Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Session
Session 2.2: Clinical 1: from new genes to old and novel phenotypes
Time:
Monday, 12/June/2023:
11:00am - 12:45pm

Session Chair: Agnes Rotig
Session Chair: Daniele Ghezzi
Location: Bologna Congress Center - Sala Europa

Address: Piazza della Costituzione, 4/a, Bologna (BO), Italy

Invited Speakers: R. Horvath; H. Prokisch

Show help for 'Increase or decrease the abstract text size'
Presentations
Invited
ID: 672
Invited Speakers

The role of mitochondria in neuromuscular diseases

Rita Horvath

Cambridge-UK, United Kingdom

Bibliography
Van Haute L, et al. Nat Commun 2023 Feb 23;14(1):1009


Invited
ID: 696
Invited Speakers

Innovative approaches for the molecular diagnosis of mitochondrial disorders

Holger Prokisch

Technical University Munich Institute of Human Genetics



Oral presentation
ID: 615
Clinical 1: from new genes to old and novel phenotypes

Specialist multidisciplinary input maximises rare disease diagnoses from whole genome sequencing

William L Macken1,2, Micol Falabella1, Caroline McKittrick1, Chiara Pizzamiglio1,2, Rebecca Ellmers3, Kelly Eggleton3, Cathy E. Woodward2,3, Yogen Patel2,3, Robyn Labrum2,3, Genomics England Research Consortium9, Rahul Phadke4, Mary M. Reilly1, Catherine DeVille5, Anna Sarkozy4, Emma Footitt6, James Davison6,7, Shamima Rahman6,8, Henry Houlden1, Enrico Bugiardini1,2, Rosaline Quinlivan1,2,4, Michael G. Hanna1,2, Jana Vandrovcova1, Robert D.S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK; 4Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 5Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 6Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 7National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, London, UK; 8Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; 9Genomics England, One Canada Square London, UK

Bibliography
(1) Riley L.G. et al, The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease Genet Med, 2020 Jul;22(7):1254-1261.
(2) Davis R.L., Use of Whole-Genome Sequencing for Mitochondrial Disease Diagnosis, Neurology. 2022 Aug 16;99(7):e730-e742.


Oral presentation
ID: 553
Clinical 1: from new genes to old and novel phenotypes

Biallelic variants in MCAT in an infant with lactic acidosis, lipoylation disorder, and early death

Melanie T. Achleitner1, Maja Hempel2,3, Konstantinos Tsiakas4, René G. Feichtinger1, Saskia B. Wortmann1,5, René Santer4, Johannes A. Mayr1

1University Children's Hospital, Paracelsus Medical University, Salzburg, Austria; 2Institute of Human Genetics, University Medical Center Eppendorf, Hamburg, Germany; 3Current address: Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany; 4Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany; 5Amalia Children’s Hospital, Radboudumc, Nijmegen, The Netherlands.



Oral presentation
ID: 367
Clinical 1: from new genes to old and novel phenotypes

Biallelic PTPMT1 variants impair cardiolipin metabolism and cause mitochondrial myopathy and developmental regression

Micol Falabella1, Chiara Pizzamiglio1,2, Luis Carlos Tabara3, Ece Sonmezler4, Benjamin Munro5, William L. Macken1,2, Shanti Lu1, Lisa Tilokani3, Padraig J. Flannery6,7, Nina Patel7,8, Simon A. S. Pope7,8, Simon J. R. Heales7,8, Jana Vandrovcova1, Henry Houlden1, Robert W. Taylor9, Cathy E. Woodward6, Robyn Labrum6, Genomics England Research Consortium10, Semra Hiz11, Maha S. Zaki12, Efstathia Chronopoulou13, Germaine Pierre13, Reza Maroofian1, Michael G. Hanna1,2, Yavuz Oktay4,14,15, Rita Horvath5, Julien Prudent3, Robert D. S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge UK; 4Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey; 5Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 6Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK; 7Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; 8Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK; 9Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle upon Tyne, UK; 10Genomics England, London, UK; 11Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; 12Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt; 13Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK; 14Izmir Biomedicine and Genome Center, Izmir, Turkey; 15Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir Turkey



Flash Talk
ID: 201
Clinical 1: from new genes to old and novel phenotypes

Heterozygous missense variants in NUTF2 (nuclear transport factor 2) gene, mapping at the OPA8 locus, cause Dominant Optic Atrophy

