Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Session
Poster session
Time:
Monday, 12/June/2023:
6:00pm - 7:00pm

Location: Bologna Congress Center

Address: Piazza della Costituzione, 4/a, Bologna (BO), Italy

Session topics:
- Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Show help for 'Increase or decrease the abstract text size'
Presentations
ID: 564
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Maintenance on mitochondrial complexes ensures bioenergetic function in differentiated cells

Ilka Wittig1, Julian Heidler1, Heiko Giese2, Ralf P. Brandes1

1Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; 2Molecular Bioinformatics, Goethe University, Frankfurt, Germany

Bibliography
[1] H. Heide, L. Bleier, M. Steger, J. Ackermann, S. Dröse, B. Schwamb, M. Zörnig, A.S. Reichert, I. Koch, I. Wittig, U.Brandt, Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex, Cell Metab. 16 (2012) 538–549.
[2] B. Schwanhäusser, M. Gossen, G. Dittmar, M. Selbach, Global analysis of cellular protein translation by pulsed SILAC, Proteomics 9 (2009) 205–209.


ID: 462
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating pathogenicity and tissue-specificity of mitochondrial aminoacyl-tRNA synthetase defects AARS2, EARS2 and RARS2 in neurons

Oliver Podmanicky, Fei Gao, Denisa Hathazi, Rita Horvath

Department of Clinical Neurosciences, University of Cambridge, United Kingdom



ID: 253
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mutations in Coq2 leads to severe developmental delay and early death in both zebrafish and mouse

Julia Corral-Sarasa1, Sergio López-Herrador2, Juan M. Martínez-Gálvez1,3, Pilar González-García2, Laura Jiménez-Sánchez1, Mª Elena Díaz-Casado1,2, Luis C. López1,2

1Ibs.Granada, Granada, Spain; 2Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 3Biofisika Institute (CSIC,UPV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain

Bibliography
1.Alcázar-Fabra, M., Rodríguez-Sánchez, F., Trevisson, E., & Brea-Calvo, G. (2021). Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radical Biology and Medicine, 167, 141-180. https://doi.org/10.1016/j.freeradbiomed.2021.02.046
2.Mutations in COQ2 in Familial and Sporadic Multiple-System Atrophy. (2013). New England Journal of Medicine, 369(3), 233-244. https://doi.org/10.1056/nejmoa1212115
3.Jakobs, B. S., Van Den Heuvel, L. P., Smeets, R., De Vries, M., Hien, S., Schaible, T., Smeitink, J. A., Wevers, R. A., Wortmann, S. B., & Rodenburg, R. J. (2013). A novel mutation in COQ2 leading to fatal infantile multisystem disease. Journal of the Neurological Sciences, 326(1-2), 24-28. https://doi.org/10.1016/j.jns.2013.01.004
4.Herebian, D., Seibt, A., Smits, S. H. J., Rodenburg, R. J., & Mayatepek, E. (2017). 4-Hydroxybenzoic acid restores CoQ10biosynthesis in human COQ2 deficiency. Annals of clinical and translational neurology, 4(12), 902-908. https://doi.org/10.1002/acn3.486


ID: 297
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Pathogenic variants of the mitochondrial metallochaperone SCO1 result in a severe, combined COX and copper deficiency that causes a dilated cardiomyopathy in the murine heart.

Sampurna Ghosh1, Scot C. Leary1, Paul A. Cobine2

1University of Saskatchewan, Canada; 2Auburn University

Bibliography
Glerum DM, Shtanko A, Tzagoloff A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem. 1996 Jun 14;271(24):14504-9. doi: 10.1074/jbc.271.24.14504. PMID: 8662933.

Srinivasan C, Posewitz MC, George GN, Winge DR. Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry. 1998 May 19;37(20):7572-7. doi: 10.1021/bi980418y. PMID: 9585572.

Hlynialuk CJ, Ling B, Baker ZN, Cobine PA, Yu LD, Boulet A, Wai T, Hossain A, El Zawily AM, McFie PJ, Stone SJ, Diaz F, Moraes CT, Viswanathan D, Petris MJ, Leary SC. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis. Cell Rep. 2015 Feb 17;10(6):933-943. doi: 10.1016/j.celrep.2015.01.019. Epub 2015 Feb 13. PMID: 25683716.

Baker ZN, Jett K, Boulet A, et al. The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart. Hum Mol Genet. 2017;26(23):4617-4628. doi:10.1093/hmg/ddx344

Leary, S.C., Antonicka, H., Sasarman, F., Weraarpachai, W., Cobine, P.A., Pan, M., Brown, G.K., Brown, R., Majewski, J., Ha, K.C.H., et al. (2013a). Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis. Hum. Mutat. 34, 1366–1370.


ID: 196
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Tissue-specific adaptation of stress responses upon COX10 deficiency

Lea Isermann1,2, Milica Popovic1,2, Ming Yang1,2, Christian Frezza1,2, Aleksandra Trifunovic1,2

1CECAD Research Center, Germany; 2Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne



ID: 269
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Using iPSC-derived neurons to unravel the pathomechanisms of Leber’s hereditary optic neuropathy

Camille Peron1, Alessandra Maresca2, Angelo Iannielli3,4, Alberto Danese5, Simone Patergnani5, Danara Ormanbekova2, Andrea Cavaliere1, Carlotta Giorgi5, Paolo Pinton5,6, Vania Broccoli3,4, Valerio Carelli2,7, Valeria Tiranti1

1Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy; 4National Research Council (CNR), Institute of Neuroscience, Milan, Italy; 5Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; 6Maria Cecilia Hospital, GVM Care & Research, 48033, Cotignola, Ravenna, Italy; 7Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy

Bibliography
Danese A, Patergnani S, Maresca A, Peron C, Raimondi A, Caporali L, Marchi S, La Morgia C, Del Dotto V, Zanna C, Iannielli A, Segnali A, Di Meo I, Cavaliere A, Lebiedzinska-Arciszewska M, Wieckowski MR, Martinuzzi A, Moraes-Filho MN, Salomao SR, Berezovsky A, Belfort R Jr, Buser C, Ross-Cisneros FN, Sadun AA, Tacchetti C, Broccoli V, Giorgi C, Tiranti V, Carelli V, Pinton P. Pathological mitophagy disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. Cell Rep. 2022 Jul 19;40(3):111124. doi: 10.1016/j.celrep.2022.111124. PMID: 35858578; PMCID: PMC9314546.

Peron C, Maresca A, Cavaliere A, Iannielli A, Broccoli V, Carelli V, Di Meo I, Tiranti V. Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Front Neurol. 2021 Jun 8;12:648916. doi: 10.3389/fneur.2021.648916. PMID: 34168607; PMCID: PMC8217617.

Peron C, Mauceri R, Cabassi T, Segnali A, Maresca A, Iannielli A, Rizzo A, Sciacca FL, Broccoli V, Carelli V, Tiranti V. Generation of a human iPSC line, FINCBi001-A, carrying a homoplasmic m.G3460A mutation in MT-ND1 associated with Leber's Hereditary optic Neuropathy (LHON). Stem Cell Res. 2020 Oct;48:101939. doi: 10.1016/j.scr.2020.101939. Epub 2020 Aug 3. PMID: 32771908.


ID: 418
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Stem cell modelling of mitochondrial disease-linked cardiomyopathy

Ann E. Frazier1,2, Yau Chung Low1,2, Cameron L. McKnight1,2, Linden Muellner-Wong1,3, Hayley L. Pointer1, Nikeisha Caruana3, Jordan J. Crameri3, Luke E. Formosa4, Yilin Kang3, Thomas D. Jackson3, Alison G. Compton1,2,5, Michael T. Ryan4, Andrew G. Elefanty1,2,6, Enzo R. Porrello1,6,7,8, David A. Stroud1,3,5, David A. Elliott1,2,6,7, Diana Stojanovski3, David R. Thorburn1,2,5

1Murdoch Children’s Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; 2Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; 3Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; 4Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; 5Victorian Clinical Genetics Services, The Royal Children’s Hospital, Melbourne, VIC, Australia; 6The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; 7Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia; 8Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia



ID: 316
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Biochemical and computational approaches to dissect the effect of MT-CYB pathogenic mutations on respiratory chain activity and assembly

Gaia Tioli, Francesco Musiani, Luisa Iommarini, Anna Maria Porcelli, Anna Maria Ghelli

Department of Pharmacy and Biotechnology, University of Bologna, Italy

Bibliography
1 Fernández-Vizarra E, Ugalde C. Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem Sci. 2022
2 Rugolo M, Zanna C, Ghelli AM. Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel). 2021
3 Mishra SK. PSP-GNM: Predicting Protein Stability Changes upon Point Mutations with a Gaussian Network Model. Int J Mol Sci. 2022


ID: 565
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Exploring the assembly and maintenance of mitochondrial complex I by complexome profiling-based approaches

Alfredo Cabrera-Orefice1,2, Ilka Wittig1

1Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; 2Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands

Bibliography
[1] S. Guerrero-Castillo, F. Baertling, D. Kownatzki, H.J. Wessels, S. Arnold, U. Brandt, L. Nijtmans, The Assembly Pathway of Mitochondrial Respiratory Chain Complex I, Cell metabolism, 25 (2017) 128-139.
[2] H. Heide, L. Bleier, M. Steger, J. Ackermann, S. Drose, B. Schwamb, M. Zornig, A.S. Reichert, I. Koch, I. Wittig, U. Brandt, Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex, Cell metabolism, 16 (2012) 538-549.
[3] A. Cabrera-Orefice, A. Potter, F. Evers, J.F. Hevler, S. Guerrero-Castillo, Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease, Front Cell Dev Biol, 9 (2022) 796128.


