reinsalu1, Egle Rebane-Klemm Rebane-Klemm1, Igor Shevchuk1, Vahur Valvere2, Jelena Bogovskaja2, Marju Puurand1

1National Institute of Chemical Physics and Biophysics, Estonia; 2North Estonia Medical Centre, Oncology and Haematology Clinic, Tallinn, Estonia

Bibliography
1. M. Puurand, M., Tepp, K., Timohhina, N., Aid, J., Shevchuk, I., Chekulayev, V., Kaambre, T. (2019). Tubulin betaII and betaIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells 8, doi:10.3390/cells8030239 (2019).

2. Makrecka-Kuka, M., Liepinsh, E., Murray, A.J., Lemieux, H., Dambrova, M., Tepp, K., Puurand, M., Kaambre, T., Han, W.H., de Goede, P., et al. (2019). Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf), e13430, doi:10.1111/apha.13430 (2019).

3. Tepp, K., M. Puurand, N. Timohhina, J. Aid-Vanakova, I. Reile, I. Shevchuk, V. Chekulayev, M. Eimre, N. Peet, L. Kadaja, K. Paju and T. Kaambre (2020). "Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics." Biochim Biophys Acta Gen Subj 1864(4): 129523.doi: 10.1016/j.bbagen.2020.129523

4. Koit, A., N. Timohhina, L. Truu, V. Chekulayev, S. Gudlawar, I. Shevchuk, K. Lepik, L. Mallo, R. Kutner, V. Valvere and T. Kaambre (2020). "Metabolic and OXPHOS Activities Quantified by Temporal ex vivo Analysis Display Patient-Specific Metabolic Vulnerabilities in Human Breast Cancers." Front Oncol 10: 1053.doi:10.3389/fonc.2020.01053

5. Rebane-Klemm, E., L. Truu, L. Reinsalu, M. Puurand, I. Shevchuk, V. Chekulayev, N. Timohhina, K. Tepp, J. Bogovskaja, V. Afanasjev, K. Suurmaa, V. Valvere and T. Kaambre (2020). "Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps." Cancers (Basel) 12(4). doi: 10.3390/cancers12040815

6. Klepinin, A., S. Zhang, L. Klepinina, E. Rebane-Klemm, A. Terzic, T. Kaambre and P. Dzeja (2020). "Adenylate Kinase and Metabolic Signaling in Cancer Cells." Front Oncol 10: 660.doi: 10.3389/fonc.2020.00660

7. Klepinina, L., Klepinin, A., Truu, L., Chekulayev, V., Vija, H., Kuus, K., Teino, I., Pook, M., Maimets, T., and Kaambre, T. *(2021). Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS One 16, e0245348. doi: 10.1371/journal.pone.0245348

8. Reinsalu, L., Puurand, M., Chekulayev, V., Miller, S., Shevchuk, I., Tepp, K., Rebane-Klemm, E., Timohhina, N., Terasmaa, A., and Kaambre, T. *(2021). Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Frontiers in oncology 11, 698951. doi: 10.3389/fonc.2021.698951

9. Kaup, K.K., Toom, L., Truu, L., Miller, S., Puurand, M., Tepp, K., Kaambre, T., and Reile, I. (2021). A line-broadening free real-time (31)P pure shift NMR method for phosphometabolomic analysis. The Analyst 146, 5502-5507. doi: 10.1039/d1an01198g

10. Klepinin, A., Miller, S., Reile, I., Puurand, M., Rebane-Klemm, E., Klepinina, L., Vija, H., Zhang, S., Terzic, A., Dzeja, P., and Kaambre T*(2022). Stable Isotope Tracing Uncovers Reduced gamma/beta-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Frontiers in oncology 12, 892195. Doi: 10.3389/fonc.2022.892195

11. Tepp, K., Aid-Vanakova, J., Puurand, M., Timohhina, N., Reinsalu, L., Tein, K., Plaas, M., Shevchuk, I., Terasmaa, A., and Kaambre, T. (2022). Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles. Biochem Biophys Rep 30, 101250. Doi: 10.1016/j.bbrep.2022.101250
12. Gnaiger, E., Aasander, F., E, Abumrad, N., Acuna-Castroviejo, D., Adams, S., Ahn, B., Ali, S., Alves, M., Amati, F., Amoedo, N., et al. (2019). Mitochondrial respiratory states and rates. In MitoFit Preprint Arch (MitoFitPublication, MitoEAGLEPublication), pp. 40.

