Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Date: Tuesday, 13/June/2023
8:00am - 6:30pmSlides Center
Location: Slides Center
8:00am - 6:30pmRegistration Desk
Location: Bologna Congress Center
9:00am - 10:45amSession 3.1: Inflammation and Immunity as mitochondrial contributor to pathology
Location: Bologna Congress Center - Sala Europa
Session Chair: Jose Antonio Enriquez
Session Chair: Daria Diodato
Invited Speakers: S. Pluchino; M. Mittelbrunn
 
Invited
ID: 162
Invited Speakers

Fuels and drivers of smouldering brain disease

Stefano Pluchino, Luca Peruzzotti-Jametti, Alexandra Nicaise

University of Cambridge, United Kingdom

Bibliography
1. MA Leone, et al., S Pluchino, L Peruzzotti-Jametti, AL Vescovi. Foetal Allogeneic Intracerebroventricular Neural Stem Cell Transplantation in People with Secondary Progressive Multiple Sclerosis: A phase I dose-escalation clinical trial. medRxiv https://doi.org/10.1101/2022.11.14.22282124;
2. R Hamel, et al., and S Pluchino. Time-resolved single-cell RNAseq profiling identifies a novel Fabp5-expressing subpopulation of inflammatory myeloid cells in chronic spinal cord injury. bioRxiv, doi.org/10.1101/2020.10.21.346635;
3. A Mottahedin, et al., S Pluchino, L Peruzzotti-Jametti, R Goodwin, C Frezza, M Murphy and T Krieg. Targeting succinate metabolism to decrease brain injury upon mechanical thrombectomy treatment of ischemic stroke. Redox Biology 2023; 59: 102600;
4. Peruzzotti-Jametti, et al., and S Pluchino. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol 2021, https://doi.org/10.1371/journal.pbio.3001166;
5. G Krzak, CM Willis, JA Smith, S Pluchino and L Peruzzotti-Jametti. Succinate receptor SUCNR1 (GPR91) - an emerging regulator of myeloid cell function in neuroinflammation. Trends Immunol 2021; 42(1): 45-58;
6 Pluchino S, Smith JA, Peruzzotti-Jametti L. Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends Mol Med 2020 Oct;26(10):898-912;
7. S Pluchino and JA Smith. Explicating Exosomes: reclassifying the rising stars in intercellular communication. Cell 2019 Apr 4;177(2):225-227;
8. L Peruzzotti-Jametti and S Pluchino. Targeting mitochondrial metabolism in neuroinflammation: towards a therapy for progressive multiple sclerosis? Trends Mol Med. 2018 Oct;24(10):838-855;
9. L Peruzzotti-Jametti, et al., and S Pluchino. Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell 2018 Mar 1; 22(3): 355-368;
10. N Iraci, et al., and S Pluchino. Extracellular vesicles are independent metabolic units delivering functional Asparaginase-like protein 1. Nat Chem Biol 2017 Sep;13(9):951-955.


Invited
ID: 673
Invited Speakers

Immunometabolisms at the crossroad between inflammation and aging

Maria Mittelbrunn

CSIC- Consejo Superior de Investigaciones Cientificas, Spain

Bibliography
Biology Center “Severo Ochoa” (Madrid, Spain) since 2017. Her research goal is to identify new strategies to target immune cells for boosting systemic resilience to inflammaging, cellular senescence and age-related multimorbidity. She has obtained funding from the major European and Spanish funding organizations, including an European Research Council Starting Grant in 2016, and Consolidator Grant in 2022.


Among the more important discoveries from her lab:

1.Demonstration that mimicking age-associated mitochondrial dysfunction in T cells does not only recapitulate immunosenescence, but causes a general, body-wide deterioration of health with multiple aging-related features. These results place the metabolism of T cells at the crossroad between inflammation, senescence and aging, highlighting that immunometabolism can be a therapeutic target to delay aging.
2.Decoding the molecular mechanisms by which aged T cells contribute to inflammaging and age-related diseases
3.The above studies in her laboratory have allowed them to propose new therapeutic targets to delay age-related multimorbidity and to reverse aortic aneurysms and prevent sudden death due to aortic dissections

Her international leadership in the field is endorsed by having been an "Invited Speaker" at more than 60 conferences and international congresses in the last 5 years, including Gordon Conferences, Cold Spring Harbor Conferences, EMBO workshops, Keystone Symposium, and participating as a keynote speaker on several occasions.

She has been awarded with ,L’Oréal UNESCO for Women in Science (2015), and BANCO SABADELL AWARD for Biomedical Research (2022), Royal Spanish Acadamy of Science for Female Scientist among others.


Oral presentation
ID: 491
Inflammation and Immunity as mitochondrial contributor to pathology

Dissecting the role of type I interferon signaling in microglial response in a mouse model of mitochondrial disease

Melania González-Torres1,2, Patrizia Bianchi1, Patricia Prada-Dacasa1, Joaquín Fernández-Irigoyen3, Enrique Santamaría3, Mariona Arberola4, Elisenda Sanz1,2, Albert Quintana1,2

1Institute of Neurosciences, Autonomous University of Barcelona, Barcelona, Spain; 2Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain; 3Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain; 4Centro de Análisis Genómico, CNAG-CRG, Barcelona, Spain

Bibliography
Gella, A., Prada, P., Carrascal, M., Urpí, A., González-Torres, M., Abian, J., Sanz, E., & Quintana, A. (2020). Mitochondrial Proteome of Affected Glutamatergic Neurons in a Mouse Model of Leigh Syndrome. Frontiers in Cell and Developmental Biology, 8, 660.


Oral presentation
ID: 323
Inflammation and Immunity as mitochondrial contributor to pathology

The contribution of cell free-mitochondrial DNA in the pathogenesis of MELAS syndrome

Alessandra Maresca1, Monica Moresco1, Valentina Del Dotto2, Concetta Valentina Tropeano1, Mariantonietta Capristo1, Claudio Fiorini1, Danara Ormanbekova1, Alessandro Rapone2, Maria Lucia Valentino1,2, Chiara La Morgia1,2, Valerio Carelli1,2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Italy; 2Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy



Oral presentation
ID: 182
Inflammation and Immunity as mitochondrial contributor to pathology

A novel role for the mitochondrial topoisomerase TOP1MT in mediating mtDNA release and cGAS-STING activation

Iman Al Khatib1, Yves Pommier2, Phillip West3, William Gibson4, Tim Shutt1

1University of Calgary, Canada; 2National Institutes of Health; 3Texas A&M University; 4University of British Columbia

Bibliography
Al Khatib I, Deng J, Symes SA, Zhang H, Huang S, Pommier Y, Khan A, Gibson W, Shutt TE. Activation of the cGAS-STING innate immune response in cells with deficient mitochondrial topoisomerase TOP1MT. https://www.biorxiv.org/content/10.1101/2022.03.08.483326v1

Al Khatib I, Kerr M, Zhang H, Huang S, Pommier Y, Khan A, Shutt TE. Functional characterization of two variants in the mitochondrial topoisomerase gene TOP1MT that impact regulation of the mitochondrial genome. Journal of Biological Chemistry. 2022 Oct; 298(10):102420.


Flash Talk
ID: 209
Inflammation and Immunity as mitochondrial contributor to pathology

Impaired inflammatory response to lipopolysaccharide in fibroblasts from patients with long-chain fatty acid oxidation disorders

Signe Mosegaard1,2, Krishna Twayana3, Simone Denis1, Jeffrey Kroon4, Bauke Schomakers5, Michel van Weeghel5, Riekelt Houtkooper1, Rikke Olsen2, Christian Holm3

1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 2Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark; 3Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark; 4Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 5Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Bibliography
Mosegaard S*, Dipace G*, Bross P, Carlsen J, Gregersen N, Olsen RKJ. 2020. ”Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism”. International Journal of Molecular Sciences;21(11):3847. doi: 10.3390/ijms21113847.

Mosegaard S*, Bruun GH*, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. 2017. “An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency”. Molecular Genetics and Metabolism;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014.

Olsen RKJ*, Koňaříková E*, Giancaspero TA*, Mosegaard S*, Boczonadi V*, Mataković L*, ….. Barile M, Prokisch H. 2016. ”Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency”. American Journal of Human Genetics;98(6):1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

V.A. Yépez, M. Gusic, R. Kopajtich, C. Mertes, N.H. Smith, C.L. Alston, R. Ban, S. Beblo, R. Berutti, H. Blessing, E. Ciara, F. Distelmaier, P. Freisinger, J. Häberle, S.J. Hayflick, M. Hempel, Y.S. Itkis, Y. Kishita, T. Klopstock, T.D. Krylova, C. Lamperti, D. Lenz, C. Makowski, S. Mosegaard, M.F. Müller, G. Muñoz-Pujol, A. Nadel, A. Ohtake, Y. Okazaki, E. Procopio, T. Schwarzmayr, J. Smet, C. Staufner, S.L. Stenton, T.M. Strom, C. Terrile, F. Tort, R. Van Coster, A. Vanlander, M. Wagner, M. Xu, F. Fang, D. Ghezzi, J.A. Mayr, D. Piekutowska-Abramczuk, A. Ribes, A. Rötig, R.W. Taylor, S.B. Wortmann, K. Murayama, T. Meitinger, J. Gagneur, H. Prokisch, Clinical implementation of RNA sequencing for Mendelian disease diagnostics, Genome Med. 14 (2022) 38. https://doi.org/10.1186/s13073-022-01019-9.

Fogh S, Dipace G, Bie A, Veiga-da-Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. “Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria?” J Inherit Metab Dis. 2021 Sep;44(5):1215-1225. doi: 10.1002/jimd.12394.

Muru K., Reinson K., Künnapas K., Lilleväli H., Nochi Z., Mosegaard S., Pajusalu S., Olsen R. and Õunap K. “FLAD1 Asso-ciated Multiple Acyl-CoA Dehydrogenase Deficiency Identified by Newborn Screening.”. Molecular Genetics & Genomic Medicine;7(9). doi: 10.1002/mgg3.915.

García-Villoria J., de Azua B., Tort F., Mosegaard S., Matalonga L., Ugarteburu O., Teixidó L., Olsen R. and Ribes A. “FLAD1, a recently described gene associated to multiple acyl-CoA dehydrogenase deficiency (MADD) is mutated in a patient with myopathy, scoliosis and cataracts.”. Clinical Genetics;94(6):592-593. doi: 10.1111/cge.13452.

Auranen M., Paetau A., Piirilä P., Pohju A., Salmi T., Lamminen A., Thure H., Löfberg M., Mosegaard S., Olsen R., Tyni T. “FLAD1 gene mutation causes riboflavin responsive MADD disease”. Neuromuscular Disorders;27(6):581-584. doi: 10.1016/j.nmd.2017.03.003.


Flash Talk
ID: 409
Inflammation and Immunity as mitochondrial contributor to pathology

Fumarate induces mtDNA release via mitochondrial-derived vesicles and drives innate immunity

Vincent Paupe1, Vincent Zecchini2, Christian Frezza2,3, Julien Prudent1

1Medical Research Council, MBU,University of Cambridge, UK; 2Medical Research Council Cancer Unit,University of Cambridge, UK; 3CECAD Research Centre, University of Cologne, Cologne, Germany

Bibliography
AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology.
Tilokani L, Russell FM, Hamilton S, Virga DM, Segawa M, Paupe V, Gruszczyk AV, Protasoni M, Tabara LC, Johnson M, Anand H, Murphy MP, Hardie DG, Polleux F, Prudent J.
Sci Adv. 2022 Nov 11;8(45):eabo7956. doi: 10.1126/sciadv.abo7956. Epub 2022 Nov 11. PMID: 36367943

Mitochondrial translation is required for sustained killing by cytotoxic T cells.
Lisci M, Barton PR, Randzavola LO, Ma CY, Marchingo JM, Cantrell DA, Paupe V, Prudent J, Stinchcombe JC, Griffiths GM.
Science. 2021 Oct 15;374(6565):eabe9977. doi: 10.1126/science.abe9977. Epub 2021 Oct 15.
PMID: 34648346

Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division.
Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H, Pogson JH, Zunino R, McBride HM, Prudent J.
Science. 2020 Mar 20;367(6484):1366-1371. doi: 10.1126/science.aax6089.
PMID: 32193326

SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, Shoubridge EA. EMBO Mol Med. 2016 Sep 1;8(9):1019-38. doi: 10.15252/emmm.201506159. Print 2016 Sep.
PMID: 27390132

CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter.
Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA.
Cell Metab. 2015 Jan 6;21(1):109-16. doi: 10.1016/j.cmet.2014.12.004.
PMID: 25565209


Flash Talk
ID: 430
Inflammation and Immunity as mitochondrial contributor to pathology

Free cytosolic-mitochondrial DNA triggers a potent type-I Interferon response in Kearns–Sayre patients counteracted by mofetil mycophenolate

Michela Di Nottia1, Ivan Caiello2, Alessandra Torraco1, Martina Zoccola1, Fabrizio De Benedetti2, Carlo Dionisi-Vici3, Enrico Bertini4, Diego Martinelli3, Rosalba Carrozzo1

1Unit of Cellular Biology and Diagnosis of Mitochondrial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; 2Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 3Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Research Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

 
10:45am - 11:00amCoffee Break
Location: Bologna Congress Center
11:00am - 12:40pmSession 3.2: Mitochondrial mechanisms in neurodegeneration and neurodevelopment
Location: Bologna Congress Center - Sala Europa
Session Chair: Vincent Procaccio
Session Chair: Elena Rugarli
 