ID: 225
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Functional involvement of actin-binding Gelsolin on mitochondrial Oxphos dysfunction

María Illescas, Ana Peñas, Cristina Ugalde

Fundación Hospital 12 de Octubre, Spain

Bibliography
García-Bartolomé, A., Peñas, A., Illescas, M., Bermejo, V., López-Calcerrada, S., Pérez-Pérez, R., et al. (2020). Altered Expression Ratio of Actin-Binding Gelsolin Isoforms Is a Novel Hallmark of Mitochondrial OXPHOS
Dysfunction. Cells 9, 1922–21. doi:10.3390/cells9091922

Peñas, A., Fernández-De la Torre, M., Laine-Menéndez, S., Lora, D., Illescas, M., García-Bartolomé, A., et al. (2021). Plasma Gelsolin Reinforces the Diagnostic Value of FGF-21 and GDF-15 for Mitochondrial Disorders. Ijms 22, 6396. doi:10.3390/ijms22126396

Illescas M, Peñas A, Arenas J, Martín MA and Ugalde C. 2021. Regulation of Mitochondrial Function by the Actin Cytoskeleton. Front. Cell Dev. Biol. 9:795838. doi: 10.3389/fcell.2021.795838.

Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. 2022 Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. doi: 10.1016/j.cmet.2022.09.005


ID: 472
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

In vivo role of respiratory complex I NDUFA10 subunit in dNTP homeostasis

Andrea Férriz Gordillo1, David Molina-Granada1,2, Javier Ramón1,2, Izaskun Izagirre-Urizar1, Marina Singla-Manau1, Maria Jesús Melià1,2, Antoni Ruiz-Vicaria1, Javier Torres-Torronteras1,2, Mònica Zamora3, Michael T. Ryan4, Cristina Ugalde2,5, Josep Antoni Villena6, Ramon Martí1,2, Yolanda Cámara1,2

1Research Group on Neuromuscular and Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; 2Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; 3BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona 08028, Spain. and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.; 4Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; 5Instituto de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain.; 6Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Barcelona, Spain

Bibliography
Molina-Granada D, González-Vioque E, Dibley MG, Cabrera-Pérez R, Vallbona-Garcia A, Torres-Torronteras J, Sazanov LA, Ryan MT, Cámara Y, Martí R. Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit. Commun Biol. 2022 Jun 23;5(1):620. doi: 10.1038/s42003-022-03568-6. PMID: 35739187; PMCID: PMC9226000.


ID: 247
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Modeling POLRMT pathogenic variants in the mouse

David Alsina1,2, Roberta Filograna1,2, Rodolfo García-Villegas1,2, Camilla Koolmeister1,2, Nils-Göran Larsson1,2,3

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden; 3Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden



ID: 425
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The role of the CCR4 family member ANGEL1 in the expression of mitochondrial-targeted proteins

Kai Chang1, Paula Clemente1, Joyce Noble1, Björn Reinius1, Anna Wedell1,2, Christoph Freyer1,2, Anna Wredenberg1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden

Bibliography
Chang, K§., Liu, P§., Requejo, G & Bai, H. (2022). mTORC2 protects the heart from high-fat diet-induced cardiomyopathy through mitochondrial fission in Drosophila. Front. Cell Dev. Biol., 2022. https://doi.org/10.3389/fcell.2022.866210
§These authors contributed equally to this work

Birnbaum, A., Chang, K., & Bai, H. (2020). FOXO regulates neuromuscular junction homeostasis during Drosophila aging. Front Aging Neurosci, 2021 Jan 27; 12:567861. DOI: 10.3389/fnagi.2020.567861.

Huang, K., Miao, T., Chang, K. et al. Impaired peroxisomal import in Drosophila oenocytes causes cardiac dysfunction by inducing upd3 as a peroxikine. Nat Commun 11, 2943 (2020). https://doi.org/10.1038/s41467-020-16781-w

Kai Chang§, Ping Kang§, Ying Liu, Kerui Huang, Ting Miao, Antonia P. Sagona, Ioannis P. Nezis, Rolf Bodmer, Karen Ocorr & Hua Bai (2019) TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2, Autophagy, DOI: 10.1080/15548627.2019.1704117
§These authors contributed equally to this work

Kang, P., Chang, K., Liu, Y. et al. Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci Rep 7, 16369 (2017) doi:10.1038/s41598-017-16638-1


ID: 600
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Tissue-specific bioenergetics in mouse models of mitochondrial disease

Valeria Balmaceda1, Timea Komoldi2, Massimo Zeviani1, Erich Gnaiger3, Anthony L. Moore4, Erika Fernandez Vizarra1, Carlo Viscomi1

1Università di Padova; 2Semmelweis University; 3Universität Innsbruck; 4University of Sussex



ID: 490
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Yeast as a tool to investigate variants in mtARS genes associated with mitochondrial diseases

Sonia Figuccia1, Camilla Ceccatelli Berti1, Andrea Legati2, Rossella Izzo2, Alessia Nasca2, Daniele Ghezzi2,3, Paola Goffrini1

1Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; 2Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 3Department of Medical Physiopathology and Transplantation, University of Milan, Milan, Italy



ID: 227
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A mutation in mouse mt-Atp6 gene induces respiration defects and opposed effects on the cell tumorigenic phenotype

Raquel Moreno-Loshuertos1, Nieves Movilla1, Joaquín Marco-Brualla2, Ruth Soler-Agesta1, Patricia Ferreira1, José Antonio Enríquez3, Patricio Fernández-Silva1

1University of Zaragoza, Spain; 2University of Zaragoza, Peaches Biotech Group, Spain; 3Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain

Bibliography
1.Moreno-Loshuertos, R.; Marco-Brualla, J.; Meade, P.; Soler-Agesta, R.; Enriquez, J. A.; Fernandez-Silva, P., How hot can mitochondria be? Incubation at temperatures above 43 degrees C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion 2023, 69, 83-94.
2.Moreno-Loshuertos, R.; Movilla, N.; Marco-Brualla, J.; Soler-Agesta, R.; Ferreira, P.; Enriquez, J. A.; Fernandez-Silva, P., A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023, 24, (2).
3.Novo, N.; Romero-Tamayo, S.; Marcuello, C.; Boneta, S.; Blasco-Machin, I.; Velázquez-Campoy, A.; Villanueva, R.; Moreno-Loshuertos, R.; Lostao, A.; Medina, M.; Ferreira, P., Beyond a platform protein for the degradosome assembly: The Apoptosis-Inducing Factor as an efficient nuclease involved in chromatinolysis. PNAS Nexus 2022, 2, (2).
4.Soler-Agesta, R.; Marco-Brualla, J.; Minjarez-Saenz, M.; Yim, C. Y.; Martinez-Julvez, M.; Price, M. R.; Moreno-Loshuertos, R.; Ames, T. D.; Jimeno, J.; Anel, A., PT-112 Induces Mitochondrial Stress and Immunogenic Cell Death, Targeting Tumor Cells with Mitochondrial Deficiencies. Cancers (Basel) 2022, 14, (16).
5.Pinol, R.; Zeler, J.; Brites, C. D. S.; Gu, Y.; Tellez, P.; Carneiro Neto, A. N.; da Silva, T. E.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Gallego, A. I.; Martinez-Lostao, L.; Martinez, A.; Carlos, L. D.; Millan, A., Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles. Nano Lett 2020, 20, (9), 6466-6472.
6.Gu, Y.; Yoshikiyo, M.; Namai, A.; Bonvin, D.; Martinez, A.; Pinol, R.; Tellez, P.; Silva, N. J. O.; Ahrentorp, F.; Johansson, C.; Marco-Brualla, J.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Cui, Y.; Ohkoshi, S. I.; Millan, A., Magnetic hyperthermia with epsilon-Fe(2)O(3) nanoparticles. RSC Adv 2020, 10, (48), 28786-28797.
7.Delavallee, L.; Mathiah, N.; Cabon, L.; Mazeraud, A.; Brunelle-Navas, M. N.; Lerner, L. K.; Tannoury, M.; Prola, A.; Moreno-Loshuertos, R.; Baritaud, M.; Vela, L.; Garbin, K.; Garnier, D.; Lemaire, C.; Langa-Vives, F.; Cohen-Salmon, M.; Fernandez-Silva, P.; Chretien, F.; Migeotte, I.; Susin, S. A., Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Mol Metab 2020, 40, 101027.