13. Mado, K., Chekulayev, V., Shevchuk, I., Puurand, M., Tepp, K., and Kaambre, T. (2019). On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 316, C657-C667.

14. Rodriguez-Enriquez, S., Kaambre, T., and Moreno-Sanchez, R. (2020). Editorial: Metabolic Plasticity of Cancer. Frontiers in oncology 10, 599723.

15. Ruiz-Meana, M., Boengler, K., Garcia-Dorado, D., Hausenloy, D.J., Kaambre, T., Kararigas, G., Perrino, C., Schulz, R., and Ytrehus, K. (2020). Ageing, sex, and cardioprotection. Br J Pharmacol 177, 5270-5286.

16. Zhang, S., Yamada, S., Park, S., Klepinin, A., Kaambre, T., Terzic, A., and Dzeja, P. (2021). Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis. Biochem Biophys Res Commun 546, 59-64.


ID: 419
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Role of NcoR1 and PGC-1 for mitochondrial dysfunction in skeletal muscle of ovariectomized mice

Jiyun Ahn, Tae Youl Ha

Korea Food Research Institute, Korea, Republic of (South Korea)

Bibliography
Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice, J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):1925-1939


ID: 431
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport

Laura Martinez Ruiz1,2,3, Javier Florido1,2,3, César Rodríguez Santana1,2, Alba López Rodríguez1,2, Germaine Escames1,2,3

1Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; 2Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; 3Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain

Bibliography
Martinez-Ruiz, L.; Florido, J.; Rodriguez-Santana, C.; López-Rodríguez, A.; Hidalgo-Gutiérrez, A.; Cottet-Rouselle, C.; Lamarche, F.; Schlattner, U.; Guerra-Librero, A.; Aranda-Martínez, P.; Acuña-Castroviejo, D.; López, LC.; Escames, G.. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. Journal of Pineal Research. 28/08/2022. ISSN 1600-079X


ID: 537
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Differences in life expectancy of rats with inherited high and low exercise capacity correlate with mitochondrial function in skeletal muscle

Estelle Heyne1, Lauren G. Koch2, Steven L. Britton3, Torsten Doenst1, Michael Schwarzer1

1University Hospital of Friedrich-Schiller-University Jena, Germany; 2The University of Toledo, Toledo, OH; 3University of Michigan, Ann Arbor, MI



ID: 395
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Modulation of the activity of human mitochondrial protease complex ClpXP as potential therapeutic strategy for cancer

Francesca Rizzo, Morena Miciaccia, Antonella Cormio, Savina Ferorelli, Maria Grazia Perrone, Antonio Scilimati, Paola Loguercio Polosa

University of Bari "Aldo Moro", Italy

Bibliography
1.Nouri, K. et al. Cell Death Dis 2020, 11, 841
2.Perrone, M.G. et al. Curr. Med. Chem. 2021, 28, 3287
3.Ishizawa, J. et al. Cancer Cell, 2019, 35, 721


ID: 437
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial respiratory function in peripheral blood cells across the human life span

Eleonor Åsander Frostner1, Johannes Ehinger1,2, Emil Westerlund1,3, Michael Karlsson4, Gesine Paul5, Fredrik Sjövall1,6, Eskil Elmér1

1Lund University, Department of Clinical Sciences Lund, Mitochondrial Medicine, Lund, Sweden; 2Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Lund, Sweden; 3A&E Department, Kungälv Hospital, Kungälv, Sweden; 4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark; 5Lund University, Department of Clinical Sciences Lund, Translational Neurology Group and Wallenberg Center for Molecular Medicine, Lund, Sweden; 6Skåne University Hospital, Department of Intensive- and perioperative Care, Malmö, Sweden

Bibliography
1. A. Trifunovic et al., Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423 (2004).
2. A. Trifunovic et al., Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102, 17993-17998 (2005).