Invited
ID: 675
Invited Speakers

Destructuring of mitochondrial cristae in the initiation of CHCHD10-related neurodegeneration

Véronique Paquis-Flucklinger1,2

1IRCAN, UMR 7284/INSERM U1081/UCA, Nice, France; 2Reference Center for mitochondrial diseases, Universitary hospital, Nice, France



Invited
ID: 670
Invited Speakers

Convergence of mitochondrial and lysosomal dysfunction in Parkinson’s disease

Lena F Burbulla

Ludwig Maximilian University (LMU) Munich, Germany



Oral presentation
ID: 588
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Development of cortical organoids to model m.3243A>G disease and understand cell specificity

Denisa Hathazi, Yu Nie, Camilla Lions, Juliane Müller, George Gibbons, Patrick Chinnery, Andras Lakatos, Rita Horvath

University of Cambridge, United Kingdom



Oral presentation
ID: 623
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Brain and brainstem-specific mitochondrial diversity associated with vulnerability to neurodegeneration in mitochondrial diseases

Anna S. Monzel1, Masashi Fujita2, Ayelet M. Rosenberg1, Eugene V. Mosharov3,6, Jack Devine1, David A. Bennett4,5, Vilas Menon2, Philip L. De Jager2, Martin Picard1,6,7

1Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York NY, USA; 2Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York NY, USA; 3Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, New York NY, USA; 4Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; 5Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; 6New York State Psychiatric Institute, New York NY, USA; 7Department of Neurology, Columbia University Irving Medical Center, New York NY, USA



Oral presentation
ID: 527
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial DNA mutations exacerbate motor and behavioural deficits in a mouse model of Parkinson’s disease

Michael J Keogh1,2, Yu Nie2,3, Zoe Golder2,3, Malwina Prater2,3, Nils-Goran Larsson4, Andrew Blamire1,5, Chris Morris1, Patrick F Chinnery2,3

1Clinical and Translational Research Institute, Centre for Life, Newcastle University, UK, NE3 1BZ; 2Department of Clinical Neuroscience, University of Cambridge, UK, CB2 0QQ; 3Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK, CB2 0QQ; 4Division of Molecular Metabolism, Biomedicum, floor 9D, Solnavägen 9, Karlolinska Institute, 171 65 Stockholm, Sweden; 5Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, NE4 5PL

Bibliography
Nie, Yu, et al. "Heteroplasmic mitochondrial DNA mutations in frontotemporal lobar degeneration." Acta Neuropathologica 143.6 (2022): 687-695.
Murley, Alexander G., et al. "High-Depth PRNP Sequencing in Brains With Sporadic Creutzfeldt-Jakob Disease." Neurology Genetics 9.1 (2023).
Burr, Stephen P., et al. "Cell lineage-specific mitochondrial resilience during mammalian organogenesis." Cell (2023).


Flash Talk
ID: 556
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Macromolecular crowding: A novel player in mitochondrial physiology and disease

Elianne P Bulthuis1, Cindy EJ Dieteren1, Jesper Bergmans1, Job Berkhout1, Jori A Wagenaars1, Els MA van de Westerlo1, Emina Podhumljak1, Mark A Hink2, Laura FB Hesp1, Hannah S Rosa3, Afshan N Malik3, Mariska Kea-te Lindert1, Peter HGM Willems1, Han JGE Gardeniers4, Wouter K den Otter4, Merel JW Adjobo-Hermans1, Werner JH Koopman1,5

1Radboud University Medical Center, The Netherlands; 2University of Amsterdam, The Netherlands; 3King's College, London, UK; 4University of Twente, The Netherlands; 5Wageningen University, The Netherlands

Bibliography
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MK, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J. 2023 Feb 24:e108533. doi: 10.15252/embj.2021108533. Epub ahead of print. PMID: 36825437.

Bulthuis EP, Adjobo-Hermans MJW, Willems PHGM, Koopman WJH. Mitochondrial Morphofunction in Mammalian Cells. Antioxid Redox Signal. 2019 Jun 20;30(18):2066-2109. doi: 10.1089/ars.2018.7534. Epub 2018 Nov 29.

Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ. Solute diffusion is hindered in the mitochondrial matrix. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8657-62. doi: 10.1073/pnas.1017581108. Epub 2011 May 9. PMID: 21555543; PMCID: PMC3102363.


Flash Talk
ID: 342
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Preserved motor function and striatal innervation despite severe degeneration of dopamine neurons upon mitochondrial dysfunction

Thomas Paß1, Roy Chowdury2, Julien Prudent2, Yu Nie3, Patrick Chinnery3, Markus Aswendt4, Heike Endepols5, Bernd Neumaier5, Trine Riemer6, Bent Brachvogel6, Rudi Wiesner7

1Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Germany; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK; 3Medical Research Council Mitochondrial Biology Unit and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, UK; 4Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; 5Institute of Radiochemistry and Experiment Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Germany; 6Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, Germany; 7Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Center for Molecular Medicine Cologne, University of Cologne, Germany

Bibliography
(1) Ricke, K.M., T. Paß, S. Kimoloi, K. Fährmann, C. Jüngst, A. Schauss, O.R. Baris, M. Aradjanski, A. Trifunovic, T.M. Eriksson Faelker, M. Bergami and R.J. Wiesner (2020): Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. J Neuroscience 40: 1975-1986
(2) Dölle C., Flønes I., Nido G.S., Miletic H., Osuagwu N., Kristoffersen S., Lilleng P.K., Larsen J.P., Tysnes O.B., Haugarvoll K., Bindoff L.A., Tzoulis C. (2016): Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 7: 13548.


Flash Talk
ID: 320
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The mitochondrial DNA depletion syndrome protein FBXL4 mediates the degradation of the mitophagy receptors BNIP3 and NIX to suppress mitophagy

Keri-Lyn Kozul1, Giang Thanh Nguyen-Dien1,2, Yi Cui1, Prajakta Gosavi Kulkarni1, Michele Pagano3,4, Brett M. Collins5, Robert Taylor6,7, Mathew J.K. Jones8, Julia K. Pagan1,5,8

1School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia; 2Department of Biotechnology, School of Biotechnology, Viet Nam National University-International University, Ho Chi Minh City, Vietnam; 3Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA; 4Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA; 5The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia

Bibliography
Nguyen-Dien G, Kozul K, Cui Y, Townsend B, Gosavi Kulkarni P, Ooi S, Marzio A, Carrodus N, Zuryn S, Pagano M et al. (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv 2022.10.12.511867; doi: https://doi.org/10.1101/2022.10.12.511867
 
12:40pm - 12:45pmConference Picture
Location: Bologna Congress Center - Sala Europa
12:45pm - 1:15pmIndustry Workshop: Oroboros
Location: Bologna Congress Center - Sala Europa
12:45pm - 1:45pmLunch
Location: Bologna Congress Center - Sala Europa
1:45pm - 3:30pmSession 3.3: Metabolic stress responses in mitochondrial diseases and cancer
Location: Bologna Congress Center - Sala Europa
Session Chair: Luca Scorrano
Session Chair: Luisa Iommarini
Invited Speaker: A. Trifunovic; L. Greaves
 
Invited
ID: 195
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Transcriptional regulation of mitochondrial stress responses

Aleksandra Trifunovic

University of Cologne, Germany

Bibliography
1.Croon M, Szczepanowska K, Popovic M, Lienkamp C, Senft K, Brandscheid CP, Theresa Bock T, Gnatzy-Feik L, Ashurov A, Acton RA, Kaul H, Pujol C, Rosenkranz S, Krüger M and Trifunovic A. (2022) FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction. Sci Adv. 2022 Apr 8;8(14):eabn7105.
2.Rumyantseva A, Popovic M and Trifunovic A. (2022) CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis. Brain Feb 11;e109169.
3.Kaspar, S., Oertlin, C., Szczepanowska, K., Kukat, A., Senft, K., Lucas, C., Brodesser, S., Hatzoglou, M., Larsson, O., Topisirovic, I., Trifunovic, A. (2021) Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Sci. Adv. 7, eabf0971


Invited
ID: 678
Invited Speakers

Mitochondrial DNA mutations in ageing and cancer - what's the connection?

Anna Smith1, Julia Whitehall1, Shivam Karadkar1, Pedro Silva-Pinheiro2, Conor Lawless1, Michal Minczuk2, Doug Turnbull1, Owen Sansom3, Laura Greaves1

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2MRC Mitochondrial Biology Unit, Cambridge, United Kingdom; 3CRUK Beatson Institute, Glasgow, United Kingdom

Bibliography
Gorelick, A. N., M. Kim, W. K. Chatila, K. La, A. A. Hakimi, M. F. Berger, B. S. Taylor, P. A. Gammage and E. Reznik (2021). "Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA." Nat Metab 3(4): 558-570.

Greaves, L. C., M. J. Barron, S. Plusa, T. B. Kirkwood, J. C. Mathers, R. W. Taylor and D. M. Turnbull (2010). "Defects in multiple complexes of the respiratory chain are present in ageing human colonic crypts." Exp Gerontol 45(7-8): 573-579.

Smith, A. L. M., J. C. Whitehall, C. Bradshaw, D. Gay, F. Robertson, A. P. Blain, G. Hudson, A. Pyle, D. Houghton, M. J. Hunt, J. N. Sampson, C. Stamp, G. Mallett, S. Amarnath, J. Leslie, F. Oakley, L. Wilson, A. Baker, O. M. Russell, R. Johnson, C. A. Richardson, B. Gupta, I. McCallum, S. A. C. McDonald, S. Kelly, J. C. Mathers, R. Heer, R. W. Taylor, N. D. Perkins, D. M. Turnbull, O. J. Sansom and L. C. Greaves (2020). "Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis." Nature Cancer 1(10): 976-989.


Oral presentation
ID: 452
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria

Janne Purhonen1,2, Rishi Banerjee1,2, Vilma Wanne1,2, Nina Sipari3, Matthias Mörgelin4,5, Vineta Fellman1,2,6,7, Jukka Kallijärvi1,2

1Folkhälsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; 3Viikki Metabolomics Unit, University of Helsinki, Finland; 4Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden; 5Colzyx AB, Lund, Sweden; 6Department of Clinical Sciences, Lund, Pediatrics, Lund University, Sweden; 7Children’s Hospital, Helsinki University Hospital, Finland

Bibliography
Purhonen J., Banerjee R, Wanne V. Sipari N. Mörgelin M. Fellman V. and Kallijärvi J. Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria. BioRxiv 2023; 01.10.521980.

Purhonen J. and Kallijärvi J. Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription. BioRxiv 2023; 02.18.527797.

Banerjee R. Purhonen J. and Kallijärvi, J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. The FEBS Journal 2021; 289, 6936–6958.

Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye, and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Research 2020: gkaa516

Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nature Communications 2020;11:1–12.

Rajendran J, Purhonen J, Tegelberg S, Smolander OP, Mörgelin M, Rozman J, Gailus-Durner J, Fuchs H, Hrabe de Angelis M, Auvinen P, Mervaala E, Jacobs HT, Szibor M, Fellman V, Kallijärvi J. Alternative oxidase‐mediated respiration prevents lethal mitochondrial cardiomyopathy. EMBO Molecular Medicine 2019;11:e9456.


Oral presentation
ID: 624
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A genetic deficiency screen in vivo reveals rescue mechanisms of mitochondrial dysfunction

Najla El Fissi1, Florian Rosenberger2, Kai Chang1, Thomas Benedict Barton-Owen3, Zoe Golder3, Matthias Mann2, Patrick Chinnery3, Anna Wedell1, Christoph Freyer1, Anna Wredenberg1

1Karolinska Institutet, Sweden; 2Max-Planck Institute of Biochemistry, Germany; 3University of Cambridge, Cambridge Biomedical Campus, UK



Oral presentation
ID: 456
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Heterochromatin Protein 1 controls gene expression and longevity in response to mitochondrial dysfunction

Patricia de la Cruz Ruiz1, Hayat Heluani Gahete1,2, María de los Angeles Ortega De La Torre2, María Jesús Rodríguez Palero1,2, Cristina Ayuso García1, Shinya Ohta3, Peter Askjaer1, Marta Artal-Sanz1,2

1Andalusian Centre for Developmental Biology (CABD). CSIC-Universidad Pablo de Olavide-Junta de Andalucía. Carretera de Utrera Km 1, 41013 Sevilla, Spain.; 2Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide. Carretera de Utrera Km 1, 41013 Seville, Spain; 3Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan.