ID: 242
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A systemic Muscle-WAT crosstalk progressively depletes protein and fat stores aggravating mitochondrial myopathy.

Nneka Southwell1, Guido Primiano3, Emelie Beattie1, Nicola Rizzardi1, Serenella Servidei3, Giovanni Manfredi1, Qiuying Chen2, Marilena D'Aurelio1

1Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY; 2Weill Cornell Medicine, Department of Pharmacology, New York, NY; 3Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.



ID: 646
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A novel mitochondrial assembly factor RTN4IP1 has an essential role in the final stages of Complex I assembly

Monika Oláhová1,2, Jack J. Collier1,3, Rachel M. Guerra4, Juliana Heidler5, Kyle Thompson1, Robert N. Lightowlers1, Zofia M.A. Chrzanowska-Lightowlers1, Ilka Wittig5, David J. Pagliarini4, Robert W. Taylor1

1Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 2Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK; 3Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; 4Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; 5Functional Proteomics Group, Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany

Bibliography
1 Charif M et al. Neurologic Phenotypes Associated With Mutations in RTN4IP1 (OPA10) in Children and Young Adults. JAMA Neurol. 2017


ID: 599
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

ETFDH supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis

Beñat Salegi Ansa1, Juan Cruz Herrero Martín1, José M. Cuezva1,2,3,4, Laura Formentini1,2,3,4

1Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO-UAM-CSIC), Madrid, Spain; 2Instituto Universitario de Biología Molecular (IUBM), Autonomous University of Madrid, Madrid, Spain; 3Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; 4Instituto de Investigación Hospital 12 de octubre, i+12, Universidad Autónoma de Madrid, Madrid, Spain



ID: 559
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic rewiring as an adaptive mechanism in COX null cells

Guillermo Puertas-Frias1,2, Kristýna Čunátová1,2, Petr Pecina1, Marek Vrbacký1, Lukáš Alán1, Tomáš Čajka3, Josef Houštěk1, Tomáš Mráček1, Alena Pecinová1

1Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 2Faculty of Science, Charles University, 12800 Prague, Czech Republic; 3Laboratory of Translational Metabolomics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic



ID: 383
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic rewiring due to progressive increase in mtDNA mutation heteroplasmy reveals markers of disease severity

Karin Terburgh1, Marianne Venter1, Jeremie Z Lindeque1, Emi Ogasawara2, Mirian C H Janssen3, Jan A M Smeitink3, Kazuto Nakada4, Roan Louw1

1North-West University, South Africa; 2Osaka University, Japan; 3Radboud University Medical Center, Netherlands; 4University of Tsukuba, Japan



ID: 442
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Novel or rare AIFM1 pathogenic variants: their impact on mitochondrial metabolism and clinical manifestation in eight patients, including 3 girls

Tereza Rakosnikova1, Jan Kulhanek1, Martin Reboun1, Hana Stufkova1, Lenka Dvorakova1, Dagmar Grecmalova2, Pavlina Plevova2, Tomas Honzik1, Hana Hansikova1, Jiri Zeman1, Marketa Tesarova1

1Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague; 2Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava



ID: 558
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Pathological molecular mechanisms underlying COA8 loss of function

Kristyna Cunatova1,2, Michele Brischigliaro1,2, Alfredo Cabrera-Orefice3, Cinzia Franchin1, Jimin Pei4, Marco Roverso5, Sara Bogialli5, Qian Cong4, Giorgio Arrigoni1, Susanne Arnold3,6, Carlo Viscomi1,2, Massimo Zeviani2,7, Erika Fernández-Vizarra1,2

1Department of Biomedical Sciences, University of Padova, Padova, Italy; 2Veneto Institute of Molecular Medicine, Padova, Italy; 3Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; 4University of Texas Southwestern Medical Center, Dallas, TX, USA; 5Department of Chemical Sciences, University of Padova, Padova, Italy; 6Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; 7Department of Neurosciences, University of Padova, Padova, Italy

Bibliography
Hedberg-Oldfors, C., Darin, N., Thomsen, C., Lindberg, C., and Oldfors, A. (2020). COX deficiency and leukoencephalopathy due to a novel homozygous APOPT1/COA8 mutation. Neurol Genet 6, e464.
Melchionda, L., Haack, T.B., Hardy, S., Abbink, T.E., Fernandez-Vizarra, E., Lamantea, E., Marchet, S., Morandi, L., Moggio, M., Carrozzo, R., et al. (2014). Mutations in APOPT1, Encoding a Mitochondrial Protein, Cause Cavitating Leukoencephalopathy with Cytochrome c Oxidase Deficiency. Am J Hum Genet 95, 315-325.
Pei, J., Zhang, J., and Cong, Q. (2022). Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics.
Sharma, S., Singh, P., Fernandez-Vizarra, E., Zeviani, M., Van der Knaap, M.S., and Saran, R.K. (2018). Cavitating Leukoencephalopathy With Posterior Predominance Caused by a Deletion in the APOPT1 Gene in an Indian Boy. J Child Neurol 33, 428-431.
Signes, A., Cerutti, R., Dickson, A.S., Beninca, C., Hinchy, E.C., Ghezzi, D., Carrozzo, R., Bertini, E., Murphy, M.P., Nathan, J.A., et al. (2019). APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO molecular medicine 11.


ID: 366
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Retinal pathophysiology characterisation of the novel mitochondrial heteroplasmy mouse model

Lucia Luengo-Gutierrez1, Keira Turner1, James B Stewart2, Patrick Yu-Wai-Man1, Michal Minczuk1

1University of Cambridge, United Kingdom; 2Newcastle University, United Kingdom



ID: 666
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Impaired spermatogenesis driven by mitochondrial dysfunction and ferroptosis in primary spermatocytes in a mouse model of Leigh syndrome

Enrico Radaelli1, Charles-Antoine Assenmacher1, Esha Banerjee1, Florence Manero2, Salim Khiati3, Anais Girona3, Guillermo Lopez-Lluch4, Placido Navas4, Marco Spinazzi3,5

1University of Pennsylvania,USA; 2University of Angers, SFR ICAT, SCIAM, 49000 Angers, France; 3MITOLAB, University of Angers, INSERM U1083, France; 4Pablo de Olavide University, Spain; 5Neuromuscular Reference Center CHU Angers, France



ID: 574
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitophagy dysfunction in mitochondrial myopathy and therapy by mitophagy activator CAP1902

Takayuki Mito1, Amy E. Vincent2, Julie Faitg2, Kathleen Rodgers3, Kevin Gaffney3, Thomas G. McWilliams1, Orian Shirihai4, Anu Suomalainen1

1STEMM Research Program, Biomedicum Helsinki, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 2Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 3Department of Pharmacology, Center for Innovations in Brain Science, University of Arizona, Tucson, AZ, USA; 4Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA



ID: 192
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mtfp1 controls oxidative phosphorylation and cell death in liver disease

Cecilia Patitucci1, Juan Diego Hernández-Camacho1, Elodie Vimont1, Etienne Kornobis2, Thibault Chaze3, Quentin Giai Gianetto3,4, Mariette Matondo3, Anastasia Gazi5, Ivan Nemanyy6, Daniella Hock7, Erminia Donnarumma1, Timothy Wai1

1Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France.; 2Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France.; 3Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France.; 4Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France.; 5Institut Pasteur Ultrastructural Bio Imaging, UTechS, Université Paris Cité, Paris, France.; 6Platform for Metabolic Analyses, SFR Necker, INSERM US24/CNRS UMS 3633, Paris, France.; 7Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia.