Agnese Macaluso1, Alessandra Maresca1, Concetta Valentina Tropeano1, Maria Antonietta Capristo1, Flavia Palombo1, Leonardo Caporali1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1, Piero Barboni2,3, Cristina Villaverde4,5, Carmen Ayuso4,5, Maria Esther Gallardo6,5, Majida Charif7, Sylvie Gerber8, Patrizia Amati-Bonneau7, Guy Lanaers7,9, Jean-Michel Rozet7, Bernd Wissinger10, Valerio Carelli1,11, Valentina Del Dotto11

1IRCCS - Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Studio Oculistico d'Azeglio - Bologna (Italy); 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele - Milano (Italy); 4Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD-UAM) - Madrid (Spain); 5Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Madrid (Spain); 6Grupo de investigación traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain; Centro de Investigación Biomédica en Red (CIBERER) - Madrid (Spain); 7Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc - Angers (France); 8Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University - Paris (France); 9Departments of Biochemistry and Genetics, University Hospital Angers - Angers (France); 10Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany; 11Depart. of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna - Bologna (Italy)



Flash Talk
ID: 348
Clinical 1: from new genes to old and novel phenotypes

Southern African paediatric patients with King Denborough syndrome are exclusively associated with an autosomal recessive STAC3 variant: is this a highly prevalent secondary mitochondrial disease in this African population?

Francois Hendrikus van der Westhuizen1, Maryke Schoonen1, Michelle Bisschoff1, Ronel Human2, Elsa Lubbe2, Malebo Nonyane2, Armand Vorster1, Karin Terburgh1, Robert McFarland3, Robert Taylor3, Mahmoud Fassad3, Krutik Patel3, Wilson Lindsay4, Michael Hanna4, Jana Vandrovcova4, The ICGNMD Consortium5, Izelle Smuts2

1Human Metabolomics, North-West University, Potchefstroom, South Africa; 2Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa; 3Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 4Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; 5https://www.ucl.ac.uk/genomic-medicine-neuromuscular-diseases/global-contributor-list

Bibliography
Schoonen, M., Smuts, I., Louw, R., Elson, J. L., van Dyk, E., Jonck, L. M., Rodenburg, R. J. T., van der Westhuizen, F. H. (2019). Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease. The Journal of molecular diagnostics 21, 503–513.

Meldau, S., Owen, E. P., Khan, K., & Riordan, G. T. (2022). Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings. Journal of clinical pathology 75, 34–38.

Reinecke, C. J., Koekemoer, G., van der Westhuizen, F. H., Louw, R., Lindeque, J. Z., Mienie, L. J., Smuts, I. (2012). Metabolomics of urinary organic acids in respiratory chain deficiencies. Metabolomics 8, 264-283.

Terburgh, K., Coetzer, J., Lindeque, J. Z., van der Westhuizen, F. H., Louw, R. (2021). Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochimica et biophysica acta. Molecular basis of disease 1867, 166082.


Flash Talk
ID: 428
Clinical 1: from new genes to old and novel phenotypes

AK3, adenylate kinase isozyme 3, is a new gene associated with PEO and multiple mtDNA deletions

Alessia Nasca1, Andrea Legati1, Teresa Ciavattini1, Nadia Zanetti1, Eleonora Lamantea1, Javier Ramón2, Ramon Martí2, Maria Antonietta Maioli3, Costanza Lamperti1, Holger Prokisch4,5, Daniele Ghezzi1,6

1Fondazione IRCCS Istituto Neurologico Besta, Italy; 2Vall d'Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain; 3Centro Sclerosi Multipla, P.O. Binaghi, ASL Cagliari, Italy; 4Technical University of Munich, School of Medicine, Institute of Human Genetics, 81675 Munich, Germany; 5Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany; 6Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy



Flash Talk
ID: 411
mtDNA maintenance and expression

Guanylate kinase 1 deficiency: a novel and potentially treatable form of mitochondrial DNA depletion/deletions syndrome

Agustin Hidalgo-Gutierrez1, Jonathan Shintaku1, Eliana Barriocanal-Casado1, Russ Saneto2, Javier Ramon4,7, Gloria Garrabou4,5, Frederic Tort3,4, Jose Cesar Milisenda6, Laura Gort3,4, Alba Pesini1, Saba Tadesse1, Mary-Claire King8, Ramon Marti4,7, Antonia Ribes3,4, Michio Hirano1

1Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; 2Seattle Children’s Hospital, Seattle, WA, USA; 3Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS, Barcelona.; 4Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona; 5Muscle Research and Mitochondrial Function Lab, Cellex - IDIBAPS. Faculty of Medicine and Health Science - University of Barcelona (UB), Barcelona.; 6Department of Internal Medicine, Hospital Clínic of Barcelona.; 7Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.; 8Department of Genome Sciences, University of Washington, Seattle, WA, U.S.A.