Flash Talk
ID: 381
Metabolic stress responses in mitochondrial diseases, ageing and cancer

High fat diet ameliorates the mitochondrial cardiomyopathy of CHCHD10 mutant mice

Hibiki Kawamata, Nneka Southwell, Nicole Sayles, Giovanni Manfredi

Weill Cornell Medicine, United States of America



Flash Talk
ID: 413
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Functional characterisation of the human mitochondrial disaggregase, CLPB

Megan J Baker1, Alexander J Anderson1, Catherine S Palmer1, David R Thorburn2,3, Ann E Frazier2, Diana Stojanovski1

1Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville VIC 3010, Australia; 2Murdoch Children’s Research Institute, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville VIC 3052, Australia; 3Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Parkville VIC 3052, Australia



Flash Talk
ID: 448
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitochondrial inhibitor IF1 has a dual role in cancer

Martina Grandi1, Cristina Gatto1, Simone Fabbian2, Natascia Tiso3, Francesco Argenton3, Massimo Bellanda2, Giancarlo Solaini1, Valentina Giorgio*1, Alessandra Baracca*1

1Department of Biomedical and Neuromotor Sciences, University of Bologna; 2Department of Chemical Science, University of Padova; 3Department of Biology, University of Padova, Padova

Bibliography
1. Galber, C; Fabbian, S; Gatto, C; Grandi, M; Carissimi, S; Acosta, MJ; Sgarbi, G; Tiso, N; Argenton, F; Solaini, G; Baracca, A; Bellanda, M; Giorgio,CELL DEATH & DISEASE, 2023, 14, pp. 1 - 19
2. Gatto, C; Grandi, M; Solaini, G; Baracca, A; Giorgio, V, FRONTIERS IN PHYSIOLOGY, 2022, 13, 917203, pp. 1 - 11
3. Galber C; Minervini G; Cannino G; Boldrin F; Petronilli V; Tosatto S; Lippe G; Giorgio V, CELL REPORTS, 2021, 35, 109111, pp. 1 - 14
 
3:30pm - 3:50pmIndustry Workshop: UCB Farchim SA
Location: Bologna Congress Center - Sala Europa
3:30pm - 4:30pmTea Break and poster session
Location: Bologna Congress Center
Session topics:
- Clinical 2: natural history, biomarkers and outcome measures
- Inflammation and Immunity as mitochondrial contributor to pathology
- Metabolic stress responses in mitochondrial diseases, ageing and cancer
 
ID: 653
Clinical 2: natural history, biomarkers and outcome measures

Evaluating functional mobility and endurance in adults with Primary Mitochondrial Myopathy (PMM); insights concerning gait protocol and outcome measure selection.

Lisa Alcock1,2, Alaa Abouhajar3, Theophile Bigirumurame4, Penny Bradley5, Philip Brown6, Laura Brown7, Ian Campbell5, Silvia Del Din1,2, Julie Faitg7, Gavin Falkous7, Gráinne S. Gorman2,7,8, Heather Hunter6, Rachel Lakey3, Robert McFarland7,8, Jane Newman2,7,8, Lynn Rochester1,2,6, Vicky Ryan4, Hesther Smith5, Alison Steel3, Renae J. Stefanetti2,7, Huizhong Su2,7, Robert W. Taylor2,7,8, Naomi J.P. Thomas2,7,8, Helen Tuppen2,7, Amy E. Vincent7, Charlotte Warren2,7, Gillian Watson3

1Translational and Clinical Research Institute, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 3Newcastle Clinical Trials Unit, Newcastle University, UK; 4Population Health Sciences Institute, Newcastle University, UK; 5Pharmacy Directorate, The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 6The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK; 7Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, UK; 8NHS Highly Specialised Service for Rare Mitochondrial Disorders, The Newcastle upon Tyne Hospitals NHS Foundation Trust, UK



ID: 173
Clinical 2: natural history, biomarkers and outcome measures

Natural variability in protein expression of oxidative deficiency markers in single muscle fibres and tissue homogenate mitochondrial genetics in m.3243A>G-related myopathy

Tiago Bernardino Gomes1,2, Charlotte Warren1, Valeria Di Leo1, Jordan Childs1,3, Grainne Gorman1,2, Doug M Turnbull1, Amy E Vincent1

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom; 3Centre for Doctoral Training in Cloud Computing and Big Data, Newcastle upon Tyne, United Kingdom

Bibliography
Bernardino Gomes, T. (2019). The best care for children with facioscapulohumeral dystrophy. Dev Med Child Neurol, 61(8), 865. doi:10.1111/dmcn.14158
Bernardino Gomes, T. M., Ng, Y. S., Pickett, S. J., Turnbull, D. M., & Vincent, A. E. (2021). Mitochondrial DNA disorders: From pathogenic variants to preventing transmission. Hum Mol Genet. doi:10.1093/hmg/ddab156
Horrigan, J., Gomes, T. B., Snape, M., Nikolenko, N., McMorn, A., Evans, S., . . . Lochmuller, H. (2020). A Phase 2 Study of AMO-02 (Tideglusib) in Congenital and Childhood-Onset Myotonic Dystrophy Type 1 (DM1). Pediatric Neurology, 112, 84-93. doi:10.1016/j.pediatrneurol.2020.08.001
Leo, V. D., Lawless, C., Roussel, M.-P., Gomes, T. B., Gorman, G. S., Russell, O. M., . . . Vincent, A. E. (2023). Strength training rescues mitochondrial dysfunction in skeletal muscle of patients with myotonic dystrophy type 1. medRxiv, 2023.2001.2020.23284552. doi:10.1101/2023.01.20.23284552


ID: 402
Clinical 2: natural history, biomarkers and outcome measures

Retrospective natural history of mitochondrial deoxyguanosine kinase deficiency: a worldwide cohort of 197 patients

E. Manzoni1,2, P. Gaignard3, L.D. Schlieben4,5, S. Carli1, M. Hirano6, D. Ronchi7, E. Gonzales8, M. Shimura9, K. Murayama9, Y. Okazaki10, I. Baric11, D. Ramadza11, D. Karall12, J. Mayr13, D. Martinelli14, C. La Morgia15,16, G.A. Primiano17,18, R. Santer19, S. Servidei17,18, C. Bris20, A. Cano21, F. Furlan22, S. Gasperini23, N. Laborde24, C. Lamperti25, D. Lenz26, M. Mancuso27, F. Menni22, O. Musumeci28, V. Nesbitt29, E. Procopio30, C. Rouzier31, C. Staufner26, J.W. Taanman32, G. Tal33, C. Ticci30, V. Carelli15,16, V. Procaccio20, H. Prokisch4,5, C. Garone1,2

1Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna; 2IRCCS Istituto delle Scienze Neurologiche, Neuropsichiatria dell’età pediatrica, Bologna; 3Department of Biochemistry, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, France; 4School of Medicine, Institute of Human Genetics, Technical University of Munich,Germany; 5Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany; 6H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; 7Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 8Pediatric Hepatology and Pediatric Liver Transplantation Unit, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France; 9Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-000, Japan; 10Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; 11Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia; 12Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria; 13University Children's Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; 14Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; 15Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 16IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 17Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.; 18Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.; 19Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; 20MitoLab, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute , Angers University Hospital, Angers, France; 21Centre de référence des maladies héréditaires du métabolisme, CHU la Timone Enfants, Marseille, France; 22Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Regional Clinical Center for expanded newborn screening, Milan, Italy; 23Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy.; 24Unité de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse, France; 25Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Neurological Institute "C. Besta", Milan, Italy; 26Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; 27Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa & AOUP, Italy; 28Unit of Neurology and Neuromuscular Disorders, Department of Clinical and experimental Medicine, University of Messina, Italy; 29Department of Paediatrics, Medical Sciences Division, Oxford University, Oxford OX3 9DU, UK; 30Metabolic Unit, Meyer Children's Hospital IRCCS, Florence, Italy; 31Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France; 32Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; 33Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel



ID: 315
Clinical 2: natural history, biomarkers and outcome measures

Tissue, molecular and metabolic changes in the liver of patients with Mitochondrial Neurogastrointestinal Encephalomyopathy

Elisa Boschetti1, Leonardo Caporali1, Irene Neri1, Claudio Fiorini2, Danara Ormanbekova2, Valeria Righi3, Roberto D'Angelo2, Carolina Malagelada4, Roberta Costa1, Giovanna Cenacchi1, Rita Rinaldi2, Antonietta D'Errico5, Maria Lucia Tardio5, Stefano Ratti1, Roberto De Giorgio6, Valerio Carelli1,2, Lucia Manzoli1

1Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna. Italy; 3Department of Life Quality Studies (QuVI), University of Bologna, Bologna, Italy; 4University Hospital Vall d'Hebron. Barcelona. Spain; 5IRCCS St. Orsola. Bologna. Italy; 6Department of Translational Medicine, University of Ferrara, Ferrara, Italy

Bibliography
1. Hirano M et al. and Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mi-tochondrial disorder. Neurology 44: 721–727, 1994. doi:10.1212/wnl.44.4.721

2. Hirano M et al Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE In-ternational Network. J Inherit Metab Dis 1–12, 2020. doi:10.1002/jimd.12300.

3. De Giorgio R et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol 80: 448–455, 2016. doi:10.1002/ana.24724


ID: 206
Clinical 2: natural history, biomarkers and outcome measures

Phenotyping mtDNA-related diseases in childhood: a cohort study of 150 patients

Anna Ardisssone, Giulia Ferrera, Costanza Lamperti, Valeria Tiranti, Daniele Ghezzi, Isabella Moroni, Eleonora Lamantea

Fondazione IRCCS Besta, Milan Italy

Bibliography
Please enter recent publications by the first author.
1. Mitochondrial epilepsy: a cross-sectional nationwide Italian survey.
Ticci C, Sicca F, Ardissone A, Bertini E, Carelli V, Diodato D, Di Vito L, Filosto M, La Morgia C, Lamperti C, Martinelli D, Moroni I, Musumeci O, Orsucci D, Pancheri E, Peverelli L, Primiano G, Rubegni A, Servidei S, Siciliano G, Simoncini C, Tonin P, Toscano A, Mancuso M, Santorelli FM.
Neurogenetics. 2020 Apr;21(2):87-96

2.ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy.
Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, Baratta S, Schöls L, Schüle R, Barboni P, Cascavilla ML, Maresca A, Capristo M, Ardissone A, Pareyson D, Cammarata G, Melzi L, Zeviani M, Peverelli L, Lamperti C, Marzoli SB, Fang M, Synofzik M, Ghezzi D, Carelli V, Taroni F.
Ann Neurol. 2020 Jul;88(1):18-32

3. A homozygous MRPL24 mutation causes a complex movement disorder and affects the mitoribosome assembly.
Di Nottia M, Marchese M, Verrigni D, Mutti CD, Torraco A, Oliva R, Fernandez-Vizarra E, Morani F, Trani G, Rizza T, Ghezzi D, Ardissone A, Nesti C, Vasco G, Zeviani M, Minczuk M, Bertini E, Santorelli FM, Carrozzo R.
Neurobiol Dis. 2020 Jul;141:104880


4.Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I.
Alahmad A, Nasca A, Heidler J, Thompson K, Oláhová M, Legati A, Lamantea E, Meisterknecht J, Spagnolo M, He L, Alameer S, Hakami F, Almehdar A, Ardissone A, Alston CL, McFarland R, Wittig I, Ghezzi D, Taylor RW.
EMBO Mol Med. 2020 Nov 6;12(11)


5.SARS-CoV-2 infection in patients with primary mitochondrial diseases: features and outcomes in Italy.
Mancuso M, La Morgia C, Lucia Valentino M, Ardissone A, Lamperti C, Procopio E, Garone C, Siciliano G, Musumeci O, Toscano A, Primiano G, Servidei S, Carelli V.
Mitochondrion. 2021 May;58:243-245


6.Movement Disorders in Children with a Mitochondrial Disease: A Cross-Sectional Survey from the Nationwide Italian Collaborative Network of Mitochondrial Diseases.
Ticci C, Orsucci D, Ardissone A, Bello L, Bertini E, Bonato I, Bruno C, Carelli V, Diodato D, Doccini S, Donati MA, Dosi C, Filosto M, Fiorillo C, La Morgia C, Lamperti C, Marchet S, Martinelli D, Minetti C, Moggio M, Mongini TE, Montano V, Moroni I, Musumeci O, Pancheri E, Pegoraro E, Primiano G, Procopio E, Rubegni A, Scalise R, Sciacco M, Servidei S, Siciliano G, Simoncini C, Tolomeo D, Tonin P, Toscano A, Tubili F, Mancuso M, Battini R, Santorelli FM.
J Clin Med. 2021 May 12;10(10):2063


7.Clinical, imaging, biochemical and molecular features in Leigh syndrome: a study from the Italian network of mitochondrial diseases.
Ardissone A, Bruno C, Diodato D, Donati A, Ghezzi D, Lamantea E, Lamperti C, Mancuso M, Martinelli D, Primiano G, Procopio E, Rubegni A, Santorelli F, Schiaffino MC, Servidei S, Tubili F, Bertini E, Moroni I.
Orphanet J Rare Dis. 2021 Oct 9;16(1):413

8. Kearns-Sayre syndrome: expanding spectrum of a "novel" mitochondrial leukomyeloencephalopathy.
Moscatelli M, Ardissone A (co-first author), Lamantea E, Zorzi G, Bruno C, Moroni I, Erbetta A, Chiapparini L.
Neurol Sci. 2022 Mar;43(3):2081-2084


ID: 262
Clinical 2: natural history, biomarkers and outcome measures

Carrier frequency of pathogenic and likely pathogenic variants in POLG in Eastern Norway

Linda Mathisen1, Erle Kristensen2,3, Siren Berland4, Helle Høyer5, Ying Sheng1, Trine Prescott5, Shamima Rahman6,7, Laurence A. Bindoff3,8,9, Omar Hikmat3,10

1Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; 2Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; 3Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; 4Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; 5Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway; 6Metabolic Unit, Great Ormond Street Hospital, London, UK.; 7Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.; 8Department of Neurology, Haukeland University Hospital, Bergen, Norway; 9Nasjonal kompetansetjeneste for medfødte stoffskiftesykdommer, Oslo University Hospital, Oslo, Norway; 10Department of Pediatrics, Haukeland University Hospital, Bergen, Norway



ID: 470
Clinical 2: natural history, biomarkers and outcome measures

Exercise testing and measurement of habitual physical activities in m.3243A>G-related Mitochondrial Disease

Renae J Stefanetti1,2, Sarah J Charman1, Alasdair P Blain1, Alexandra Bright1,2, Robert McFarland1,2, Yi Shiau Ng1,2, Gráinne S Gorman1,2

1Wellcome Centre for Mitochondrial Research. Clinical and Translational Research Institute. Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust

Bibliography
Cassidy S, Trenell M, Stefanetti RJ, Charman SJ, Barnes AC, Brosnahan N, McCombie L, Thom G, Peters C, Zhyzhneuskaya S, Leslie WS. Physical activity, inactivity and sleep during the Diabetes Remission Clinical Trial (DiRECT). Diabetic Medicine. 2022 Nov 18:e15010.