ID: 607
Clinical 2: natural history, biomarkers and outcome measures

Diagnostic value of urine organic acid analysis for primary mitochondrial disorders

Tatiana Krylova, Marina Kurkina, Polina Baranova, Polina Tsygankova, Yulia Itkis, Ekaterina Zakharova

Research Centre for Medical Genetics, Russian Federation



ID: 240
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Exercise and melatonin counteract Bmal1 loss-dependent sarcopenia in mouse skeletal muscle by improving mitochondrial ultrastructure and function

José Fernández-Martínez1,2, Yolanda Ramírez-Casas1,2, Paula Aranda-Martínez1,2, Germaine Escames1,2,3, Darío Acuña-Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Fernández-Ortiz, M., Sayed, R. K. A., Román-Montoya, Y., de Lama MÁ, R., Fernández-Martínez, J., Ramírez-Casas, Y., . . . Acuña-Castroviejo, D. (2022). Age and Chronodisruption in Mouse Heart: Effect of the NLRP3 Inflammasome and Melatonin Therapy. Int J Mol Sci, 23(12). doi:10.3390/ijms23126846

Aranda-Martínez, P., Fernández-Martínez, J., Ramírez-Casas, Y., Guerra-Librero, A., Rodríguez-Santana, C., Escames, G., & Acuña-Castroviejo, D. (2022). The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci, 23(13). doi:10.3390/ijms23137438

Sayed, R. K., Fernández-Ortiz, M., Fernández-Martínez, J., Aranda Martínez, P., Guerra-Librero, A., Rodríguez-Santana, C., . . . Rusanova, I. (2021). The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants (Basel), 10(4). doi:10.3390/antiox10040524

Sayed, R. K. A., Fernández-Ortiz, M., Rahim, I., Fernández-Martínez, J., Aranda-Martínez, P., Rusanova, I., . . . Acuña-Castroviejo, D. (2021). The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage. Antioxidants (Basel), 10(8). doi:10.3390/antiox10081269

Sayed, R. K. A., Mokhtar, D. M., Fernández-Ortiz, M., Fernández-Martínez, J., Aranda-Martínez, P., Escames, G., & Acuña-Castroviejo, D. (2020). Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging (Albany NY), 12(13), 12648-12668. doi:10.18632/aging.103654

Fernández-Ortiz, M., Sayed, R. K. A., Fernández-Martínez, J., Cionfrini, A., Aranda-Martínez, P., Escames, G., . . . Acuña-Castroviejo, D. (2020). Melatonin/Nrf2/NLRP3 Connection in Mouse Heart Mitochondria during Aging. Antioxidants (Basel), 9(12). doi:10.3390/antiox9121187

Sayed, R. K. A., Fernández-Ortiz, M., Diaz-Casado, M. E., Aranda-Martínez, P., Fernández-Martínez, J., Guerra-Librero, A., . . . Acuña-Castroviejo, D. (2019). Lack of NLRP3 Inflammasome Activation Reduces Age-Dependent Sarcopenia and Mitochondrial Dysfunction, Favoring the Prophylactic Effect of Melatonin. J Gerontol A Biol Sci Med Sci, 74(11), 1699-1708. doi:10.1093/gerona/glz079

Rusanova, I., Fernández-Martínez, J., Fernández-Ortiz, M., Aranda-Martínez, P., Escames, G., García-García, F. J., . . . Acuña-Castroviejo, D. (2019). Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp Gerontol, 124, 110637. doi:10.1016/j.exger.2019.110637


ID: 619
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Uncovering the OXPHOS complexes' interdependence mechanism

Kristýna Čunátová1, Marek Vrbacký1, Guillermo Puertas-Frias1, Josef Houštěk1, Jiří Neužil2, Alena Pecinová1, Petr Pecina1, Tomáš Mráček1

1Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Czech Republic; 2Laboratory of Molecular Therapy of Cancer, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic

Bibliography
[1] K. Čunátová, D.P. Reguera, M. Vrbacký, E. Fernández-Vizarra, S. Ding, I.M. Fearnley, M. Zeviani, J. Houštěk, T. Mráček, P. Pecina, Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis, Cells, 10 (2021).


ID: 1658
Clinical 2: natural history, biomarkers and outcome measures

Challenging the norm – outcome measure selection for evaluating therapeutic response in patients with Primary Mitochondrial Myopathy after 12 weeks of treatment with REN001, a novel PPARδ agonist.

Lisa Alcock1,2, Renae J. Stefanetti2,3, Oliver Russell2,3, Alisdair P. Blain2,3, Jane Newman2,3,4, Naomi J.P. Thomas2,3,4, Charlotte Warren2,3, Huizhong Su2,3, Philip Brown5, David Houghton2,3, Heather Hunter5, Helen Tuppen2,3, Gavin Falkous4, Robert W. Taylor2,3,4, Albert Z. Lim2,3,4, Yi Shiau Ng2,3,4, Catherine Feeney2,3,4, Iwona Skorupinska6, Louise Germain7, Enrico Bugiardini6, Michael G. Hanna6, Robert McFarland2,3,4, Robert D.S. Pitceathly6,7, Lynn Rochester1,2,5, Gráinne S. Gorman2,3,4

1Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 5The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 6Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK



ID: 1100
Clinical 2: natural history, biomarkers and outcome measures

Indirect comparison of lenadogene nolparvovec gene therapy versus natural history in m.11778G>A MT-ND4 Leber hereditary optic neuropathy patients

Nancy J. Newman1, Mark L. Moster2, Valerio Carelli3, Patrick Yu-Wai-Man4, Valerie Biousse1, Prem S. Subramanian5, Catherine Vignal-Clermont6, An-Guor Wang7, Sean P. Donahue8, Bart P. Leroy9, Robert C. Sergott2, Thomas Klopstock10, Alfredo A. Sadun11, Gema Rebolleda Fernández12, Bart K. Chwalisz13, Rudrani Banik14, Magali Taiel15, José-Alain Sahel16

1Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA; 2Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 4Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 5Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA; 6Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 7Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan; 8Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; 9Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium; 10Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; 11Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA; 12Department of Ophthalmology, Alcala University, Madrid, Spain; 13Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA; 14Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 15GenSight Biologics, Paris, France; 16Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

Bibliography
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol. 2022 Sep 22:S1474-4422(22)00174-0. doi: 10.1016/S1474-4422(22)00174-0. Epub ahead of print. PMID: 36155660.

Yu-Wai-Man P, Newman NJ, Carelli V, La Morgia C, Biousse V, Bandello FM, Clermont CV, Campillo LC, Leruez S, Moster ML, Cestari DM, Foroozan R, Sadun A, Karanjia R, Jurkute N, Blouin L, Taiel M, Sahel JA; LHON REALITY Study Group. Natural history of patients with Leber hereditary optic neuropathy-results from the REALITY study. Eye (Lond). 2022 Apr;36(4):818-826. doi: 10.1038/s41433-021-01535-9. Epub 2021 Apr 28. PMID: 33911213; PMCID: PMC8956580.

Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol. 2021 May 24;12:662838. doi: 10.3389/fneur.2021.662838. PMID: 34108929; PMCID: PMC8181419.


ID: 1451
Clinical 2: natural history, biomarkers and outcome measures

The mitochondrial stress, brain imaging, and epigenetics study (MiSBIE)

Caroline Trumpff1, Anna S Monzel1, Catherine Kelly1, Kris Engelstad1, Shufang Li1, Kalpita Karan1, Gabriel Sturm1, Jeremy Michelson1, Mangesh Kurade1, Vincenzo Lauriola1, Sophia Tepler1, Grace Liu1, Peter Shapiro1, Robert-Paul Juster2, Stephanie Assuras1, Richard Sloan1, Michel Thiebaut de Schotten3, Tor Wager4, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2Université de Montréal, Canada; 3Université de Bordeaux, France; 4Dartmouth College, Uniter States of America

Bibliography
Picard et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 1;112(48):E6614-23 (2015) https://www.pnas.org/doi/full/10.1073/pnas.1515733112

Karan et al. Leukocyte cytokine responses in adult patients with mitochondrial DNA defects. J Mol Med 100, 963–971 (2022). https://doi.org/10.1007/s00109-022-02206-2

Picard and Shirihai. Mitochondrial signal transduction. Cell Metab 34(11):1620-1653 (2022) https://doi.org/10.1016/j.cmet.2022.10.008


ID: 1430
Inflammation and Immunity as mitochondrial contributor to pathology

Free cytosolic-mitochondrial DNA triggers a potent type-I Interferon response in Kearns–Sayre patients counteracted by mofetil mycophenolate

Michela Di Nottia1, Ivan Caiello2, Alessandra Torraco1, Martina Zoccola1, Fabrizio De Benedetti2, Carlo Dionisi-Vici3, Enrico Bertini4, Diego Martinelli3, Rosalba Carrozzo1

1Unit of Cellular Biology and Diagnosis of Mitochondrial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; 2Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 3Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Research Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy



ID: 1409
Inflammation and Immunity as mitochondrial contributor to pathology

Fumarate induces mtDNA release via mitochondrial-derived vesicles and drives innate immunity

Vincent Paupe1, Vincent Zecchini2, Christian Frezza2,3, Julien Prudent1

1Medical Research Council, MBU,University of Cambridge, UK; 2Medical Research Council Cancer Unit,University of Cambridge, UK; 3CECAD Research Centre, University of Cologne, Cologne, Germany