ID: 319
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Non-canonical function of succinate dehydrogenase assembly factor 2 (SDHAF2) during OXPHOS dysfunction

Kugapreethan Roopasingam1, Joanna Sacharz1, Tegan Stait2, Yau chung Low2,3, Ann E. Frazier2,3, David P. De souza4, David R. Thorburn2,3,5, David A. Stroud1,3,5

1Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; 2Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; 3Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; 4Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; 5Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia



ID: 502
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

NUAK1-dependent metabolic underpinnings of adult muscle stem cells

Ha-My Ly, Caroline Brun, Géraldine Meyer-Dihet, Julien Courchet, Rémi Mounier

Physiopathology and Genetics of Neurons and Muscles Laboratory, Institut NeuroMyoGène, Lyon, France



ID: 415
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A novel approach to measure complex V ATP hydrolysis in frozen cell lysates and tissue homogenates

Lucia Fernandez del Rio1,2, Cristiane Benincá1,2, Frankie Villalobos1,2, Cynthia Shu1,2, Linsey Stiles1,2,3, Marc Liesa1,2,4,5, Ajit S. Divakaruni2,3, Rebeca Acin-Perez1,2, Orian S. Shirihai1,2,3,4

1Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095 USA; 2Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; 3Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; 4Molecular & Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA.; 5Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Catalonia, 08028, Spain



ID: 440
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

OxPhos defects cause cell-autonomous and whole-body signs of hypermetabolism in cells and in patients with mitochondrial diseases

Gabriel Sturm1, Karan Kalpita1, Anna S Monzel1, Balaji Santhanam1, Tanja Taivassalo2, Céline Bris3, Atif Towheed1, Albert Higgins-Chen4, Meagan McManus5, Andres Cardenas6, Jue Lin7, Elissa Epel7, Shamima Rahman8, Jon Vissing9, Bruno Grassi10, Morgan Levine11, Steve Horvath11, Ronald G Haller12, Guy Lenaers3, Douglas C Wallace5, Marie-Pierre St-Onge1, Saeed Tavasoie1, Vincent Procaccio3, Brett A Kaufman13, Erin L Seifert14, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2University of Florida, United States of America; 3Angers University, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute, Angers, France; 4Yale University, United States of America; 5University of Pennsylvania, United States of America; 6Stanford University, United States of America; 7University of California San Francisco, United States of America; 8Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; 9University of Copenhagen, Denmark; 10University of Udine, Italy; 11Altos labs, United States of America; 12University of Texas Southwestern Medical Center, United States of America; 13University of Pittsburgh, United States of America; 14Thomas Jefferson University, United States of America

Bibliography
Sturm G et al. A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations. Sci Data 9, 751 (2022). https://doi.org/10.1038/s41597-022-01852-y

Sturm G. et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 6, 22 (2023). https://doi.org/10.1038/s42003-022-04303-x


ID: 605
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dysfunction of mitochondrial chaperone HSP60 triggers disruption of mitochondrial pathways activating multiple regulatory responses

Cagla Cömert1, Paula Fernandez-Guerra1, Kasper Kjær-Sørensen2, Jakob Hansen3, Jesper Just4,5, Jasper Carlsen1, Lisbeth Schmidt-Laursen2, Johan Palmfeldt1, Peter Bross1

1Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; 3Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; 4Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; 5Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Bibliography
1. Bie AS, Cömert C, Körner R, et al. An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space. Cell Stress Chaperones. 2020;25(3):407-416.
2. Bross P, Naundrup S, Hansen J, et al. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem. 2008;283(23):15694-15700.
3. Magen D, Georgopoulos C, Bross P, et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet. 2008;83(1):30-42.
4. Cömert C, Brick L, Ang D, et al. A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy. Cold Spring Harb Mol Case Stud. 2020;6(3):a004879. Published 2020 Jun 12.


ID: 365
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Generation of iPSCs derived neural progenitors and cardiomyocytes as cellular models to study the pathophysiology of Pearson Syndrome

Chiara Fasano1, Luca Sala2,3, Camille Peron1, Andrea Cavaliere1, Maria Nicol Colombo1, Valeria Tiranti1

1Unit of Medical genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 2Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy; 3Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy



ID: 476
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

High aerobic exercise capacity predicts increased mitochondrial response to exercise training

Estelle Heyne1, Susanne Zeeb1, Luren G Koch2, Steven L Britton3, Torsten Doenst1, Michael Schwarzer1

1Department of Cardiothoracic Surgery, University Hospital of Friedrich-Schiller-University Jena, Germany; 2Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States; 3Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States

Bibliography
Heyne E, Schrepper A, Doenst T, Schenkl C, Kreuzer K, Schwarzer M. High-fat diet affects skeletal muscle mitochondria comparable to pressure overload-induced heart failure. J Cell Mol Med. 2020 Jun;24(12):6741-6749. doi: 10.1111/jcmm.15325. Epub 2020 May 4. PMID: 32363733; PMCID: PMC7299710.
Schwarzer M, Molis A, Schenkl C, Schrepper A, Britton SL, Koch LG, Doenst T. Genetically determined exercise capacity affects systemic glucose response to insulin in rats. Physiol Genomics. 2021 Sep 1;53(9):395-405. doi: 10.1152/physiolgenomics.00014.2021. Epub 2021 Jul 23. PMID: 34297615; PMCID: PMC8530732.


ID: 488
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating the role of LONP1 in heart and skeletal muscle metabolism

Franziska Baumann1, Dieu Hien Rozsivalova1, Katharina Senft1, Simon Geißen2, Aleksandra Trifunovic3

1Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; 2Department III of Internal Medicine, Heart Center, University Hospital of Cologne, 50931 Cologne, Germany; 3Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany



ID: 229
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial dysfunction promotes liver fibrosis through the ACOT2-MCT6-OXCT1 axis.

Xiaoshan Zhou1, Sophie Curbo1, Wei Wang2, Xinling Li2, Jingyi Yan1, Yu Lei1, Raoul Kuiper3, Ujjwal Noegi1, Anna Karlsson1

1Karolinska Institutet, Sweden; 2Zhengzhou University, China; 3Norwegian Veterinary Institute, Norway

Bibliography
Zhou X, Mikaeloff F, Curbo S, Zhao Q, Kuiper R, Végvári Á, Neogi U, Karlsson A.Coordinated pyruvate kinase activity is crucial for metabolic adaptation and cell survival during mitochondrial dysfunction.Hum Mol Genet. 2021 Oct 13;30(21):2012-2026


ID: 655
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

PNC2 (SLC25A36) deficiency associated with the hyperinsulinism/hyperammonemia syndrome

Francesco Massimo Lasorsa1, Deborah Fratantonio2, Maher A. Shahroor3, Vito Porcelli1, Bassam Abu-Libdeh3, Orly Elpeleg4, Luigi Palmieri1

1Università degli Studi di Bari Aldo Moro, Italy; 2Libera Università Mediterranea Giuseppe Degennaro, Italy; 3Department of Pediatrics and Genetics, Al Makassed Hospital and Al-Quds University, Palestine.; 4Department of Genetics, Hadassah, Hebrew University Medical Center, Israel

Bibliography
[1] M.A. Shahroor, F.M. Lasorsa, V. Porcelli V, I. Dweikat, M.A. Di Noia, M. Gur, G. Agostino, A . Shaag A, T. Rinaldi, G. Gasparre, F. Guerra, A. Castegna, S. Todisco, B. Abu-Libdeh, O. Elpeleg, L. Palmieri, PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome, J Clin Endocrinol Metab, 107(2022):1346-1356.
[2] L. Jasper, P. Scarcia, S. Rust, J. Reunert, F. Palmieri, T. Marquardt, Uridine Treatment of the First Known Case of SLC25A36 Deficiency, Int J Mol Sci. 22(2021) 9929.
[3] Safran A, Proskorovski-Ohayon R, Eskin-Schwartz M, Yogev Y, Drabkin M, Eremenko E, Aharoni S, Freund O, Jean MM, Agam N, Hadar N, Loewenthal N, Staretz-Chacham O, Birk OS.Hyperinsulinism/hyperammonemia syndrome caused by biallelic SLC25A36 mutation. J Inherit Metab Dis. 2023 Jan 25. doi: 10.1002/jimd.12594. Online ahead of print


ID: 397
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Cultured neurons with CoQ10 deficiency reveal alterations of lipid metabolism

Alba Pesini1, Eliana Barriocanal-Casado1, Giacomo Monzio-Compagnoni2, Kleiner Giulio1, Agustin Hidalgo-Gutierrez1, Mohammed Bakkali3, Yashpal Singh Chhonker4, Saba Tadesse1, Delfina Larrea1, Daryl J Murry4, Caterina Mariotti5, Barbara Castellotti5, Luis Carlos Lopez3, Alesio Di Fonzo2, Estela Area-Gomez1, Catarina Quinzii1

1Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, United States; 2IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 3Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada, 18100, Spain; 4Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE; 5Unita` di Genetica delle Malattie Neurodegenerative e Metaboliche, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, 20126, Italy

Bibliography
1. Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta - Biomembr. 2004, 1660, 171–199, doi:10.1016/j.bbamem.2003.11.012.
2. Quinzii, C.M.; López, L.C.; Gilkerson, R.W.; Dorado, B.; Coku, J.; Naini, A.B.; Lagier-Tourenne, C.; Schuelke, M.; Salviati, L.; Carrozzo, R.; et al. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J. 2010, 24, 3733–3743, doi:10.1096/fj.09-152728.
3. Emma, F.; Montini, G.; Parikh, S.M.; Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. 2016, doi:10.1038/nrneph.2015.214.
4. Ernster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1995, 1271, 195–204.