Abouhajar A, Alcock L, Bigirumurame T, Bradley P, Brown L, Campbell I, Del Din S, Faitg J, Falkous G, Gorman GS, Lakey R. Acipimox in Mitochondrial Myopathy (AIMM): study protocol for a randomised, double-blinded, placebo-controlled, adaptive design trial of the efficacy of acipimox in adult patients with mitochondrial myopathy. Trials. 2022 Dec;23(1):1-5.

Stefanetti RJ, Ng YS, Errington L, Blain AP, McFarland R, Gorman GS. L-arginine in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: a systematic review. Neurology. 2022 Jun 7;98(23):e2318-28.

Houghton D, Ng YS, Jackson MA, Stefanetti R, Hynd P, Mac Aogáin M, Stewart CJ, Lamb CA, Bright A, Feeney C, Newman J. Phase II Feasibility Study of the Efficacy, Tolerability, and Impact on the Gut Microbiome of a Low-Residue (Fiber) Diet in Adult Patients With Mitochondrial Disease. Gastro Hep Advances. 2022 Jan 1;1(4):666-77


ID: 568
Clinical 2: natural history, biomarkers and outcome measures

Leber’s hereditary optic neuropathy in females.

Giulia Amore1, Martina Romagnoli2, Michele Carbonelli1, Chiara La Morgia1,3, Valerio Carelli1,2

1Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy

Bibliography
1.Carelli V, D'Adamo P, Valentino ML, La Morgia C, Ross-Cisneros FN, Caporali L, Maresca A, Loguercio Polosa P, Barboni P, De Negri A, Sadun F, Karanjia R, Salomao SR, Berezovsky A, Chicani F, Moraes M, Moraes Filho M, Belfort Jr R, Sadun AA. Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain. 2016. mar; 139, e17.
2.Lopez Sanchez MIG, Kearns LS, Staffieri SE, Clarke L, McGuinness MB, Meteoukki W, Samuel S, Ruddle JB, Chen C, Fraser CL, Harrison J, Hewitt AW, Howell N, Mackey DA. Establishing risk of vision loss in Leber hereditary optic neuropathy. Am J Hum Genet. 2021 Nov 4;108(11):2159-2170. doi: 10.1016/j.ajhg.2021.09.015. Epub 2021 Oct 19. PMID: 34670133; PMCID: PMC8595929.


ID: 539
Clinical 2: natural history, biomarkers and outcome measures

Non-invasive tool for mitochondrial diseases diagnostics

Zuzana Korandová1,2, Eliška Koňaříková1, Petr Pecina1, Alena Pecinová1, Josef Houštěk1, Hana Hansíková2, Tomáš Honzík2, Tomáš Mráček1

1Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; 21st Faculty of medicine, Charles University, Prague, Czech Republic



ID: 333
Clinical 2: natural history, biomarkers and outcome measures

Obstetric history of women with m.3243A>G – a retrospective cohort study

Petra Kuikka, Hilkka Nikkinen, Kari Majamaa, Mika Henrik Martikainen

University of Oulu and Oulu University Hospital, Finland

Bibliography
n/a


ID: 429
Clinical 2: natural history, biomarkers and outcome measures

Clustering analysis with optical coherence tomography data in Leber hereditary optic neuropathy (LHON) patients by non-negative matrix factorization unsupervised learning technique

Martina Romagnoli1, Michele Carbonelli2, Giulia Amore2, Pietro D’Agati3, Piero Barboni4,5, Leonardo Caporali1, Claudio Fiorini1, Valerio Carelli1,2, Chiara La Morgia2,3

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna - Bologna (Italy); 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica - Bologna (Italy); 4Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele – Milan (Italy); 5Studio Oculistico d’Azeglio - Bologna (Italy)

Bibliography
Yu-Wai-Man P, Votruba M, Burte F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016 Dec;132(6):789-806.
Barboni P, Savini G, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber's hereditary optic neuropathy. Ophthalmology. 2005 Jan;112(1):120-6.
Balducci N, Savini G, Cascavilla ML, et al. Macular nerve fibre and ganglion cell layer changes in acute Leber's hereditary optic neuropathy. Br J Ophthalmol. 2016 Sep;100(9):1232-7.
Barboni P, Savini G, Feuer WJ, et al. Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol. 2012 Nov-Dec;22(6):985-91.
Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010 Jul 2;11:367.


ID: 135
Clinical 2: natural history, biomarkers and outcome measures

Leigh syndrome global patient registry - cure mito foundation

Sophia Zilber1, Kasey Woleben2, Danielle Boyce3, Kevin Freiert4, Courtney Boggs5, Souad Messahel6, Melinda Burnworth7, Titilola Afolabi8, Saima Kayani9

1Cure Mito Foundation, United States of America; 2Cure Mito Foundation, United States of America; 3Cure Mito Foundation, United States of America; Johns Hopkins University School of Medicine; 4Cure Mito Foundation, United States of America; 5Cure Mito Foundation, United States of America; 6Perot Foundation Neuroscience Transla-tional Research Center (PNTRC), The University of Texas Southwestern Medical Center O'Donnell Brain Institute; 7Midwestern University College of Pharmacy; 8Midwestern University College of Pharmacy; 9Cure Mito Foundation; The University of Texas Southwestern Medical Center



ID: 552
Clinical 2: natural history, biomarkers and outcome measures

Mitochondrial ATP synthase deficiency and its relationship with the urea cycle

Barbara Siri1, Diego Martinelli1, Giorgia Olivieri1, Sara Cairoli2, Bianca Goffredo2, Alessandra Torraco3, Rosalba Carrozzo3, Carlo Dionisi-Vici1

1Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy; 2Laboratory of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy; 3Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

Bibliography
1.Dvorakova V, Magner M, Honzik T. Hyperammonemic crisis in a child with ATP synthase deficiency caused by mtDNA mutation m.8851T>C. Mol Genet Metab Rep. 2014;2:46. Published 2014 Dec 18.

2.Žigman T, Šikić K, Petković Ramadža D, et al. ATP synthase deficiency due to m.8528T>C mutation - a novel cause of severe neonatal hyperammonemia requiring hemodialysis. J Pediatr Endocrinol Metab. 2020;34(3):389-393. Published 2020 Nov 13.

3.Magner M, Dvorakova V, Tesarova M, et al. TMEM70 deficiency: long-term outcome of 48 patients [published correction appears in J Inherit Metab Dis. 2015 May;38(3):583-4. Morava-Kozicz, Eva [corrected to Morava, Eva]]. J Inherit Metab Dis. 2015;38(3):417-426.

4.Honzík T, Tesarová M, Mayr JA, et al. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch Dis Child. 2010;95(4):296-301.
5. Staretz-Chacham O, Wormser O, Manor E, Birk OS, Ferreira CR. TMEM70 deficiency: Novel mutation and hypercitrullinemia during metabolic decompensation. Am J Med Genet A. 2019;179(7):1293-1298.


ID: 289
Clinical 2: natural history, biomarkers and outcome measures

Quantifying ataxia in adult patients with primary mitochondrial disease

Jane Newman1,2,3,4, Lisa Alcock2,4, Harry Ingledew1, Silvia Del Din2,4, Aye-Myat Moe1,2,3,4, Yi Shiau Ng1,2,3,4

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2NIHR Newcastle Biomedical Research Centre, Newcastle University; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 4Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK



ID: 407
Clinical 2: natural history, biomarkers and outcome measures

Retrospective natural history study of MTRFR/C12orf65-related disorders

Catarina Olimpio1, Emma Harrison2, Chloe Seikus2, Allison Moore3, Heather Biggs2, Rita Horvath2

1East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; 2Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (add-tr.mitoteam@nhs.net); 3Hereditary Neuropathy Foundation, New York, NY, USA (https://www.hnf-cure.org/)



ID: 466
Clinical 2: natural history, biomarkers and outcome measures

Correlation of mitochondrial respiration in platelets, peripheral blood mononuclear cells and muscle fibres

Emil Westerlund1,2, Sigurður E. Marelsson1,3, Michael Karlsson4, Fredrik Sjövall1,5, Imen Chamkha1, Eleonor Åsander Frostner1, Johan Lundgren6, Vineta Fellman6, Erik A. Eklund6, Katarina Steding-Ehrenborg7, Niklas Darin8, Gesine Paul9, Magnus J. Hansson1, Johannes K. Ehinger1,10, Eskil Elmér1

1Lund University, Sweden; 2A&E Department, Kungälv Hospital, Kungälv, Sweden; 3Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland; 4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark; 5Skåne University Hospital, Department of Intensive- and perioperative Care, Malmö, Sweden; 6Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden; 7Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden; 8Department of Pediatrics, The Queen Silvia Children’s Hospital, University of Gothenburg, Gothenburg, Sweden; 9Lund University, Department of Clinical Sciences Lund, Translational Neurology Group and Wallenberg Center for Molecular Medicine, Lund, Sweden; 10Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Lund, Sweden



ID: 154
Clinical 2: natural history, biomarkers and outcome measures

Epidemiology and the natural history of POLG disease in Norway

Erle Kristensen1,2, Linda Mathisen3, Siren Berland4, Claus Klingenberg5,6, Eylert Brodtkorb7,8, Magnhild Rasmussen9,10, Trine Tangeraas11, Yngve Thomas Bliksrud1, Shamima Rahman12,13, Laurence Bindoff11,14, Omar Hikmat2,15

1Department of Medical Biochemistry, Oslo University Hospital, Norway; 2Department of Clinical Medicine (K1), University of Bergen, Norway; 3Department of Medical Genetics, Oslo University Hospital, Norway; 4Department of Medical Genetics, Haukeland University Hospital, Norway; 5Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, Norway; 6Department of Paediatrics, University Hospital of North Norway, Norway; 7Department of Neurology, St. Olav’s Hospital, University Hospital, Norway; 8Department of Neuroscience and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology, Norway; 9Unit for Congenital and Hereditary Neuromuscular Conditions (EMAN), Department of Neurology, Oslo University Hospital, Norway; 10Department of Clinical Neurosciences for Children, Oslo University Hospital, Norway; 11Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway. European Reference Network for Hereditary Metabolic Disorders; 12Metabolic Unit, Great Ormond Street Hospital, London, UK. European Reference Network for Hereditary Metabolic Disorders; 13Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UK; 14Department of Neurology, Haukeland University Hospital, Norway; 15Department of Pediatrics, Haukeland University Hospital, Norway

Bibliography
1.Bendiksen Skogvold H, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Haarr D, et al. A pioneer study on human 3-nitropropionic acid intoxication: Contributions from metabolomics. J Appl Toxicol. 2022;42(5):818-29.
2.Böhm HO, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Rootwelt H, et al. Global Metabolomics Discovers Two Novel Biomarkers in Pyridoxine-Dependent Epilepsy Caused by ALDH7A1 Deficiency. Int J Mol Sci. 2022;23(24).
3.Tangeraas T, Ljungblad UW, Lutvica E, Kristensen E, Rowe AD, Bjørke-Monsen AL, et al. Vitamin B12 Deficiency (Un-)Detected Using Newborn Screening in Norway. Int J Neonatal Screen. 2023;9(1).
4.Jamali A, Kristensen E, Tangeraas T, Arntsen V, Sikiric A, Kupliauskiene G, et al. The spectrum of pyridoxine dependent epilepsy across the age span: A nationwide retrospective observational study. Epilepsy Research. 2023;190:107099.


ID: 529
Clinical 2: natural history, biomarkers and outcome measures

The evolving phenotypic profile of cardiomyopathy in patients with Barth syndrome

Carolyn Taylor1, Hilary J. Vernon2, Hani N. Sabbah3, David Brown4, Anthony Abbruscato4, Jim Carr4

1Medical University of South Carolina, Charleston, SC, United States of America; 2Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; 3Henry Ford Hospital, Detroit, MI, United States of America; 4Stealth BioTherapeutics, Inc, Needham, MA, United States of America



ID: 251
Clinical 2: natural history, biomarkers and outcome measures

True or false mitochondrial disorder?

Agnes Rotig1,3, Giulia Barcia1,2,3, Zahra Assouline2,3, Arnold Munnich1, Claire-Marine Dufeu-Bérat2,3, Nathalie Boddaert1,2, Manuel Schiff1,3, Jean-Paul Bonnefont1,2,3

1INSERM UMR1163, Université Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France; 2Departments of Pediatric and Genetics, Hôpital Necker-Enfants-Malades, Paris, France; 3CARAMMEL reference center for mitochondrial diseases



ID: 629
Clinical 2: natural history, biomarkers and outcome measures

An automated processing pipeline to perform probabilistic tractography of the anterior optic pathway applied to Leber’s hereditary optic neuropathy.

