Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Session
Session 3.2: Mitochondrial mechanisms in neurodegeneration and neurodevelopment
Time:
Tuesday, 13/June/2023:
11:00am - 12:40pm

Session Chair: Vincent Procaccio
Session Chair: Elena Rugarli
Location: Bologna Congress Center - Sala Europa

Address: Piazza della Costituzione, 4/a, Bologna (BO), Italy


Show help for 'Increase or decrease the abstract text size'
Presentations
Invited
ID: 675
Invited Speakers

Destructuring of mitochondrial cristae in the initiation of CHCHD10-related neurodegeneration

Véronique Paquis-Flucklinger1,2

1IRCAN, UMR 7284/INSERM U1081/UCA, Nice, France; 2Reference Center for mitochondrial diseases, Universitary hospital, Nice, France



Invited
ID: 670
Invited Speakers

Convergence of mitochondrial and lysosomal dysfunction in Parkinson’s disease

Lena F Burbulla

Ludwig Maximilian University (LMU) Munich, Germany



Oral presentation
ID: 588
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Development of cortical organoids to model m.3243A>G disease and understand cell specificity

Denisa Hathazi, Yu Nie, Camilla Lions, Juliane Müller, George Gibbons, Patrick Chinnery, Andras Lakatos, Rita Horvath

University of Cambridge, United Kingdom



Oral presentation
ID: 623
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Brain and brainstem-specific mitochondrial diversity associated with vulnerability to neurodegeneration in mitochondrial diseases

Anna S. Monzel1, Masashi Fujita2, Ayelet M. Rosenberg1, Eugene V. Mosharov3,6, Jack Devine1, David A. Bennett4,5, Vilas Menon2, Philip L. De Jager2, Martin Picard1,6,7

1Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York NY, USA; 2Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York NY, USA; 3Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, New York NY, USA; 4Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; 5Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; 6New York State Psychiatric Institute, New York NY, USA; 7Department of Neurology, Columbia University Irving Medical Center, New York NY, USA



Oral presentation
ID: 527
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial DNA mutations exacerbate motor and behavioural deficits in a mouse model of Parkinson’s disease

Michael J Keogh1,2, Yu Nie2,3, Zoe Golder2,3, Malwina Prater2,3, Nils-Goran Larsson4, Andrew Blamire1,5, Chris Morris1, Patrick F Chinnery2,3

1Clinical and Translational Research Institute, Centre for Life, Newcastle University, UK, NE3 1BZ; 2Department of Clinical Neuroscience, University of Cambridge, UK, CB2 0QQ; 3Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK, CB2 0QQ; 4Division of Molecular Metabolism, Biomedicum, floor 9D, Solnavägen 9, Karlolinska Institute, 171 65 Stockholm, Sweden; 5Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, NE4 5PL

Bibliography
Nie, Yu, et al. "Heteroplasmic mitochondrial DNA mutations in frontotemporal lobar degeneration." Acta Neuropathologica 143.6 (2022): 687-695.
Murley, Alexander G., et al. "High-Depth PRNP Sequencing in Brains With Sporadic Creutzfeldt-Jakob Disease." Neurology Genetics 9.1 (2023).
Burr, Stephen P., et al. "Cell lineage-specific mitochondrial resilience during mammalian organogenesis." Cell (2023).


Flash Talk
ID: 556
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Macromolecular crowding: A novel player in mitochondrial physiology and disease

Elianne P Bulthuis1, Cindy EJ Dieteren1, Jesper Bergmans1, Job Berkhout1, Jori A Wagenaars1, Els MA van de Westerlo1, Emina Podhumljak1, Mark A Hink2, Laura FB Hesp1, Hannah S Rosa3, Afshan N Malik3, Mariska Kea-te Lindert1, Peter HGM Willems1, Han JGE Gardeniers4, Wouter K den Otter4, Merel JW Adjobo-Hermans1, Werner JH Koopman1,5

1Radboud University Medical Center, The Netherlands; 2University of Amsterdam, The Netherlands; 3King's College, London, UK; 4University of Twente, The Netherlands; 5Wageningen University, The Netherlands

Bibliography
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MK, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J. 2023 Feb 24:e108533. doi: 10.15252/embj.2021108533. Epub ahead of print. PMID: 36825437.

Bulthuis EP, Adjobo-Hermans MJW, Willems PHGM, Koopman WJH. Mitochondrial Morphofunction in Mammalian Cells. Antioxid Redox Signal. 2019 Jun 20;30(18):2066-2109. doi: 10.1089/ars.2018.7534. Epub 2018 Nov 29.

Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ. Solute diffusion is hindered in the mitochondrial matrix. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8657-62. doi: 10.1073/pnas.1017581108. Epub 2011 May 9. PMID: 21555543; PMCID: PMC3102363.


Flash Talk
ID: 342
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Preserved motor function and striatal innervation despite severe degeneration of dopamine neurons upon mitochondrial dysfunction

Thomas Paß1, Roy Chowdury2, Julien Prudent2, Yu Nie3, Patrick Chinnery3, Markus Aswendt4, Heike Endepols5, Bernd Neumaier5, Trine Riemer6, Bent Brachvogel6, Rudi Wiesner7

1Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Germany; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK; 3Medical Research Council Mitochondrial Biology Unit and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, UK; 4Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; 5Institute of Radiochemistry and Experiment Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Germany; 6Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, Germany; 7Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Center for Molecular Medicine Cologne, University of Cologne, Germany

Bibliography
(1) Ricke, K.M., T. Paß, S. Kimoloi, K. Fährmann, C. Jüngst, A. Schauss, O.R. Baris, M. Aradjanski, A. Trifunovic, T.M. Eriksson Faelker, M. Bergami and R.J. Wiesner (2020): Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. J Neuroscience 40: 1975-1986
(2) Dölle C., Flønes I., Nido G.S., Miletic H., Osuagwu N., Kristoffersen S., Lilleng P.K., Larsen J.P., Tysnes O.B., Haugarvoll K., Bindoff L.A., Tzoulis C. (2016): Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 7: 13548.


Flash Talk
ID: 320
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The mitochondrial DNA depletion syndrome protein FBXL4 mediates the degradation of the mitophagy receptors BNIP3 and NIX to suppress mitophagy

Keri-Lyn Kozul1, Giang Thanh Nguyen-Dien1,2, Yi Cui1, Prajakta Gosavi Kulkarni1, Michele Pagano3,4, Brett M. Collins5, Robert Taylor6,7, Mathew J.K. Jones8, Julia K. Pagan1,5,8

1School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia; 2Department of Biotechnology, School of Biotechnology, Viet Nam National University-International University, Ho Chi Minh City, Vietnam; 3Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA; 4Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA; 5The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia

Bibliography
Nguyen-Dien G, Kozul K, Cui Y, Townsend B, Gosavi Kulkarni P, Ooi S, Marzio A, Carrodus N, Zuryn S, Pagano M et al. (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv 2022.10.12.511867; doi: https://doi.org/10.1101/2022.10.12.511867