ID: 426
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration

M. Tanvir Rahman1, M. Kristian Koski2, Joanna Panecka-Hofman3,4, Werner Schmitz5, Alexander J. Kastaniotis1, Rebecca C. Wade4,6, Rik K. Wierenga1, J. Kalervo Hiltunen1, Kaija J. Autio1

1Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; 2Biocenter Oulu, University of Oulu, Oulu, Finland; 3Faculty of Physics, University of Warsaw, Warsaw, Poland; 4Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; 5Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany; 6Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany

Bibliography
Rahman M.T., Koski M.K., Panecka-Hofman J., Schmitz W, Kastaniotis A.J., Wade R.C., Wierenga R.K., Hiltunen J.K. & Autio K.J. (2023) An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration. Nature Communications 14(1):619. doi: 10.1038/s41467-023-36358-7
Alam J., Sah-Teli S.K., Venkatesan R., Koski M.K., Autio K.J., Hiltunen J K. & Kastaniotis A.J. (2021) Biophysical and structural analysis of the SAM-dependent Saccharomyces cerevisiae methyltransferase family protein Rsm22. Acta Crystallographica Section D. 77:840-853
Kastaniotis A.J., Autio K.J. & Nair R.R. (2021) Mitochondrial fatty acids and neurodegenerative disorders. Neuroscientist 27(2):143-158


ID: 561
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Antibiotics directly affect mitochondrial respiration

Judith Sailer1, Sabine Schmitt2, Hans Zischka1,3, Erich Gnaiger2

1Technische Universität München, Germany; 2Oroboros Instruments GmbH, Innsbruck, Austria; 3Helmholtz Zentrum München, Germany

Bibliography
[1] Tarantino G. et al. (2017): Hepatol Res. 37:410‐415
[2] O'Reilly M. et al. (2019):. Front Cell Neurosci. 13;13:416. doi: 10.3389/fncel.2019.00416.
[3] Oyebode OT. et al. (2018) Toxicology Mechanisms and Methods, 1–31.doi:10.1080/15376516.2018.1528651


ID: 471
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Can transmission of mitochondria over the species barrier promote climate change adaptation?

Kateryna Gaertner1, Craig Michell2, Riikka Tapanainen2, Steffi Goffart2, Sina Saari1, Manu Soininmäki2, Eric Dufour1, Jaakko Pohjoismäki2

1Tampere University, Finland; 2University of Eastern Finland

Bibliography
Gaertner K, Michell C, Tapanainen R, et al. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (Lepus spp., Lagomorpha: Leporidae) [published online ahead of print, 2022 Nov 1]. Mol Ecol. 2022; doi:10.1111/mec.16755


ID: 626
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Developing an in vitro model to study the impact of the m.3243A>G mutation in iPSC-derived myofibers

Gabriel E. Valdebenito, Anitta R. Chacko, Michael R. Duchen

University College London, United Kingdom



ID: 334
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Discordant phenotype in fibroblast cell lines generated from the same MELAS patient

Monica Moresco1, Valentina Concetta Tropeano1, Valentina Del Dotto2, Mariantonietta Capristo1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1,2, Maria Lucia Valentino1,2, Valerio Carelli1,2, Alessandra Maresca1

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromuscular Sciences (DIBINEM), University of Bologna



ID: 531
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Generation of a novel CoQ deficient mouse model to elucidate the role of COQ4

Eliana Barriocanal Casado, Agustin Hidalgo-Gutierrez, Alba Pesini, Catarina M Quinzii

Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA.

Bibliography
1.Guerra, R.M. and D.J. Pagliarini, Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci, 2023.
2.Alcázar-Fabra, M., E. Trevisson, and G. Brea-Calvo, Clinical syndromes associated with Coenzyme Q. Essays Biochem, 2018. 62(3): p. 377-398.
3.Belogrudov, G.I., et al., Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys, 2001. 392(1): p. 48-58.
4.Casarin, A., et al., Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. Biochem Biophys Res Commun, 2008. 372(1): p. 35-9.
5.Marbois, B., et al., Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem, 2005. 280(21): p. 20231-8.
6.Marbois, B., et al., The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys Acta, 2009. 1791(1): p. 69-75.


ID: 414
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Perivascular adipose tissue remodeling impairs mitochondrial function in thermoneutral-housed rats

Amy C Keller1, Melissa M Henckel1, Leslie A Knaub1, Greg B Pott1, Georgia James2, Jane E-B Reusch1

1University of Colorado/Rocky Mountain Regional VA Medical Center, United States of America; 2Cornell College, United States of America

Bibliography
1. Chun J.H., Henckel M.M., Knaub L.A., Hull S.E., Pott G.B., Ramirez D.G., Reusch J.E.-B., Keller A.C. (-)-Epicatechin Reverses Glucose Intolerance in Rats Housed at Thermoneutrality. Planta Med. 2022 Aug;88(9-10):735-744. doi: 10.1055/a-1843-9855.

2. Keller A.C., Chun J.H., Knaub L.A., Henckel M.M., Hull S.E., Scalzo R.L., Pott G.B., Walker L.A., Reusch J.E.-B. Thermoneutrality induces vascular dysfunction and impaired metabolic function in male Wistar rats: a new model of vascular disease. J Hypertens. 2022 Nov 1;40(11):2133-2146. doi: 10.1097/HJH.0000000000003153.

3. Vaughan O.R., Rosario F.J., Chan J., Cox L.A., Ferchaud-Roucher V., Zemski-Berry K.A., Reusch J.E.- B., Keller A.C., Powell T.L., Jansson T. Maternal obesity causes fetal cardiac hypertrophy and alters adult offspring myocardial metabolism in mice. J Physiol. 2022 Jul;600(13):3169-3191. doi: 10.1113/JP282462.

4. Chun J.H., Henckel M.M., Knaub L.A., Hull S.E., Pott G., Walker, L.A., Reusch J.E.B., Keller A.C. (–)-Epicatechin improves vasoreactivity and mitochondrial respiration in thermoneutral-housed Wistar rat vasculature. Nutrients. 2022 14(5), 1097;doi.org/10.3390/nu14051097.

5. Keller, A.C., Hull, S.E., Elajaili, H., Johnston, A., Knaub, L.A., Chun, J.H., Walker, L.A., Nozik-Grayck, E., Reusch, J.E.-B. (–)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress. Oxidative Medicine and Cellular Longevity. 2020. doi.org/10.1155/2020/6392629


ID: 595
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Temporal analysis of mitochondrial complexome profiling coupled to multi-omics analysis unveils implications of CIV remodelling in postnatal heart development

Milica Popovic, Aleksandra Trifunovic

University of Cologne, Germany

Bibliography
1. Porter Jr G., et al. (2011) Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 75–81. doi: 10.1016/j.ppedcard.2011.02.002;
2. Gan J., Sonntag H-J., Tang Mk., Cai D., Lee KKH. (2015) Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome. PLoS ONE 10 (7): e0133288. doi:10.1371/journal.pone.0133288
3. Gu Y., et al. (2022) Multi-omics profiling visualizes dynamics of cardiac development and functions, Cell Reports, Volume 41, Issue 13,111891, ISSN 2211-1247, https://doi.org/10.1016/j.celrep.2022.111891.
4.Talman V., et al. (2018). Molecular Atlas of Postnatal Mouse Heart Development. J Am Heart Assoc. 2018;7:e010378. DOI: 10.1161/JAHA.118.010378


ID: 258
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial dysfunction in immune cells leads to distinct transcriptome profile and improved immune competence in Drosophila

Yuliya Basikhina1, Laura Vesala1,2, Tea Tuomela1, Emilia Siukola1, Anssi Nurminen1, Pedro F. Vale3, Tiina S. Salminen1

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Department of Molecular Biology, Umeå University, Umeå, Sweden; 3Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom



ID: 376
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Molecular mechanisms of extraocular muscle manifestation in mitochondrial myopathy

Swagat Pradhan, Takayuki Mito, Thomas McWilliams, Nahid Khan, Anu Suomalainen

STEMM, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland

Bibliography
Forsström, S., Jackson, C. B., Carroll, C. J., Kuronen, M., Pirinen, E., Pradhan, S., … Suomalainen, A. (2019). Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress Responses in Mitochondrial Myopathy with mtDNA
Deletions. Cell Metabolism, 1–15. https://doi.org/10.1016/j.cmet.2019.08.019.