Giovanni Sighinolfi1,2, Laura Ludovica Gramegna1, Chiara La Morgia2, Alessandro Carrozzi1, Cristiana Fiscone1,2, Claudia Testa2,3, Raffaele Lodi1,2, Valerio Carelli1,2, Caterina Tonon1,2, David Neil Manners1

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 3Department of Physics and Astronomy, University of Bologna, Bologna, Italy

Bibliography
1. Manners DN, Gramegna LL, La Morgia C, Sighinolfi G, Fiscone C, Carbonelli M, Romagnoli M, Carelli V, Tonon C, Lodi R. Multishell Diffusion MR Tractography Yields Morphological and Microstructural Information of the Anterior Optic Pathway: A Proof-of-Concept Study in Patients with Leber's Hereditary Optic Neuropathy. Int J Environ Res Public Health. 2022 Jun 5;19(11):6914. doi: 10.3390/ijerph19116914
2. He J, Zhang F, Xie G, Yao S, Feng Y, Bastos DCA, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Hum Brain Mapp. 2021 Aug 15;42(12):3887-3904. doi: 10.1002/hbm.25472


ID: 200
Clinical 2: natural history, biomarkers and outcome measures

Natural history of Pearson syndrome: various clinical courses with changes in clinical phenotypes

Ayami Yoshimi1, Sarah Grünert2, Aron Fisch1, Miriam Erlacher1, Arndt Borkhardt3, Holger Cario4, Daniela Karall5, Charlotte Niemeyer1

1Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; 2Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany; 3Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany; 4Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany; 5Medical University of Innsbruck, Clinic for Paediatrics, Inherited Metabolic Disorders, Innsbruck, Austria

Bibliography
,


ID: 494
Clinical 2: natural history, biomarkers and outcome measures

Phenotype and natural history of pantothenate kinase-associated neurodegeneration (PKAN)

Vassilena Iankova1, Ivan Karin1, Boriana Büchner1, Thomas Klopstock1,2,3

1Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany; 2German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 3Munich Cluster for Systems Neurology, Munich, Germany



ID: 575
Clinical 2: natural history, biomarkers and outcome measures

RARS2 disease’s morbidity and mortality correlate with the severity of brain involvement

R Restuccia1,2, L Licchetta3,4, S Resciniti1, F Ferraresi1, E Santi1, L Di Vito3,4, R Minardi4, E Ricci2, V Di Pisa2, F Palombo4, F Bisulli3,4, DM Cordelli1,2, P Tinuper3,4, V Carelli3,4, C Garone1,2

1Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Neuropsichiatria dell’età pediatrica, Bologna, Italy; 3Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, Bologna, Italy; 4IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy



ID: 172
Clinical 2: natural history, biomarkers and outcome measures

A new non-invasive diagnostic method for detection of pathogenic mitochondrial DNA variants using faecal-derived DNA samples.

Charlotte Warren1, Isabel Barrow1,2, Helen Tuppen1, Laura Brown1, Clare Massarella1, David Houghton1, Laura Greaves1, Robert McFarland1,2, Gráinne Gorman1,2

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute; NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; 2Department of Neurosciences, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne NE2 4HH, UK



ID: 235
Clinical 2: natural history, biomarkers and outcome measures

Complex V assembly intermediates in human muscle from patient with suspected mitochondrial disease - Potential insights into disease mechanisms.

Amanda Lam1,2,3, Robert Winter1,2,3, Simon Heales1,2,4

1Neurometabolic Unit, NHNN, University College London Hospitals; 2Chemical Pathology Laboratory, Great Ormond Street Hospital for Children; 3Queen Square Institute of Neurology, University College London; 4Great Ormond Street Institute of Child Health, University College London

Bibliography
Poole OV, et al., 2019 Adult-onset Leigh syndrome linked to the novel stop codon mutation m.6579G>A in MT-CO1. Mitochondrion. 2019 Jul;47:294-297.

Bugiardini E et al., 2020 Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations. Neurol Genet. 2020 Jan 7;6(1):e381.

Keshavan N., (2020) The natural history of infantile mitochondrial DNA depletion syndrome due to RRM2B deficiency. Genet Med. 2020 Jan;22(1):199-209.

Forny P et al., 2021 Diagnosing Mitochondrial Disorders Remains Challenging in the Omics Era. Neurol Genet. 2021 May 25;7(3):e597.

Schober FA, et al., 2022 Pathogenic SLC25A26 variants impair SAH transport activity causing mitochondrial disease. Hum Mol Genet. 2022 Jun 22;31(12):2049-2062.

Kaiyrzhanov R et al., 2022 Bi-allelic LETM1 variants perturb mitochondrial ion homeostasis leading to a clinical spectrum with predominant nervous system involvement. Am J Hum Genet. 2022 Sep 1;109(9):1692-1712.


ID: 219
Clinical 2: natural history, biomarkers and outcome measures

Prolonged gastrointestinal transit times in mitochondrial disease – a case control study

Simone Rask Nielsen1,2, Anne-Marie Wegeberg2,3, Donghua Liao2,3, Asbjørn Mohr Drewes2,3, Inge Søkilde Pedersen2,4, Anja Lisbeth Frederiksen1,2, Christina Brock2,3

1Dept. of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; 2Dept.of Clinical Medicine, Aalborg University, Aalborg, Denmark; 3Mech-Sense, Dept. of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; 4Dept. of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark

Bibliography
Bone Deformities and Kidney Failure: Coincidence of PHEX-Related Hypophosphatemic Rickets and m.3243A>G Mitochondrial Disease. Nielsen SR, Hansen SG, Bistrup C, Brusgaard K, Frederiksen AL. Calcif Tissue Int.2022 Dec;111(6):641-645

FGF21 and glycemic control in patients with T1D. Rosell Rask S, Krarup Hansen T, Bjerre M. Endocrine 2019 Aug 65(3): 550-557


ID: 129
Clinical 2: natural history, biomarkers and outcome measures

Rethinking mitochondrial diabetes: a multifaceted disease entity

Chiara Pizzamiglio1,2, Niki Margari3, Iwona Skorupinska2, Antonio Borges Neves3, Danna Nitzani3, Michael G. Hanna1,2, Umasuthan Srirangalingam3, Robert D.S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Endocrinology Department, University College London Hospital, London, UK



ID: 583
Clinical 2: natural history, biomarkers and outcome measures

Therapeutic intervention in Leber Hereditary Optic Neuropathy: later is better?

Martina Romagnoli1, Giulia Amore2, Pietro D’Agati3, Piero Barboni4,5, Valerio Carelli1,2, Chiara La Morgia2,3, Michele Carbonelli2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna - Bologna (Italy); 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica - Bologna (Italy); 4Department ofOphthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele – Milan (Italy); 5Studio Oculistico d’Azeglio - Bologna (Italy)

Bibliography
Subramanian PS, Newman NJ, Moster M, et al. Study design and baseline characteristics for the REFLECT gene therapy trial of m.11778G>A/ND4-LHON. BMJ Open Ophthalmology 2022;7:e001158. doi:10.1136/bmjophth-2022-001158.

Catarino CB, von Livonius B, Priglinger C, Banik R, Matloob S, Tamhankar MA, et al. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2020;40(4):558-65.


ID: 645
Clinical 2: natural history, biomarkers and outcome measures

Neurofilament light chain – an emerging biomarker in mitochondrial disease

Alessandra Maresca1, Valerio Carelli1,2, Monica Moresco1, Chiara La Morgia1,2, Maria Lucia Valentino1,2, Laurence Bindoff3, Kristin Varhaug4,5

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.; 2Department of Biomedical and Neuromotor Sciences, University of Bologna,; 3Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; 4Dept. of Neurology, Haukeland University Hospital, Norway; 5Neuro-SysMed - Centre of Excellence for Experimental Therapy in Neurology, Departments of Neurology and Clinical Medicine, Bergen, Norway



ID: 450
Inflammation and Immunity as mitochondrial contributor to pathology

Assessing the role of mtdsRNA as a trigger for neuroinflammation in a mouse model of Leigh syndrome

Mònica Girona1, Melania González-Torres1, Patricia Prada-Dacasa1, Patrizia Bianchi1, Elisenda Sanz1,2, Albert Quintana1,2

1Institute of Neurosciences, Autonomous University of Barcelona, Barcelona, Spain; 2Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain



ID: 406
Inflammation and Immunity as mitochondrial contributor to pathology

Concerted cell-specific neuronal programs drive neurodegeneration in Leigh Syndrome

Albert Quintana

Universitat Autònoma de Barcelona, Spain

Bibliography
* Microglial response promotes neurodegeneration in the Ndufs4 KO mouse model of Leigh syndrome. Aguilar K, Comes G, Canal C, Quintana A, Sanz E, Hidalgo J.
Glia. 2022 Nov;70(11):2032-2044. doi: 10.1002/glia.24234.

* Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. van de Wal MAE, Adjobo-Hermans MJW, Keijer J, Schirris TJJ, Homberg JR, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Brain. 2022 Mar 29;145(1):45-63. doi: 10.1093/brain/awab426.

* Mitochondria-Induced Immune Response as a Trigger for Neurodegeneration: A Pathogen from Within. Luna-Sánchez M, Bianchi P, Quintana A. Int J Mol Sci. 2021 Aug 7;22(16):8523. doi: 10.3390/ijms22168523.

* Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome. Bolea I, Gella A, Sanz E, Prada-Dacasa P, Menardy F, Bard AM, Machuca-Márquez P, Eraso-Pichot A, Mòdol-Caballero G, Navarro X, Kalume F, Quintana A. Elife. 2019 Aug 12;8:e47163. doi: 10.7554/eLife.47163.

* Mitochondrial Proteome of Affected Glutamatergic Neurons in a Mouse Model of Leigh Syndrome.
Gella A, Prada-Dacasa P, Carrascal M, Urpi A, González-Torres M, Abian J, Sanz E, Quintana A. Front Cell Dev Biol. 2020 Jul 28;8:660. doi: 10.3389/fcell.2020.00660. eCollection 2020.


ID: 526
Inflammation and Immunity as mitochondrial contributor to pathology

Parkinson’s disease genes converge at the mitochondria-lysosome interface to promote inflammatory cell death

Jack Collier, Mai Nguyen, Sidong Huang, Heidi McBride

McGill University, Canada

Bibliography
Collier JJ, Olahova M, McWilliams TG, Taylor RW. Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends in Neurosciences. 2023;46(2):137-152.

Collier JJ, Guissart C, Olahova M, Sasorith S, Piron-Prunier F, Suomi F, Zhang D, Martinez-Lopez N, Leboucq N, Bahr A, Azzarello-Burri S, Reich S, Schols L, Polvikoski TM, Meyer P, Larrieu L, Schaefer AM, Alsaif HS, Alyamani S, Zuchner S, Barbosa IA, Deshpande C, Pyle A, Rauch A, Synofzik M, Alkuraya FS, Rivier F, Ryten M, McFarland R, Delahodde A, McWilliams TG, Koenig M, Taylor RW. Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. New England Journal of Medicine. 2021;384(25):2406-2417.

Collier JJ, Suomi F, Olahova M, McWilliams TG, Taylor RW. Emerging roles of ATG7 in human health and disease. EMBO Molecular Medicine. 2021;13(12)e14824.

Thompson K*, Collier JJ*, Glasgow RIC, Robertson FM, Pyle A, Alston CL, Blakely EL, Olahova M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. Journal of Inherited Metabolic Disorders 2020;43:36-50. Review. *Co-first authors

Nolden KA, Egner JM, Collier JJ, Russell OM, Alston CL, Harwig MC, Widlansky ME, Sasorith S, Barbosa IA, Douglas AG, Baptista J, Walker M, Donnelly DE, Morris AA, Tan HJ, Kurian MA,Gorman K, Mordekar S, Deshpande C, Samanta R, McFarland R, Hill RB, Taylor RW, Olahova M. Novel DNM1L variants impair mitochondrial dynamics through divergent mechanisms. Life SciAlliance. 2022;5(12).

Olahova M, Peter B, Diaz H, Szilagyi Z, Sommerville EW, Blakely EL, Collier JJ, Stránecký V, Hartmannová H, Bleyer AJ, McBride KL, Bowden SA, Korandová Z, Pecinová A, Ropers H-H, Kahrizi K, Najmabadi H, Tarnopolsky M, Brady LI, Weaver N, Prada CE, Õunap K, Wojcik MH, Pajusalu S, Syeda SB, Pais L, Estrella EA, Bruels CC, Kunkel LM, Kang PB, Mráček T, Kmoch S, Gorman G, Falkenberg M, Gustafsson C, Taylor RW. Mutations in POLRMT cause a spectrum of neurological phenotypes through impaired mitochondrial transcription. Nature Communications 2021;12,1135

Olahova M, Ceccatelli Berti C, Collier JJ, Alston CL, Jameson E, Jones SA, Edwards N, He L, Chinnery PF, Horvath R, Goffrini P, Taylor RW, Sayer JA. Molecular genetic investigations identify new clinical phenotypes associated with BCS1L-related mitochondrial disease. Human Molecular Genetics 2019;28:3766-76.