Bibliography
1DiMauro, S., Schon, E. A., Carelli, V. & Hirano, M. The clinical maze of mitochondrial neurology. Nat Rev Neurol 9, 429-444, doi:10.1038/nrneurol.2013.126 (2013).
2Lopez-Gomez, C., Camara, Y., Hirano, M., Marti, R. & nd, E. W. P. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 32, 609-620, doi:10.1016/j.nmd.2022.05.008 (2022).
3Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43, 2466-2485, doi:10.1093/nar/gkv047 (2015).
4Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S. & Elpeleg, O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29, 342-344, doi:10.1038/ng751 (2001).
5Mandel, H., Szargel, R., Labay, V., Elpeleg, O., Saada, A., Shalata, A., Anbinder, Y., Berkowitz, D., Hartman, C., Barak, M., Eriksson, S. & Cohen, N. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29, 337-341, doi:10.1038/ng746 (2001).
6Ostergaard, E., Christensen, E., Kristensen, E., Mogensen, B., Duno, M., Shoubridge, E. A. & Wibrand, F. Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81, 383-387, doi:10.1086/519222 (2007).
7Besse, A., Wu, P., Bruni, F., Donti, T., Graham, B. H., Craigen, W. J., McFarland, R., Moretti, P., Lalani, S., Scott, K. L., Taylor, R. W. & Bonnen, P. E. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab 21, 417-427, doi:10.1016/j.cmet.2015.02.008 (2015).
8Sommerville, E. W., Dalla Rosa, I., Rosenberg, M. M., Bruni, F., Thompson, K., Rocha, M., Blakely, E. L., He, L., Falkous, G., Schaefer, A. M., Yu-Wai-Man, P., Chinnery, P. F., Hedstrom, L., Spinazzola, A., Taylor, R. W. & Gorman, G. S. Identification of a novel heterozygous guanosine monophosphate reductase (GMPR) variant in a patient with a late-onset disorder of mitochondrial DNA maintenance. Clin Genet 97, 276-286, doi:10.1111/cge.13652 (2020).
9Shintaku, J., Pernice, W. M., Eyaid, W., Gc, J. B., Brown, Z. P., Juanola-Falgarona, M., Torres-Torronteras, J., Sommerville, E. W., Hellebrekers, D. M., Blakely, E. L., Donaldson, A., van de Laar, I., Leu, C. S., Marti, R., Frank, J., Tanji, K., Koolen, D. A., Rodenburg, R. J., Chinnery, P. F., Smeets, H. J. M., Gorman, G. S., Bonnen, P. E., Taylor, R. W. & Hirano, M. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. J Clin Invest 132, doi:10.1172/JCI145660 (2022).
10Bourdon, A., Minai, L., Serre, V., Jais, J. P., Sarzi, E., Aubert, S., Chretien, D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A. & Rotig, A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39, 776-780, doi:10.1038/ng2040 (2007).
11Khan, N., Shah, P. P., Ban, D., Trigo-Mourino, P., Carneiro, M. G., DeLeeuw, L., Dean, W. L., Trent, J. O., Beverly, L. J., Konrad, M., Lee, D. & Sabo, T. M. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J Biol Chem 294, 11920-11933, doi:10.1074/jbc.RA119.009251 (2019).
12Li, Y., Zhang, Y. & Yan, H. Kinetic and thermodynamic characterizations of yeast guanylate kinase. J Biol Chem 271, 28038-28044, doi:10.1074/jbc.271.45.28038 (1996).
13Agarwal, K. C., Miech, R. P. & Parks, R. E., Jr. Guanylate kinases from human erythrocytes, hog brain, and rat liver. Methods Enzymol 51, 483-490, doi:10.1016/s0076-6879(78)51066-5 (1978).
14Dummer, R., Duvic, M., Scarisbrick, J., Olsen, E. A., Rozati, S., Eggmann, N., Goldinger, S. M., Hutchinson, K., Geskin, L., Illidge, T. M., Giuliano, E., Elder, J. & Kim, Y. H. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous T-cell lymphomas (CTCL) (Mycosis fungoides and Sezary syndrome). Ann Oncol 25, 1807-1812, doi:10.1093/annonc/mdu231 (2014).