Khan, N. A., Nikkanen, J., Yatsuga, S., Jackson, C., Wang, L., Pradhan, S., … Suomalainen, A. (2017). mTORC1 Regulates
Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metabolism, 26(2), 419-428.e5.
https://doi.org/10.1016/j.cmet.2017.07.007

Pradhan, S...Lopus M (2017) “Elucidation of the Tubulin-Targeted Mechanism of Action of 9-(3-Pyridyl) Noscapine.” Cur.
Top. in Medicinal Chemistry, vol. 17, no. 22, 2017, pp. 2569–74, doi:http://dx.doi.org/10.2174/1568026617666170104150304.


ID: 572
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Redox metabolites and transporters: Differential expression and ratios in specific Ndufs4 knockout mice organs.

Jeremie Zander Lindeque, Marthinus Theodorus Jooste, Daneël Nel, Belinda Fouché, Marianne Venter

Human Metabolomics, North-West University, South Africa



ID: 475
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

What makes folding of a mitochondrial protein dependent on the HSP60/HSP10 chaperone complex?

Peter Bross, Cagla Cömert, Paula Fernandez-Guerra, Johan Palmfeldt

Aarhus University and Aarhus University Hospital, Denmark

Bibliography
1.Henriques, B. J., Katrine Jentoft Olsen, R., Gomes, C. M., andBross, P. (2021) Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease Gene 145407 10.1016/j.gene.2021.145407
2.Cömert, C., Brick, L., Ang, D., Palmfeldt, J., Meaney, B. F., Kozenko, M. et al. (2020) A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy Cold Spring Harb Mol Case Stud 6, 10.1101/mcs.a004879
3.Bie, A. S., Comert, C., Korner, R., Corydon, T. J., Palmfeldt, J., Hipp, M. S. et al. (2020) An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space Cell Stress Chaperones 25, 407-416 10.1007/s12192-020-01080-6
4.Palmfeldt, J., andBross, P. (2017) Proteomics of human mitochondria Mitochondrion 33, 2-14 10.1016/j.mito.2016.07.006


ID: 385
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

OXPHOS composition is altered in the FXNI151F mouse model of Friedreich Ataxia in a progressive and a tissue-specific way

Maria Pazos-Gil, Marta Medina-Carbonero, Arabela Sanz-Alcázar, Marta Portillo-Carrasquer, Fabien Delaspre, Elisa Cabiscol, Joaquim Ros, Jordi Tamarit

Dept. Ciències Mèdiques Bàsiques, Fac. Medicina, Universitat de Lleida. IRB Lleida.

Bibliography
Medina-Carbonero M, Sanz-Alcázar A, Britti E, Delaspre F, Cabiscol E, Ros J, Tamarit J. Mice harboring the FXN I151F pathological point mutation present decreased frataxin levels, a Friedreich ataxia-like phenotype, and mitochondrial alterations. Cell Mol Life Sci. 2022 Jan 17;79(2):74.


ID: 482
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Disease causing-Mfn2 mutations alter mitochondrial fusion and fission dynamics and metabolism.

Daniel Lagos1,2, Nicolas Perez2, Pamela R. de Santiago2, Diego Troncoso2, Benjamin Cartes-Saavedra2, Rita Horvath1, Veronica Eisner2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.; 2School of Biological Sciences, Department of Cellular and Molecular Biology, Pontificia Universidad Catolica de Chile, Santiago, Chile.



ID: 284
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dissecting the mitochondrial disease-associated ATAD3 gene cluster and its pathogenic variants

Linden Muellner-Wong1,2, Ann E. Frazier2,3, Eric Hanssen4, Tegan Stait2,3,5, Alice J. Sharpe6, Danielle L. Rudler7,8,9, Shuai Nie10, Luke E. Formosa6, Michael T. Ryan6, Aleksandra Filipovska7,8,9, David R. Thorburn2,3,5, David A. Stroud1,2,5

1Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria,Australia; 2Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; 3Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; 4Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia; 5Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia; 6Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; 7Harry Perkins Institute of Medical Research and The University of Western Australia Centre for Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; 8ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre and University of Western Australia, Nedlands, Western Australia, Australia; 9Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia; 10Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia



ID: 340
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dynamics of adenine nucleotides in colorectal cancer clinical material

Sten Miller1,2, Leenu Reinsalu1,2, Marju Puurand1, Natalja Timohhina1, Kersti Tepp1, Igor Sevchuk1, Indrek Reile1, Heiki Vija1, Vahur Valvere3, Jelena Bogovskaja3, Tuuli Käämbre1

1National Institute of Chemical Physics and Biophysics, Estonia; 2Tallinn University of Technology, Estonia; 3North Estonia Medical Centre

Bibliography
Klepinin, A., Miller, S., Reile, I., Puurand, M., Rebane-Klemm, E., Klepinina, L., Vija, H., Zhang, S., Terzic, A., Dzeja, P., & Kaambre, T. (2022). Stable Isotope Tracing Uncovers Reduced γ/β-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Frontiers in oncology, 12, 892195. https://doi.org/10.3389/fonc.2022.892195

Reinsalu, L., Puurand, M., Chekulayev, V., Miller, S., Shevchuk, I., Tepp, K., Rebane-Klemm, E., Timohhina, N., Terasmaa, A., & Kaambre, T. (2021). Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Frontiers in oncology, 11, 698951. https://doi.org/10.3389/fonc.2021.698951

Kaup, K. K., Toom, L., Truu, L., Miller, S., Puurand, M., Tepp, K., Käämbre, T., & Reile, I. (2021). A line-broadening free real-time 31P pure shift NMR method for phosphometabolomic analysis. The Analyst, 146(18), 5502–5507. https://doi.org/10.1039/d1an01198g


ID: 521
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The role of SURF1 protein in cytochrome c oxidase biogenesis

Maria Jose Saucedo Rodriguez1, Petr Pecina1, Kristýna Čunátová1, Marek Vrbacký1, Alena Pecinová1, Roman Sobotka2, Carlo Viscomi3, Massimo Zeviani4, Tomáš Mráček1, Josef Houštěk1

1Institute of Physiology of the Czech Academy of Sciences, Czech Republic; 2Institute of Microbiology, Czech Academy of Sciences, Trebon, Czech Republic; 3Departement of Biomedical Sciences, University of Padova, Padova, Italy; 4Departement of Neurosciences, University of Padova, Padova, Italy

Bibliography
N. Kovářová, P. Pecina, H. Nůsková, M. Vrbacký, M. Zeviani, T. Mráček, C. Viscomi, J. Houštěk, Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects, BBA, 1862 (2016), 705-15.


ID: 447
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Depicting inclusion body myositis using a patient-derived fibroblast model

Judith Cantó Santos1,2,3, Laura Valls Roca1,2,3, Ester Tobías1,2,3, Francesc Josep García García1,2,3, Mariona Guitart Mampel1,2,3, Félix Andújar Sánchez1,2,3, Anna Esteve Codina4,5, Beatriz Martín Mur4, Mercedes Casado3,6, Rafael Artuch3,6, Estel Solsona Vilarrasa7,8, José Carlos Fernández Checa7,8, Carmen García Ruiz7,8, Carles Rentero9, Carlos Enrich9, Pedro Juan Moreno Lozano1,2,3, José César Milisenda1,2,3, Francesc Cardellach1,2,3, Josep Maria Grau Junyent1,2,3, Glòria Garrabou1,2,3

1Laboratory of Inherited Metabolic Disorders and Muscle Disease, Centre de Recerca Biomèdica CELLEX - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; 2Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain; 3CIBERER— Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain; 4CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; 5Universitat Pompeu Fabra (UPF), Barcelona, Spain; 6Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain; 7Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain; 8CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain; 9Department of Biomedicine, Cell Biology Unit, CELLEX-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain



ID: 223
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Effect of physiological cell culture media on cell viability and NRF2 activation

Anton Terasmaa, Rutt Taba, Marie Põlluaed, Tuuli Käämbre

National Institute of Chemical and Biological Physics, Estonia



ID: 637
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Genetic and functional characterization of a new patient with COX4I1 deficiency

Frederic Tort1, Olatz Ugarteburu1, Gerard Muñoz-Pujol1, María Unceta2, Ainhoa García2, Arantza Arza2, Javier de las Heras2, Antonia Ribes1, Laura Gort1

1Hospital Clinic, IDIBAPS, CIBERER, Barcelona, Spain; 2Hospital Universitario de Cruces, Spain



ID: 233
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Application of the Escherichia coli Model System to Study the Human Polyribonucleotide Phosphorylase

Roberto Pizzoccheri, Federica Anna Falchi, Andrea Alloni, Francesca Forti, Sarah Sertic, Giulio Pavesi, Federica Briani

Università degli Studi di Milano, Italy



ID: 523
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Phase two biotransformation is highly affected by mitochondrial disease: considerations for pharmacological therapies.