ID: 642
Inflammation and Immunity as mitochondrial contributor to pathology

[18F]ROStrace PET as a biomarker of mitochondria-induced neuroinflammation in the prodromal phase of Parkinson’s disease mouse models

Yi Zhu1, Anthony Young2, Neha Kohli1, Josh Jose1, Nisha Patel1, Hsaioju Lee2, Shihong Li2, Guilong Tian2, Eric Marsh1, Michael Robinson1, Robert Doot2, Douglas Wallace1, Robert Mach2, Meagan Joy McManus1

1Children's Hospital of Philadelphia, United States of America; 2University of Pennsylvania, United States of America

Bibliography
1.Hsieh CJ, Hou C, Zhu Y, Lee JY, Kohli N, Gallagher E, Xu K, Lee H, Li S, McManus MJ, Mach RH. [18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer's disease pathology in APP/PS1 mice. EJNMMI Res. 2022 Jul 27;12(1):43.


ID: 651
Inflammation and Immunity as mitochondrial contributor to pathology

Modulation of immune cell activation and differentiation by mitochondrial nicotinamide adenine dinucleotide levels

Aurea Oliva Herrero1,2, Andrea Alonso Gomez1,2, Javier Traba1,2

1Instituto Universitario de Biología Molecular – UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain



ID: 257
Inflammation and Immunity as mitochondrial contributor to pathology

MtDNA replication stress and innate immune signalling

Dusanka Milenkovic, Amir Bahat, Eileen Cors, Mabel Barnett, Thomas Langer

Max Planck Institute for Biology of Ageing, Germany

Bibliography
Misic J, Milenkovic D. Methods Mol Biol. 2023;2615:219-228.Studying Mitochondrial Nucleic Acid Synthesis Utilizing Intact Isolated Mitochondria.

Misic J, Milenkovic D, Al-Behadili A, Xie X, Jiang M, Jiang S, Filograna R, Koolmeister C, Siira SJ, Jenninger L, Filipovska A, Clausen AR, Caporali L, Valentino ML, La Morgia C, Carelli V, Nicholls TJ, Wredenberg A, Falkenberg M, Larsson NG. Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion.
Nucleic Acids Res. 2022 Aug 26;50(15):8749-8766.

Milenkovic D, Sanz-Moreno A, Calzada-Wack J, Rathkolb B, Veronica Amarie O, Gerlini R, Aguilar-Pimentel A, Misic J, Simard ML, Wolf E, Fuchs H, Gailus-Durner V, de Angelis MH, Larsson NG.Mice lacking the mitochondrial exonuclease MGME1 develop inflammatory kidney disease with glomerular dysfunction. PLoS Genet. 2022 May 9;18(5):e1010190.

Sprenger HG, MacVicar T, Bahat A, Fiedler KU, Hermans S, Ehrentraut D, Ried K, Milenkovic D, Bonekamp N, Larsson NG, Nolte H, Giavalisco P, Langer T.Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity. Nat Metab. 2021 May;3(5):636-650.

Matic S, Jiang M, Nicholls TJ, Uhler JP, Dirksen-Schwanenland C, Polosa PL, Simard ML, Li X, Atanassov I, Rackham O, Filipovska A, Stewart JB, Falkenberg M, Larsson NG, Milenkovic D.Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun. 2018 Mar 23;9(1):1202.


ID: 241
Inflammation and Immunity as mitochondrial contributor to pathology

Inflammatory cardiomyopathy and heart failure caused by impaired inner membrane integrity

Erminia Donnarumma1, Michael Kohlhaas2, Elodie Vimont1, Marcio Ribeiro1, Etienne Kornobis3, Thibault Chaze4, Mariette Matondo4, Christoph Maack2, Timothy Wai1

1Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France; 2Department of Translational Research, Comprehensive Heart Failure Center (CHFC), Medical Clinic 1, University ClinicWürzburg,Würzburg, Germany; 3Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France; 4Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France

Bibliography
Donnarumma, E., Kohlhaas, M., Vimont, E., Kornobis, E., Chaze, T., Gianetto, Q.G., Matondo, M., Moya-Nilges, M., Maack, C., and Wai, T. (2022). Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure. Nat. Commun. 13, 6634. 10.1038/s41467-022-34316-3.


ID: 650
Inflammation and Immunity as mitochondrial contributor to pathology

Lack of SIRT3 results in a constitutive IFNbeta release and protects against viral infection

Carolina Meroño Ortega1,2, Yara Cuesta Valero1,2, Marta Pascual Fernández1,2, Natalia García Acosta1,2, Javier Traba Domínguez1,2

1Instituto Universitario de Biología Molecular – UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain



ID: 372
Inflammation and Immunity as mitochondrial contributor to pathology

Mitochondrial DNA variation alters cell-mediated and humoral innate immune responses

Tiina Susanna Salminen1, Laura Vesala1, Yuliya Basikhina1, Megan Kutzer2, Tea Tuomela1, Katy Monteith2, Ryan Lucas2, Arun Prakash2, Pedro Vale2

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK

Bibliography
Valanne, S., Vesala, L., Maasdorp, M., Salminen T.S., and Rämet, M. 2022: The Drosophila Toll pathway in innate immunity – from the core pathway towards effector functions. J Immunol 2022; 209:1817-1825; doi: 10.4049/jimmunol.2200476

Anderson L., Camus M.F., Monteith K.M., Salminen T.S. and Vale P.F. 2022: Variation in mitochondrial DNA affects locomotor activity and sleep in Drosophila melanogaster. Heredity, 129, pages 225–232 https://doi.org/10.1038/s41437-022-00554-w

Salminen T.S. & Vale P.F. 2020: Drosophila as a model system to investigate the effects of mitochondrial variation on innate immunity. Front. Immunol. 11:521.doi: 10.3389/fimmu.2020.00521

Valanne S., Järvelä-Stölting M., Harjula S-K. E., Myllymäki H., Salminen T.S. & Rämet M. 2020: Osa-containing Brahma complex regulates innate immunity and metabolism in Drosophila. J. Immunol. DOI: https://doi.org/10.4049/jimmunol.1900571

Salminen T.S., Cannino G., Oliveira M.T., Lillsunde P., Jacobs H.T., Kaguni L.S. 2019: Lethal interaction of nuclear and mitochondrial genotypes in Drosophila melanogaster. G3: GENES, GENOMES, GENETICS 9 (7): 2225-2234: doi: https://doi.org/10.1534/g3.119.400315

Valanne S*., Salminen T.S.*, Järvelä-Stölting M., Vesala L. & Rämet M. 2019: Correction: Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster. PLoS Pathog 15(1): e1007504. DOI: 10.1371/journal.ppat.1008088 *Shared first authorship

Salminen T.S., Oliveira M.T., Cannino G., Lillsunde P., Jacobs H.T. & Kaguni L.S. 2017: Mitochondrial genotype modulates mtDNA copy number and organismal phenotype in Drosophila. Mitochondrion 34: 75-83.


ID: 177
Inflammation and Immunity as mitochondrial contributor to pathology

Iron homeostasis in mitochondria is critical for the survival of T cells

Ajay Kumar, Chenxian Yee, Afia Nkansah, Thomas Decoville, Emily Yarosz, Garrett Forgo, Young-Ah Seo, Thomas Sanderson, Cheong-Hee Chang

University of Michigan, United States of America



ID: 567
Inflammation and Immunity as mitochondrial contributor to pathology

Inflammatory conditions, redox status and c-miRNAs as potential predictors of vascular damage in type 2 diabetes mellitus patients.

Iryna Rusanova Rusanova1,2,3, Ayauly Duisenbek4, Gabriela C. Lopez-Armas5, José M. Aguilar Benítez6, María D. Avilés-Pérez3,7, Arailym Yessenbekova4, Nurzhanyat Ablaikhanova4, Germaine Escames2,3,8, Darío Acuña-Castroviejo2,3,8

1Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Spain; 2Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; 3Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; 4Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan; 5Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial; Guadalajara, Jalisco, México; 6Hospital de Alcalá la Real, Andalucia, Spain; 7Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, Granada, Spain.; 8Department of Physiology, Faculty of Medicine, University of Granada.

Bibliography
1. Acuña-Castroviejo, D.; Rahim, I.; Acuña-Fernández, C.; Fernández-Ortiz, M.; Solera-Marín, J.; Sayed, R.K.A.; Díaz-Casado, M.E.; Rusanova, I.; López, L.C.; Escames, G. Melatonin, clock genes and mitochondria in sepsis. Cell. Mol. Life Sci. 2017, 74, doi:10.1007/s00018-017-2610-1.
2. Rovira-Llopis, S.; Apostolova, N.; Bañuls, C.; Muntané, J.; Rocha, M.; Victor, V.M. Mitochondria, the NLRP3 inflammasome, and sirtuins in type 2 diabetes: New therapeutic targets. Antioxidants Redox Signal. 2018, 29, 749–791, doi:10.1089/ars.2017.7313.
3. Mensà, E.; Giuliani, A.; Matacchione, G.; Gurău, F.; Bonfigli, A.R.; Romagnoli, F.; De Luca, M.; Sabbatinelli, J.; Olivieri, F. Circulating miR-146a in healthy aging and type 2 diabetes: Age- and gender-specific trajectories. Mech. Ageing Dev. 2019, 180, 1–10, doi:10.1016/j.mad.2019.03.001.
4. Rusanova, I.; Fernández-Martínez, J.; Fernández-Ortiz, M.; Aranda-Martínez, P.; Escames, G.; García-García, F.J.; Mañas, L.; Acuña-Castroviejo, D. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp. Gerontol. 2019, 124, doi:10.1016/j.exger.2019.110637.
5. López-Armas, G. C., Yessenbekova, A., González-Castañeda, R. E., Arellano-Arteaga, K. J., Guerra-Librero, A., Ablaikhanova, N., Florido, J., Escames, G., Acuña-Castroviejo, D., & Rusanova, I. (2022 Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants 2022, 11.


ID: 664
Inflammation and Immunity as mitochondrial contributor to pathology

Loss of pathogenic mitochondrial tRNA mutations during the development of adaptive immune responses

Jingdian Zhang1,2, Camilla Koolmeister1,2, Jinming Han3, Roberta Filograna1,2, Martin Engvall4, Anna Wredenberg1,2,4, Gunilla B. Karlsson Hedestam5, Xaquin Castro Dopico5, Joanna Rorbach1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden; 2Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17165, Sweden.; 3Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm 17176, Sweden; 4Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17164, Sweden.; 5Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.



ID: 311
Inflammation and Immunity as mitochondrial contributor to pathology

Role of mitochondrial dynamics in abdominal aortic aneurysm

Alexis Richard1, Alicia Baptista-Vicente1, Maroua Eid1,2, Agnès Toutain-Barbelivien1, Linda Grimaud1, Bertrand Toutain1, Clément Tetaud1, Daniel Henrion1, Olivier Fouquet1,2, Laurent Loufrani1

1UMR CNRS 6015, INSERM U1083, MitoVasc Institute, CarMe Team, University of Angers, France; 2CHU of Angers, France



ID: 261
Inflammation and Immunity as mitochondrial contributor to pathology

Between benefit and harm – the effect of antibiotics-induced mitochondrial stress on innate immune responses

Tilman Tietz, Laura Vesala, Tea Tuomela, Mahmudul H. Tanvir, Tiina S. Salminen

Tampere University, Finland



ID: 232
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial thermo-profiles of diverse cell lines show reduction of thermo-stability at pathophysiological conditions

Mügen Terzioglu1, Kristo Veeroja1, Toni Montanen1, Maria Carretero-Junquera2, Tiina Susanna Salminen1, Takeharu Nagai3, Howard Jacobs1

1Tampere University, Finland; 2University of Copenhagen; 3Osaka University

Bibliography
Ignatenko O, Chilov D, Paetau I, de Miguel E, Jackson CB, Capin G, Paetau A, Terzioglu M, Euro L, Suomalainen A. Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy. Nat Commun. 2018 Jan 4;9(1):70. doi: 10.1038/s41467-017-01859-9. PMID: 29302033; PMCID: PMC5754366.


ID: 171
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial thermogenesis and thermal adaptation in fibroblasts

Kateryna Gaertner1, Mügen Terzioglu1, Riikka Tapanainen2, Jaakko Pohjoismäki2, Eric Dufour1, Sina Saari1

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland



ID: 507
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Effects of SIRT1 modulators in a pregnancy-induced mouse model of primary mitochondrial cardiomyopathy

Nicole M. Sayles1,2, Gabriella Casalena2, Holly E. Holmes3, Ryan W. Dellinger3, Hibiki Kawamata2, Giovanni Manfredi2

1Neuroscience Graduate Program, Will Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY 10065, USA; 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.; 3Elysium Health New York, New York, NY 10013, USA

Bibliography
Sayles, N. M., Southwell, N., McAvoy, K., Kim, K., Pesini, A., Anderson, C. J., Quinzii, C., Cloonan, S., Kawamata, H., & Manfredi. "Mutant CHCHD10 Causes an Extensive Metabolic Rewiring That Precedes OXPHOS Dysfunction in a Murine Model of Mitochondrial Cardiomyopathy." Cell Reports, 2022, https://doi.org/10.1016/j.celrep.2022.110475.