Bibliography
AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology.
Tilokani L, Russell FM, Hamilton S, Virga DM, Segawa M, Paupe V, Gruszczyk AV, Protasoni M, Tabara LC, Johnson M, Anand H, Murphy MP, Hardie DG, Polleux F, Prudent J.
Sci Adv. 2022 Nov 11;8(45):eabo7956. doi: 10.1126/sciadv.abo7956. Epub 2022 Nov 11. PMID: 36367943

Mitochondrial translation is required for sustained killing by cytotoxic T cells.
Lisci M, Barton PR, Randzavola LO, Ma CY, Marchingo JM, Cantrell DA, Paupe V, Prudent J, Stinchcombe JC, Griffiths GM.
Science. 2021 Oct 15;374(6565):eabe9977. doi: 10.1126/science.abe9977. Epub 2021 Oct 15.
PMID: 34648346

Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division.
Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H, Pogson JH, Zunino R, McBride HM, Prudent J.
Science. 2020 Mar 20;367(6484):1366-1371. doi: 10.1126/science.aax6089.
PMID: 32193326

SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, Shoubridge EA. EMBO Mol Med. 2016 Sep 1;8(9):1019-38. doi: 10.15252/emmm.201506159. Print 2016 Sep.
PMID: 27390132

CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter.
Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA.
Cell Metab. 2015 Jan 6;21(1):109-16. doi: 10.1016/j.cmet.2014.12.004.
PMID: 25565209


ID: 1209
Inflammation and Immunity as mitochondrial contributor to pathology

Impaired inflammatory response to lipopolysaccharide in fibroblasts from patients with long-chain fatty acid oxidation disorders

Signe Mosegaard1,2, Krishna Twayana3, Simone Denis1, Jeffrey Kroon4, Bauke Schomakers5, Michel van Weeghel5, Riekelt Houtkooper1, Rikke Olsen2, Christian Holm3

1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 2Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark; 3Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark; 4Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 5Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Bibliography
Mosegaard S*, Dipace G*, Bross P, Carlsen J, Gregersen N, Olsen RKJ. 2020. ”Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism”. International Journal of Molecular Sciences;21(11):3847. doi: 10.3390/ijms21113847.

Mosegaard S*, Bruun GH*, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. 2017. “An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency”. Molecular Genetics and Metabolism;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014.

Olsen RKJ*, Koňaříková E*, Giancaspero TA*, Mosegaard S*, Boczonadi V*, Mataković L*, ….. Barile M, Prokisch H. 2016. ”Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency”. American Journal of Human Genetics;98(6):1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

V.A. Yépez, M. Gusic, R. Kopajtich, C. Mertes, N.H. Smith, C.L. Alston, R. Ban, S. Beblo, R. Berutti, H. Blessing, E. Ciara, F. Distelmaier, P. Freisinger, J. Häberle, S.J. Hayflick, M. Hempel, Y.S. Itkis, Y. Kishita, T. Klopstock, T.D. Krylova, C. Lamperti, D. Lenz, C. Makowski, S. Mosegaard, M.F. Müller, G. Muñoz-Pujol, A. Nadel, A. Ohtake, Y. Okazaki, E. Procopio, T. Schwarzmayr, J. Smet, C. Staufner, S.L. Stenton, T.M. Strom, C. Terrile, F. Tort, R. Van Coster, A. Vanlander, M. Wagner, M. Xu, F. Fang, D. Ghezzi, J.A. Mayr, D. Piekutowska-Abramczuk, A. Ribes, A. Rötig, R.W. Taylor, S.B. Wortmann, K. Murayama, T. Meitinger, J. Gagneur, H. Prokisch, Clinical implementation of RNA sequencing for Mendelian disease diagnostics, Genome Med. 14 (2022) 38. https://doi.org/10.1186/s13073-022-01019-9.

Fogh S, Dipace G, Bie A, Veiga-da-Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. “Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria?” J Inherit Metab Dis. 2021 Sep;44(5):1215-1225. doi: 10.1002/jimd.12394.

Muru K., Reinson K., Künnapas K., Lilleväli H., Nochi Z., Mosegaard S., Pajusalu S., Olsen R. and Õunap K. “FLAD1 Asso-ciated Multiple Acyl-CoA Dehydrogenase Deficiency Identified by Newborn Screening.”. Molecular Genetics & Genomic Medicine;7(9). doi: 10.1002/mgg3.915.