Marianne Venter, Belinda Fouché, Louis Mostert, Zander Lindeque, Rencia van der Sluis

Human Metabolomics, North-West University, South Africa

Bibliography
1.Kühn, S., Williams, M. E., Dercksen, M., Sass, J. O., & van der Sluis, R. (2023). The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA-an in-silico and in vitro validation. Computational and Structural Biotechnology Journal, 21, 1236-1248. https://doi.org/10.1016/j.csbj.2023.01.041
2.Gruosso, F., Montano, V., Simoncini, C., Siciliano, G., & Mancuso, M. (2020). Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020. Journal of Clinical Medicine, 10(1), 94. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jcm10010094
3.Fouché, B. R. (2021). Differential expression of genes involved in phase two biotransformation in an NDUFS4 deficient mouse model (Master’s dissertation, North-West University (South Africa)). http://hdl.handle.net/10394/38596


ID: 436
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial phenotyping of fibroblasts from Kearns Sayre’s patients to model the disease

Laura Valls-Roca1,2,3, Judith Cantó-Santos1,2,3, Ester Tobías1,2,3, Francesc Josep García-García1,2,3, Félix Andújar-Sánchez1,2, Laia Farré-Tarrats1,2, Cristina Núñez de Arenas3,6, Rocío Garrido-Moraga5, Joan Padrosa1,2, Raquel Aránega1,2, Pedro J. Moreno-Lozano1,2,3, José César Milisenda1,2, Mar O’Callaghan3,4, Teresa García-Silva3,5, Montserrat Morales-Conejo3,5, Rafael Artuch3,4, Miguel Ángel Martín3,5, José M. Cuezva3,6, Josep M. Grau-Junyent1,2,3, Mariona Guitart-Mampel1,2,3, Glòria Garrabou1,2,3

1Laboratory of Inherited Metabolic Disorders and Muscle Disease, Centre de Recerca Biomèdica CELLEX - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences - Universitat de Barcelona (UB); Barcelona, Spain.; 2Internal Medicine Department - Hospital Clínic de Barcelona; Barcelona, Spain.; 3CIBERER—Spanish Biomedical Research Centre in Rare Diseases; Madrid, Spain.; 4Hospital Sant Joan de Déu (HSJdD) de Barcelona, Barcelona, Spain.; 5Grupo de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (imas12). Madrid. Spain.; 6Centro de Biología Molecular S.O., Universidad Autónoma de Madrid (UAM); Madrid, Spain.



ID: 343
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Effect of various mutations in the GTPase and middle domain of Drp1 on the mitochondrial network, nucleoids, and peroxisomes

Nikol Volfová1, Aleš Hnízda1, Lukáš Alán2, Robert Dobrovolný1, Jakub Sikora1, Jana Křížová1, Lucie Zdražilová1, Hana Hansíková1, Jiří Zeman1, Markéta Tesařová1

1Department of Paediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic; 2Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic



ID: 317
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Importance of human ClpXP protease for mitochondrial function

Daniela Burska, Jana Tesarova, Jana Krizova, Nikol Volfova, Hana Hansikova, Jiri Zeman, Lukas Stiburek

First Faculty of Medicine, Charles University; and General University Hospital in Prague



ID: 581
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Ketogenic diet mitigates the pathogenic phenotype in TMEM70 deficient animal models

Aleksandra Marković1, Petr Pecina1, Alena Pecinová1, Marek Vrbacký1, Jana Mikešová1, Hana Nuskova1, Kateřina Tauchmannová1, Otto Kučera3, Zuzana Cervinkova3, Radislav Sedláček2, Josef Houštěk1, Tomáš Mráček1

1Institute of Physiology of the Czech Acad. Sci., Prague, Czech Republic; 2Institute of Molecular Genetics of the Czech Acad. Sci., Prague, Czech Republic; 3Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic



ID: 276
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mutation in Coq5 leads to CoQ10 deficiency, developmental delay and early death in zebrafish

Sergio López-Herrador1, Julia Corral-Sarasa2, Macarena Gil1, Yaco Morillas1, Luis C. López1,2, Mª. Elena Díaz-Casado1,2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs.Granada, Granada, Spain

Bibliography
[1] Malicdan MCV, Vilboux T, Ben-Zeev B, et al. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat. 2018;39(1):69-79


ID: 364
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Omega-3 supplementation effects on mitochondrial and metabolic profile in a rabbit model of intrauterine growth restriction

Félix Andújar-Sánchez1,2,3, Mariona Guitart-Mampel1,2,3, Míriam Illa3,4, Ester Tobías1,2,3, Laura Valls-Roca1,2,3, Judith Cantó-Santos1,2,3, Laia Farré-Tarrats1,2,3, Clara Oliva3,5, Francesc Cardellach1,2,3, Rafael Artuch3,5, Fàtima Crispi3,4, Glòria Garrabou1,2,3, Francesc J García-García1,2,3

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), 08036 Barcelona, Spain; 2Internal Medicine Unit, Medicine Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; 3Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; 4BCNatal—Barcelona Centre for Maternal-Foetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; 5Department of Clinical Biochemistry, Institut de Recerca de Sant Joan de Deu, Esplugues de Llobregat, 08036 Barcelona, Spain



ID: 616
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Redundant and divergent roles of COQ8A and COQ8B in cell metabolism.

Agata Valentino1, Elisa Baschiera1, Iolanda Spera2, Luna Laera2, Valentina Giorgio3, Alessandra Castegna2, Leonardo Salviati1, Maria Andrea Desbats1

1Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova and “Fondazione Istituto di Ricerca Pediatrica Città Della Speranza”, 35127 Padova, Italy.; 2Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70121 Bari, Italy; 3Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy.



ID: 305
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Loss of CHCHD8 (COA4) caused mitochondrial respiratory Complex IV deficiency

Taku Amo, Yuga Hikage

National Defense Academy, Japan



ID: 341
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Delving into the phenotypic heterogeneity of Coenzyme Q biosynthesis defects

Ariadna Crespo-González1, María del Mar Blanquer-Rosselló1,2, Laura García-Corzo1,2, Carmine Staiano1,2, María Chacón1, Ana Belén Cortés-Rodríguez3, Estefanía Sanabria-Reinoso1, María Almuedo-Castillo1, Miguel Ángel Moreno-Mateos1,2, Gloria Brea-Calvo1,2

1Centro Andaluz de Biología del Desarrollo/Universidad Pablo de Olavide-CSIC-JA, Seville, Spain; 2CIBERER, Instituto de Salud Carlos III, Madrid, Spain; 3Laboratorio de Fisiopatología Celular y Bioenergética, Seville, Spain.



ID: 654
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating the impact of mtDNA point mutations on mitochondrial function and bioenergetics using patient fibroblasts and hiPSC derived neuronal models

Anitta Rose Chacko, Gabriel Esteban Valdebenito, Michael R Duchen

University College London, United Kingdom



ID: 632
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Human COQ10A and COQ10B genes are essential for Coenzyme Q function in mitochondrial respiration

Elisa Baschiera1, Carlo Viscomi1, Maria Andrea Desbats2, Placido Navas3, Leonardo Salviati1,2

1University of Padova, Italy; 2Isituto di Ricerca Pediatrica - Cittá della Speranza, Italy; 3Pablo de Olavide University, Sevilla, Spain

Bibliography
[1] Stefely JA, Pagliarini DJ. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem Sci. 2017 Oct;42(10):824-843. doi: 10.1016/j.tibs.2017.06.008. Epub 2017 Sep 17. PMID: 28927698; PMCID: PMC5731490.
[2] Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, Ibarra H, Clubb RT, Blaby-Haas CE, Clarke CF. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res. 2019 Jul;60(7):1293-1310. doi: 10.1194/jlr.M093534. Epub 2019 May 2. PMID: 31048406; PMCID: PMC6602128.


ID: 286
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The use of β-RA in leptin-deficient mice reveals novel mechanisms of this compound for the treatment of obesity

Sara Torres-Rusillo1, Sergio López-Herrador1, Pilar González-García1, Mª. Elena Díaz-Casado1,2, Laura Jiménez-Sánchez2, Julia Corral-Sarasa2, Julio Ruiz-Travé1, Luis C. López1,2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs.Granada, Granada, Spain

Bibliography
Santos AL, Sinha S. Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev. 2021;67:101268

Hidalgo-Gutiérrez A, Barriocanal-Casado E, Díaz-Casado ME, et al. β-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight. Biomedicines. 2021;9(10):1457


ID: 274
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oocyte-specific mitofusin 2 knockout enhances the metabolic disfunction of offspring born to obese mothers

Jaiane Santana da Paz, Angélica Camargo dos Santos, Lindomar Oliveira Alves, Julio Cesar Valerio Roncato, Renan Omete Ferreira, Victória Hass Gonçalves, Mirela Souza Cáceres, Marcos Roberto Chiaratti

Federal University of Sao Carlos, Brazil

Bibliography
GARCIA, B.M.; MACHADO, T.S.; CARVALHO, K.F.; NOLASCO, P.; NOCITI, R.P.; DEL COLLADO, M.; CAPO BIANCO, M.J.D.; GREJO, M.P.; AUGUSTO NETO, J.D.; SUGIYAMA, F.H.C.; TOSTES, K.; PANDEY, A.K.; GONÇALVES, L.M.; PERECIN, F.; MEIRELLES, F.V.; FERRAZ, J.B.S.; VANZELA, E.C.; BOSCHERO, A.C.; GUIMARÃES, F.E.G.; ABDULKADER, F.; LAURINDO, F.R. M.; KOWALTOWSKI, A.J.; CHIARATTI, M.R. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Molecular Human Reproduction, v. 26, p. 938-952, 2020.