ID: 111
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance

Giulia Rossetti1,2,3, Judith Ermer1,2,3, Maike Stentenbach1,2,3, Stefan Siira1,2,3, Tara Richman1,2,3, Dusanka Milenkovic4, Kara Perks1,2,3, Laetitia Hughes1,2,3, Emma Jamieson5, Gulibaikelamu Xiafukaiti6, Natalie Ward7, Satoru Takahashi6, Nicola Gray8, Helena Viola9, Livia Hool9,10, Oliver Rackham1,2,11,12, Aleksandra Filipovska1,2,3,13,

1Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia; 2ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; 3Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia.; 4Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; 5Faculty of Health and Medical Sciences, Medical School, The Rural Clinical School of Western Australia, The University of Western Australia, Bunbury, Western Australia 6230, Australia; 6Department of Anatomy and Embryology, Faculty of Medicine, Laboratory Animal Resource Center (LARC), and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; 7Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, Western Australia, Australia; 8Australian National Phenome Centre, Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia 6150, Australia; 9School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia.; 10Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales 2010, Australia.; 11Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia; 12Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia.; 13Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.

Bibliography
1. Vos PD, Rossetti G, Mantegna JL, Siira SJ, Gandadireja AP, Bruce M, Raven SA, Khersonsky O, Fleishman SJ, Filipovska A, Rackham O. Computationally designed hyperactive Cas9 enzymes. Nat Commun. 2022 May 31;13(1):3023. doi: 10.1038/s41467-022-30598-9.

2. Rossetti, G., Ermer, J. A., Stentenbach, M., Siira, S. J., Richman, T. R., Milenkovic, D., Perks, K. L., Hughes, L. A., Jamieson, E., Xiafukaiti, G., Ward, N. C., Takahashi, S., Gray, N., Viola, H. M., Hool, L. C., Rackham, O., & Filipovska, A. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. Science Advances, 7(39), (2021). [eabi7514]. https://doi.org/10.1126/sciadv.abi7514

3. Richman, T. R., Ermer, J. A., Siira, S. J., Kuznetsova, I., Brosnan, C. A., Rossetti, G., Baker, J., Perks, K. L., Cserne Szappanos, H., Viola, H. M., Gray, N., Larance, M., Hool, L. C., Zuryn, S., Rackham, O. & Filipovska, A., Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan
Aging Cell (2021). 20, 7, e13408.

4. Ferreira, N., Andoniou, C. E., Perks, K.L., Ermer, J.A., Rudler, D.L., Rossetti, G.,
Periyakaruppiah, A., Wong, J. K. Y., Rackham, O., Noakes, P. G., Degli-Esposti, M. A., Filipovska, A. Murine cytomegalovirus infection exacerbates Complex IV deficiency in a model of mitochondrial disease. PLOS Genetics (2020) 16(3):e1008604.

5. Perks KL, Ferreira N, Ermer JA, Rudler DL, Richman TR, Rossetti G, Matthews VB, Ward NC, Rackham O, Filipovska A. Reduced mitochondrial translation prevents diet-induced metabolic dysfunction but not inflammation. EMBO J. (2019) Dec 16;38(24):e102155. doi: 10.15252/embj.2019102155. Epub 2019 Nov 13.PMID: 31721250

6. Ferreira, N, Perks, K.L., Rossetti, G., Rudler, D.L., Hughes, L., Ermer, J.A., Scott, L., Kuznetsova, I., Szappanos,H.C, Tull D., Yeoh, G.C., Hool, L.C., Filipovska, A. and Rackham, O. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation EMBO Journal (2019) 38(24):e102155.

7. Perks, K.L., Rossetti, G., Kuznetsova, I., Hughes, L., Ermer, J.A., Ferreira, N., Rudler, D., Spahr,H., Busch, J.D., Shearwood, A.M.-J., Viola, H.M, Siira, S.J., Milenković, D., Hool, L.C., Larsson, N.-G., Rackham, O. and Filipovska, A. PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Reports (2018) 23(1):127-142.

8. Siira, S.J., Rossetti, G., Richman, T.R., Perks, K.L., Ermer, J.E., Kuznetsova, I., Hughes, L., Shearwood, A.M.-J., Viola, H.M, Hool, L.C., Rackham, O. and Filipovska, A. Concerted regulation of mitochondrial and nuclear non-coding RNAs by a dual-targeted RNase Z. EMBO Reports (2018) pii: e46198. doi: 10.15252/embr.201846198

9. Butchart, L. C., Terrill, J. R., Rossetti, G., White, R., Filipovska, A., & Grounds, M. D. (2018). Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (Mdx) mouse muscles, and their response to taurine treatment. International Journal of Biochemistry and Cell Biology, 99(October 2017), 52–63. https://doi.org/10.1016/j.biocel.2018.03.016

10. Duff, R. M., Shearwood, A. M. J., Ermer, J., Rossetti, G., Gooding, R., Richman, T. R., Balasubramaniam, S., Thorburn, D.R., Rackham, O., Lamont, P.J., Filipovska, A. (2015). A mutation in MT-TW causes a tRNA processing defect and reduced mitochondrial function in a family with Leigh syndrome. Mitochondrion, 25, 113–119. https://doi.org/10.1016/j.mito.2015.10.008


ID: 609
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Metformin enhanced the Effect of Ketogenic Diet and low Dose of Cyclophosphamide in MYCN-amplified Neuroblastoma

Luca Catalano1, Sepideh Aminzadeh-Gohari1, Daniela Weber1, Julia Tevini1, Thapa Maheshwor2, Rodolphe Poupardin3, Sophia Derdak4, Victoria Stefan1, William Smiles1, Barbara Kofler1

1Paracelsus Medical University, Austria; 2Shuzhao Li Lab The Jackson Laboratory for Genomic Medicine, Farmington, USA; 3Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute; 4Core Facilities, Medical University of Vienna, Vienna, Austria

Bibliography
1.Oliynyk, G., et al., MYCN-enhanced Oxidative and Glycolytic Metabolism Reveals Vulnerabilities for Targeting Neuroblastoma. iScience, 2019. 21: 188-204.
2.Weber, D.D., et al., Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab, 2020. 33: 102-121.
3.Wheaton, W.W., et al., Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife, 2014. 3: e02242.
4.Ruiz-Perez, M.V., et al., Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma. iScience, 2021. 24(2): 102128.


ID: 293
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Respiratory complex I deficiency triggers integrated stress response upon metabolic challenge

Sara Milioni1,2, Manuela Sollazzo1, Claudia Zanna3, Ivana Kurelac2, Monica De Luise2, Luigi D'Angelo1, Erika Fernandez-Vizarra4, Anna Ghelli1, Giuseppe Gasparre2, Anna Maria Porcelli1, Luisa Iommarini1

1University of Bologna, Department of Pharmacy and Biotechnology, Italy; 2University of Bologna, Department of Medical and Surgical Sciences, Italy; 3University of Bologna, Department of Biomedical and Neuromotor Sciences, Italy; 4University of Padua, Department of Biomedical Sciences, Italy



ID: 288
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Stress responses in a novel mitochondrial myopathy mouse model

Sukru Anil Dogan

Bogazici University, Turkey



ID: 597
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The multifaceted role of GDF15 in mitochondrial muscle disease and its synergistic action with FGF21

Anastasiia Marmyleva1, Nahid Khan1, Liliya Euro1,2, Sonja Jansson1,2, Harding Luan3, Anu Suomalanen1,2

1University of Helsinki, Finland; 2Nadmed Ltd, Helsinki, Finland; 3NGM Biopharmaceuticals, South San Francisco, CA 94080, USA



ID: 596
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Red 630 light transcranial LED therapy (RL-TCLT) stimulates bioenergetic mitochondrial function, enhancing neuronal arborization and reducing hippocampal memory loss in aged SAMP8 mice.

Claudia Jara1, Italo Fuentes1, Matías Lira1,2, Debora Buendía3, Cheril Tapia-Rojas1,2

1Neurobiology of Aging Lab, CEBICEM, Universidad San Sebastián, Chile; 2Centro Ciencia & Vida, Fundación Ciencia & Vida, Chile.; 3Escuela de Ingeniería Civil Biomédica, Universidad de Valparaíso, Chile.



ID: 357
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitokine GDF15 correlates with differentially dietary fat intake in pregnancies with intrauterine growth restriction

Mariona Guitart-Mampel1,2,3, Sara Castro-Barquero4, Ana María Ruiz-Leon5, Judith Cantó-Santos1,2,3, Laura Valls-Roca1,2,3, Laia Farré-Tarrats1,2,3, Félix Andújar-Sánchez1,2,3, Lina Youssef3,4, Laura Garcia-Otero3,4, Kilian Vellvé3,4, Ana Sandra Hernández3,4, Ester Tobias1,2,3, Rosa Casas5, Fàtima Crispi3,4, Eduard Gratacós3,4, Francesc Cardellach1,2,3, Francesc Josep García-García1,2,3, Glòria Garrabou1,2,3

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), 08036 Barcelona, Spain; 2Internal Medicine Unit, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; 3Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; 4BCNatal—Barcelona Centre for Maternal-Foetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; 5Medicine Department, Faculty of Medicine. CIBEROBN Obesity and Nutrition Physiopathology. Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB). University of Barcelona, Barcelona, Spain. Fundación Dieta Mediterránea, Barcelona, Spain,



ID: 179
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Telomerase is crucial for mitochondrial function in human cardiomyocytes

Shambhabi Chatterjee1,2,3, Megan Leach-Mehrwald1, Cheng-Kai Huang1, Ke Xiao1,3, Dongchao Lu1, Thomas Thum1,2,3, Christian Bär1,2,3

1Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany; 2REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; 3Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany

Bibliography
1.Lu D*, Chatterjee S*, Xiao K*, et al. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. (2022) European Heart Journal. doi: 10.1093/eurheartj/ehac337 *equal contribution

2.Olliges L, Chatterjee S, Jia L, et al. Multiformin-type azaphilones prevent SARS-CoV-2 binding to ACE2 receptor. (2022) Cells. doi: 10.3390/cells12010083

3.Bei Y†, Lu D†, Bär C†, Chatterjee S, et al. MiR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection (2022) Mol. Ther. doi: 10.1016/j.ymthe.2022.01.031 †equal contribution

4.Chatterjee S*, Hofer T*, Costa A, et. al. Telomerase therapy attenuates cardiotoxic effects of doxorubicin (2020) Mol. Ther. doi: 10.1016/j.ymthe.2020.12.035 *equal contribution

5.Lu D*, Chatterjee S*, Xiao K, et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes (2020) J Mol Cell Cardiol. 2020;148:46-49. doi: 10.1016/j.yjmcc.2020.08.017 *equal contribution


ID: 535
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Drug repositioning as a mitochondrial-targeted therapeutic approach for neurodegenerations associated with OPA1 mutations

Valentina Del Dotto1, Serena J. Aleo1, Alessandra Maresca2, Anna Ghelli3, Michela Rugolo3, Anna Maria Porcelli3, Enrico Baruffini4, Alessandra Baracca1, Valerio Carelli1,2, Claudia Zanna1

1Dept. Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3Dept. Pharmacy and Biotechnology (FABIT), University of Bologna, Italy; 4Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma, Italy



ID: 602
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondria hormesis delays aging and associated diseases in C. elegans impacting on key ferroptosis players

Alfonso Schiavi1, Eva Salveridou1, Vanessa Brinkmann1, Anjumara Shaik1, Ralph Menzel2, Sumana Kalyanasundaram3, Ståle Nygård3, Hilde Nilsen3, Natascia Ventura1,4

1Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany; 2Humboldt-Universität zu Berlin, Berlin, Germany; 3Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Norway; 4Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Germany



ID: 230
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Cross-talk between mitochondria and immunoproteasomes upon mitochondrial dysfunction

Vyshnavi Tallapaneni, Agnieszka Chacinska

IMol Polish Academy of Sciences, Warsaw, Poland



ID: 585
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Diagnostic examination of kinase inhibitors by bioenergetic profiling of cancer cell models reveals off-target drug effects

Omar Torres-Quesada1,2, Sophie Strich2, Andreas Feichtner2,3, Selina Schwaighofer3, Carolina Doerrier4, Sabine Schmitt4, Erich Gnaiger4, Eduard Stefan2,3

1Division of Medical Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; 2Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria.; 3Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; 4Oroboros Instruments, Schoepfstrasse 18, 6020 Innsbruck, Austria

Bibliography
1.Cohen, P, Cross, D, Jänne, PA (2021). Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 20(7):551-569. https://doi.org/10.1038/s41573-021-00195-4
2.Zhang J, Yang PL, Gray NS (2009). Targeting cancer with small molecule kinase inhibitors. https://doi.org/10.1038/nrc2559
3.Ubersax JA, Ferrell JE, Jr. (2007). Mechanisms of specificity in protein phosphorylation. https://doi.org/10.1038/nrm2203
4.Wallace, DC Mitochondria and Cancer (2012). Nat. Rev. Cancer, 12, 685–698. https://doi.org/10.1038/nrc3365
5.Torres-Quesada O, Strich S, Stefan E (2022). Kinase perturbations redirect mitochondrial function in cancer. BEC 2022.13. https://doi.org/10.26124/bec:2022-0013
6.Torres-Quesada, O, Doerrier, C, Strich, S, Gnaiger, E, Stefan, E (2022). Physiological Cell Culture Media Tune Mitochondrial Bioenergetics and Drug Sensitivity in Cancer Cell Models. Cancers, 14, 3917. https://doi.org/10.3390/cancers14163917


ID: 121
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Leukemia cells undergo metabolic remodeling and become vulnerable to mitochondrial translation inhibition

Eva Nyvltova, Priyanka Maiti, Tyler A. Cunningham, Paola Manara, Matthew D. Wiefels, Jonathan H. Schatz, Antoni Barrientos, Flavia Fontanesi