García-Villoria J., de Azua B., Tort F., Mosegaard S., Matalonga L., Ugarteburu O., Teixidó L., Olsen R. and Ribes A. “FLAD1, a recently described gene associated to multiple acyl-CoA dehydrogenase deficiency (MADD) is mutated in a patient with myopathy, scoliosis and cataracts.”. Clinical Genetics;94(6):592-593. doi: 10.1111/cge.13452.

Auranen M., Paetau A., Piirilä P., Pohju A., Salmi T., Lamminen A., Thure H., Löfberg M., Mosegaard S., Olsen R., Tyni T. “FLAD1 gene mutation causes riboflavin responsive MADD disease”. Neuromuscular Disorders;27(6):581-584. doi: 10.1016/j.nmd.2017.03.003.


ID: 1413
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Functional characterisation of the human mitochondrial disaggregase, CLPB

Megan J Baker1, Alexander J Anderson1, Catherine S Palmer1, David R Thorburn2,3, Ann E Frazier2, Diana Stojanovski1

1Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville VIC 3010, Australia; 2Murdoch Children’s Research Institute, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville VIC 3052, Australia; 3Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Parkville VIC 3052, Australia



ID: 1381
Metabolic stress responses in mitochondrial diseases, ageing and cancer

High fat diet ameliorates the mitochondrial cardiomyopathy of CHCHD10 mutant mice

Hibiki Kawamata, Nneka Southwell, Nicole Sayles, Giovanni Manfredi

Weill Cornell Medicine, United States of America



ID: 1448
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitochondrial inhibitor IF1 has a dual role in cancer

Martina Grandi1, Cristina Gatto1, Simone Fabbian2, Natascia Tiso3, Francesco Argenton3, Massimo Bellanda2, Giancarlo Solaini1, Valentina Giorgio*1, Alessandra Baracca*1

1Department of Biomedical and Neuromotor Sciences, University of Bologna; 2Department of Chemical Science, University of Padova; 3Department of Biology, University of Padova, Padova

Bibliography
1. Galber, C; Fabbian, S; Gatto, C; Grandi, M; Carissimi, S; Acosta, MJ; Sgarbi, G; Tiso, N; Argenton, F; Solaini, G; Baracca, A; Bellanda, M; Giorgio,CELL DEATH & DISEASE, 2023, 14, pp. 1 - 19
2. Gatto, C; Grandi, M; Solaini, G; Baracca, A; Giorgio, V, FRONTIERS IN PHYSIOLOGY, 2022, 13, 917203, pp. 1 - 11
3. Galber C; Minervini G; Cannino G; Boldrin F; Petronilli V; Tosatto S; Lippe G; Giorgio V, CELL REPORTS, 2021, 35, 109111, pp. 1 - 14


ID: 657
Clinical 2: natural history, biomarkers and outcome measures

Tractography of the anterior optic pathway provides biomarkers of pathological change in Leber’s Hereditary Optic Neuropathy

David Neil Manners2,4, Giovanni Sighinolfi1,2, Laura Ludovica Gramegna1, Chiara La Morgia2, Alessandro Carrozzi1, Cristiana Fiscone1,2, Claudia Testa2,3, Raffaele Lodi1,2, Valerio Carelli1,2, Caterina Tonon1,2

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; 2IRCCS Instituto delle Scienze Neurologiche di Bologna, Bologna, Italy; 3Department of Physics and Astronomy, University of Bologna, Italy; 4Department of Life Quality Studies, University of Bologna

Bibliography
1 He J, et al. Hum Brain Mapp. 2021
2 Manners DN, et al. Int J Environ Res Public Health. 2022


ID: 661
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A novel role of Keap1/PGAM5 complex: ROS sensor for inducing mitophagy

Akbar Zeb1, Vinay Choubey1, Ruby Gupta1, Malle Kuum1, Dzhamilja Safiulina1, Annika Vaarmann1, Nana Gogichaishvili1, Mailis Liiv1, Ivar Ilves1, Kaido Tämm1, Vladimir Veksler2, Allen Kaasik1

1University of Tartu, Estonia; 2University Paris-Saclay, INSERM UMR-S, France

Bibliography
Akbar Zeb, Vinay Choubey, Ruby Gupta, Malle Kuum, Dzhamilja Safiulina, Annika Vaarmann, Nana Gogichaishvili, Mailis Liiv, Ivar Ilves, Kaido Tämm, Vladimir Veksler, Allen Kaasik,
A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy,
Redox Biology, Volume 48, 2021,102186, ISSN 2213-2317, https://doi.org/10.1016/j.redox.2021.102186.