ID: 489
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Off-target effects of etomoxir: inhibition of mitochondrial Complex I and fatty acid oxidation

Timea Komlódi1,2, Filomena SG Silva3, Ana I Duarte3,4,5, Débora Mena3,5,6, Luiz F Garcia-Souza1, Marina Makrecka-Kuka7, Guida Bento3, Luís F Grilo3,5,6, Paulo J Oliveira3, Erich Gnaiger1

1Oroboros Instruments, Innsbruck, Austria; 2Dept Biochem, Semmelweis Univ, Budapest, Hungary; 3CNC-Center Neurosci and Cell Biol, Univ Coimbra, Portugal; 4IIUC-Inst Interdisciplinary Research, Univ Coimbra, Portugal; 5CIBB-Center for Innovative Biomed Biotechnol, Univ Coimbra, Portugal; 6PDBEB-PhD Programme in Exp Biol Biomed, IIUC, Univ Coimbra, Portugal; 7Lab Pharmaceut Pharmacol, Latvian Inst Organic Synthesis, Riga, Latvia

Bibliography
Fischer C, Valente de Souza L, Komlódi T, Garcia-Souza LF, Volani C, Tymoszuk P, Demetz E, Seifert M, Auer K, Hilbe R, Brigo N, Petzer V, Asshoff M, Gnaiger E, Weiss G (2022) Mitochondrial respiration in response to iron deficiency anemia. Comparison of peripheral blood mononuclear cells and liver. https://doi.org/10.3390/metabo12030270

Komlódi T, Tretter L (2022) The protonmotive force – not merely membrane potential. Bioenerg Commun 2022.16. https://doi.org/10.26124/bec:2022-0016

Pallag G, Nazarian S, Ravasz D, Bui D, Komlódi T, Doerrier C, Gnaiger E, Seyfried TN, Chinopoulos C (2022) Proline oxidation supports mitochondrial ATP production when Complex I is inhibited. https://doi.org/10.3390/ijms23095111

Komlódi T, Cardoso LHD, Doerrier C, Moore AL, Rich PR, Gnaiger E (2021) Coupling and pathway control of coenzyme Q redox state and respiration in isolated mitochondria. https://doi.org/10.26124/bec:2021-0003

Komlódi T, Sobotka O, Gnaiger E (2021) Facts and artefacts on the oxygen dependence of hydrogen peroxide production using Amplex UltraRed. https://doi.org/10.26124/bec:2021-0004


ID: 542
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial alterations in sirtuin1 heterozygous mice fed high fat diet and melatonin

Alessandra Stacchiotti1,2, Francesca Arnaboldi1, Gaia Favero3, Aleksandra Korac4, Maria Monsalve5, Rita Rezzani3

1Dept Biomedical Sciences for Health, University of Milan, Milan, Italy; 2Laboratorio Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy; 3Dept Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; 4Center for Electron Microscopy, University of Belgrade, Belgrade, Serbia; 5Instituto de Investigaciones Biomedicas “Alberto Sols” (CSIC-UAM), Madrid, Spain

Bibliography
1. Paramesha B. et al. Antioxidants (2021) 10: 338;
2. Stacchiotti A. et al. Cells (2019) 8: 1053.
3. Stacchiotti A et al. Nutrients (2017) 9:1323.


ID: 1300
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Microproteins in metabolic regulation

Jiemin Nah1, Baptiste Kerouanton1, David Robinson2, Kyle Dunlap3, Pooja Sridnivasan1, Sonia Chothani1, Greg Ducker3, Owen Rackham4, David Stroud2, Lena Ho1

1Duke-NUS Medical School, Singapore; 2University of Melbourne, Australia; 3University of Utah, USA; 4University of Southampton, UK

Bibliography
Lena Ho, PhD (lead PI), is regarded as a pioneer in the field of microprotein research with over 30 primary research articles (5991 citations, H-index of 21) in top-tier journals. With more than 12 years of experience in microprotein discovery, functionalization and therapeutic development, Lena and her team have developed a framework of bioinformatic tools for mining ribo-seq data for disease-relevant small ORF peptides, as well as an extensive range of biochemical tools to validate their function and uncover their molecular mechanism. Lena is an EMBO Young Investigator and HHMI international scholar.
Recent publications :
1) Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity.
Lee CQE, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, Hock DH, Lim R, Nadkarni R, Huynh VT, Lim D, Chew WL, Zhong FL, Stroud DA, Schafer S, Tergaonkar V, St John AL, Rackham OJL, Ho L. Nat Commun. 2021 Apr 9;12(1):2130. doi: 10.1038/s41467-021-22397-5.

2) Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis.
Liang C, Zhang S, Robinson D, Ploeg MV, Wilson R, Nah J, Taylor D, Beh S, Lim R, Sun L, Muoio DM, Stroud DA, Ho L. Cell Rep. 2022 Aug 16;40(7):111204. doi: 10.1016/j.celrep.2022.111204.

3) Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly.
Zhang S, Reljić B, Liang C, Kerouanton B, Francisco JC, Peh JH, Mary C, Jagannathan NS, Olexiouk V, Tang C, Fidelito G, Nama S, Cheng RK, Wee CL, Wang LC, Duek Roggli P, Sampath P, Lane L, Petretto E, Sobota RM, Jesuthasan S, Tucker-Kellogg L, Reversade B, Menschaert G, Sun L, Stroud DA, Ho L.

4) Viral proteases activate the CARD8 inflammasome in the human cardiovascular system.
Nadkarni R, Chu WC, Lee CQE, Mohamud Y, Yap L, Toh GA, Beh S, Lim R, Fan YM, Zhang YL, Robinson K, Tryggvason K, Luo H, Zhong F, Ho L. J Exp Med. 2022 Oct 3;219(10):e20212117. doi: 10.1084/jem.20212117. Epub 2022 Sep 21.


ID: 1301
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oxphos deficiency indicates novel functions for the mitochondrial protein import subunit tim50

Jordan J Crameri1, Catherine S Palmer1, David Coman2, David A Stroud1, David R Thorburn3,4,5, Ann E Frazier3,4, Diana Stojanovski1

1Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia; 2Queensland Children’s Hospital, Department of Metabolic Medicine, South Brisbane, Brisbane, Queensland, 4001, Australia; 3Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia; 4Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia; 5Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia



ID: 1226
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The levels and activation state of the pyruvate dehydrogenase complex modulate the SCAFI-dependent organization of the mitochondrial respiratory chain

Sandra Lopez-Calcerrada1, Ana Sierra-Magro1, Erika Fernández-Vizarra2, Cristina Ugalde1,3

1Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; 2Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain

Bibliography
Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. 2022 Nov 1;34(11):1792-1808.e6. doi: 10.1016/j.cmet.2022.09.005. PMID: 36198313.


ID: 631
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Development of a yeast model to characterize OPA1 mutations associated with different neuromuscular disorders

Cristina Calderan1, Marco Marchi1, Mara Doimo1, Maria Andrea Desbats1, Geppo Sartori2, Leonardo Salviati1

1Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy; 2Department of Biomedical Sciences, University of Padua, Padua, Italy



ID: 263
Clinical 1: from new genes to old and novel phenotypes

An ultra-special family with an ultra-rare condition: three children with mithochondrial complex III deficiency due to homozygous mutations in Lyrm7

Francesca Manzoni, Titia Anita Wischmeijer, Elisa Boni, Lucio Parmeggiani, Andrea Bordugo, Francesca Pellegrini

Bolzano Hospital, Italy

Bibliography
Invernizzi, Federica et al. “A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity.” Human mutation. 2013.
Sánchez E et al. LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells. Biochim Biophys Acta. 2013.
Dallabona C. et al. LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain. 2016.
Hempel M. et al. LYRM7 - associated complex III deficiency: A clinical, molecular genetic, MR tomographic, and biochemical study. Mitochondrion. 2017.
Cherian A. et al. Multifocal cavitating leukodystrophy-A distinct image in mitochondrial LYRM7 mutations. Mult Scler Relat Disord. 2021.
Peruzzo R et al. Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nat Commun. 2021.