University of Miami, United States of America



ID: 400
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Metabolic reprogramming of bone-marrow mesenchymal stem cells leads to impaired bone formation in m.3243A>G carriers

Paula Fernandez Guerra1,2, Ahmed Sayed1,2, Pernille Kjær1,2, Tina K. Nielsen1,2, Nicholas Ditzel1,2, Simone K. Terp3, Charlotte Ejersted1, Jesper S. Thomsen4, Herma Renkema5, Jan Smeitink5,6, John Vissing7, Per H. Andersen8, Kent Søe9,10,11, Thomas L. Andersen9,10,12, Moustapha Kassem1,2, Morten Frost1,2,13, Anja L. Frederiksen14

1Dept. of Endocrinology, Odense University Hospital (OUH), Odense, Denmark; 2The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Molecular Endocrinology, University of Southern (SDU), Denmark; 3Dept. of Molecular Diagnostics, Aalborg University Hospital, Aalborg; 4Department of Biomedicine, Aarhus University, Aarhus, Denmark; 5Khondrion BV, Nijmegen, The Netherlands; 6Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; 7Dept. of Neurology, Rigshospitalet, Copenhagen, Denmark; 8Dept. of Endocrinology, Hospital of Southwest, Esbjerg, Denmark; 9Dept. of Clinical Research, SDU, Denmark; 10Clinical Cell Biology, Dept. of Pathology, OUH, Denmark; 11Dept. of Molecular Medicine, SDU, Denmark; 12Dept. of Forensic Medicine, AU, Denmark; 13Steno Diabetes Centre Odense, OUH, Denmark; 14Dept. of Clinical Genetics, Aalborg University Hospital, Denmark



ID: 404
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Nucleus Associated Mitochondria (NAM) drive a cholesterol-mediated mechanism of Temozolomide resistance in glioblastoma cells

Daniela Strobbe1, Mardja Bueno2, Claudia De Vitis3, Danilo Faccenda4, Krenare Bruqi1, Elena Romano1, Gurtej K Dhoot4, Ivi J Bistrot5, Fabio Klamt5, Luana S Lenz2, Eduardo Cremonese Filippi-Chiela2,11, Pietro Ivo D'Urso6, Imogen Lally7, Laura Falasca8, Rita Mancini3, Federico Roncaroli9, Guido Lenz2, Michelangelo Campanella4,10

1Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy; 2Department of Biophysics, and Centre of Biotechnology, Universida de Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; 3Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00198 Rome, Italy; 4Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London; 5Department of Biochemistry, Universidade Federal do Rio Grandedo Sul (UFRGS), Porto Alegre, RS, Brazil; 6Department of Neurosurgery, Manchester Academic Health Science Centre, Northern Care Alliance, Salford UK; 7Department of Cellular Pathology, Northern Care Alliance, Salford UK; 8Laboratory of Electron Microscopy, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy; 9Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; 10UCL Consortium for Mitochondrial Research, University College London, WC1 6BT, London, UK; 11Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil

Bibliography
- Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. Published online 2018. doi:10.1016/j.jocn.2018.05.002
- Michaelsen SR, Christensen IJ, Grunnet K, et al. Clinical variables serve as prognostic factors in a model for survival from glioblastoma multiforme: an observational study of a cohort of consecutive non-selected patients from a single institution. BMC Cancer. 2013;13(1):402. doi:10.1186/1471-2407-13-402
- Colwell N, Larion M, Giles AJ, et al. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro Oncol. 2017;19(7):887-896. doi:10.1093/neuonc/now258
- Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumors. Nat Rev Clin Oncol. 2019;16(8):509-520. doi:10.1038/s41571-019-0177-5
- Desai R, East DA, Hardy L, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020;6(51). doi:10.1126/sciadv.abc9955
- Kim S, Koh H. Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus. J Bioenerg Biomembr. 2017;49. doi:10.1007/s10863-017-9705-0
- Strobbe D, Sharma S, Campanella M. Links between mitochondrial retrograde response and mitophagy in pathogenic cell signaling. Cell Mol Life Sci. 2021. doi:10.1007/s00018-021-03770-5


ID: 108
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Upregulation of COX4-2 via HIF-1α and replicative stress and impaired nuclear DNA damage response in mitochondrial COX4-1 deficiency

Liza Douiev (Charpak), Chaya Miller, Ann Saada (Reisch)

Hadassah Medical Center and Hebrew University of Jerusalem, Israel

Bibliography
Douiev L, Miller C, Keller G, Benyamini H, Abu-Libdeh B, Saada A. Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4-1 Deficiency. Int J Mol Sci. 2022;23(8):4149. Published 2022 Apr 8. doi:10.3390/ijms23084149

Douiev L, Miller C, Ruppo S, Benyamini H, Abu-Libdeh B, Saada A. Upregulation of COX4-2 via HIF-1α in Mitochondrial COX4-1 Deficiency. Cells. 2021;10(2):452. Published 2021 Feb 20. doi:10.3390/cells10020452

Douiev L, Saada A. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochim Biophys Acta Bioenerg. 2018;1859(9):893-900. doi:10.1016/j.bbabio.2018.06.004


ID: 221
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Analysis of mitochondrial function using novel detection reagents

Yasuka Komatsu1, Masaki Murai1, Naoko Yamamoto1, Masakazu Nakakubo1, Munetaka Ishiyama1, Toshitada Yoshihara2

1DOJINDO LABORATORIES; 2Gunma University



ID: 536
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial dynamics in cancer cells: relationship between the F1Fo-ATPase inhibitor IF1 and the mitochondrial the fusion-fission machinery

Claudia Zanna, Silvia Grillini, Riccardo Righetti, Valentina Del Dotto, Giancarlo Solaini, Alessandra Baracca

Department of Biomedical and Neuromotor Sciences, University of Bologna



ID: 463
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Melatonin overcomes resistance to CDDP treatment associated with the overexpression of the ATP-driven transmembrane efflux pumps

Alba López Rodríguez1,2,3, César Rodríguez Santana1,2,3, Laura Martínez Ruíz1,2,3, Javier Florido Ruiz1,2,3, Germaine Escames Rosa1,2,3

1Institute of Biotechnology; 2Biomedical Research Centre; 3University of Granada, Spain

Bibliography
Florido, J., Martínez-Ruíz, L., Rodríguez-Santana, C., López-Rodríguez, A., Hidalgo-Gutiérrez, A., Cottet-Rousselle, C., Lamarche, F., Schlattner, U., Guerra-Librero, A., Aranda-Martínez, P., Acuña-Castroviejo, D., López, L.C., and Escames, G. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. Journal of Pineal Research (2022). 73(3). https://doi.org/10.1111/jpi.12824


ID: 250
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Therapeutic capacity of exercise and melatonin against inflammation and mitochondrial dysfunction in the iMS-Bmal1-/- model of sarcopenia.

Yolanda Ramírez Casas1,2, José Fernández Martínez1,2, Paula Aranda Martínez1,2, Germaine Escames Rosa1,2,3, Darío Acuña Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Marisol Fernández-Ortiz; Ramy K. A. Sayed; Yolanda Román-Montoya; María Ángeles Rol deLama; José Fernández-Martínez; Yolanda Ramírez-Casas; Javier Florido-Ruiz; Iryna Rusanova;Germaine Escames; Darío Acuña-Castroviejo. Age and
Chronodisruption in Mouse Heart: Effectof the NLRP3 Inflammasome and Melatonin Therapy. International Journal of MolecularSciences 2022, 23, 6846.


Aranda-Martínez, P.; Fernández-Martínez, J.; Ramírez-Casas, Y.; Guerra-Librero, A.; Rodríguez-Santana, C.; Escames, G.; Acuña-Castroviejo, D. The Zebrafish, an Outstanding Model forBiomedical Research in the Field of Melatonin and Human Diseases. Int. J. Mol. Sci. 2022, 23,7438. https://doi.org/10.3390/ijms23137438


ID: 445
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Astrocytic CREB neuroprotection in experimental traumatic brain injury is associated with regulation of energetics and lipid metabolism: role of lactate

Irene Fernández González1, Abel Eraso Pichot2, Mariona Jové3, Manel Portero Otin3, Levi Wood4, Mercé Giralt1, Juan Manuel Hidalgo1, Luis Pardo1,5, Arantxa Golbano1, Roser Masgrau1, Elena Galea1,6, Elisenda Sanz1, Albert Quintana1

1Universitat Autònoma de Barcelona, Institut de Neurociències, Bellaterra, Spain; 2Neurocentre Magendie, Inserm U1215, Bordeaux, France; 3Universitat de Lleida, Institut de Recerca Biomèdica, Lleida, Spain; 4Georgia Institute of Technology, Georgia, United States of America; 5Beatson Institute for Cancer Research, Glasgow, United Kingdom; 6ICREA, Barcelona, Spain

Bibliography
Fernández-González, I., & Galea, E. (2022). Astrocyte strategies in the energy-efficient brain. Essays in biochemistry, EBC20220077. Advance online publication. https://doi.org/10.1042/EBC20220077

Navarro-Romero, A., Fernandez-Gonzalez, I., Riera, J., Montpeyo, M., Albert-Bayo, M., Lopez-Royo, T., Castillo-Sanchez, P., Carnicer-Caceres, C., Arranz-Amo, J. A., Castillo-Ribelles, L., Pradas, E., Casas, J., Vila, M., & Martinez-Vicente, M. (2022). Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinson's disease, 8(1), 126. https://doi.org/10.1038/s41531-022-00397-6


ID: 164
Metabolic stress responses in mitochondrial diseases, ageing and cancer

ROS induced mitochondrial hormesis partially protects from SGAs mitochondrial toxicity and cardiovascular disease.

Maria Monsalve1, Laura Doblado1, Gaurangkumar Patel1, Salvador Pérez2, Antonio Martínez3, Susana Cadenas4, Juan Sastre2, Francisco Abad Santos3, Ángel Luis García-Villalón5, Miriam Granado5

1Instituto de Investigaciones Biomédicas Alberto Sols, Spain; 2Universidad de Valencia; 3Instituto de Investigación Sanitaria La Princesa; 4CBMSO; 5Universidad Autónoma de Madrid



ID: 396
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial metabolism in breast cancer and cancer-associated adipose tissue

Aleksandra Jankovic1, Tamara Zakic1, Marta Budnar Soskic1, Biljana Srdic Galic2, Aleksandra Korac3, Bato Korac1,3

1Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Serbia; 2Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; 3Faculty of Biology, University of Belgrade, Belgrade, Serbia



ID: 197
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Reorganization of the energy metabolism: from colon polyps to colorectal cancer

Tuuli Käämbre1, Leenu Reinsalu1, Egle Rebane-Klemm Rebane-Klemm1, Igor Shevchuk1, Vahur Valvere2, Jelena Bogovskaja2, Marju Puurand1

1National Institute of Chemical Physics and Biophysics, Estonia; 2North Estonia Medical Centre, Oncology and Haematology Clinic, Tallinn, Estonia

Bibliography
1. M. Puurand, M., Tepp, K., Timohhina, N., Aid, J., Shevchuk, I., Chekulayev, V., Kaambre, T. (2019). Tubulin betaII and betaIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells 8, doi:10.3390/cells8030239 (2019).

2. Makrecka-Kuka, M., Liepinsh, E., Murray, A.J., Lemieux, H., Dambrova, M., Tepp, K., Puurand, M., Kaambre, T., Han, W.H., de Goede, P., et al. (2019). Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf), e13430, doi:10.1111/apha.13430 (2019).

3. Tepp, K., M. Puurand, N. Timohhina, J. Aid-Vanakova, I. Reile, I. Shevchuk, V. Chekulayev, M. Eimre, N. Peet, L. Kadaja, K. Paju and T. Kaambre (2020). "Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics." Biochim Biophys Acta Gen Subj 1864(4): 129523.doi: 10.1016/j.bbagen.2020.129523

4. Koit, A., N. Timohhina, L. Truu, V. Chekulayev, S. Gudlawar, I. Shevchuk, K. Lepik, L. Mallo, R. Kutner, V. Valvere and T. Kaambre (2020). "Metabolic and OXPHOS Activities Quantified by Temporal ex vivo Analysis Display Patient-Specific Metabolic Vulnerabilities in Human Breast Cancers." Front Oncol 10: 1053.doi:10.3389/fonc.2020.01053

5. Rebane-Klemm, E., L. Truu, L. Reinsalu, M. Puurand, I. Shevchuk, V. Chekulayev, N. Timohhina, K. Tepp, J. Bogovskaja, V. Afanasjev, K. Suurmaa, V. Valvere and T. Kaambre (2020). "Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps." Cancers (Basel) 12(4). doi: 10.3390/cancers12040815

6. Klepinin, A., S. Zhang, L. Klepinina, E. Rebane-Klemm, A. Terzic, T. Kaambre and P. Dzeja (2020). "Adenylate Kinase and Metabolic Signaling in Cancer Cells." Front Oncol 10: 660.doi: 10.3389/fonc.2020.00660

7. Klepinina, L., Klepinin, A., Truu, L., Chekulayev, V., Vija, H., Kuus, K., Teino, I., Pook, M., Maimets, T., and Kaambre, T. *(2021). Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS One 16, e0245348. doi: 10.1371/journal.pone.0245348

8. Reinsalu, L., Puurand, M., Chekulayev, V., Miller, S., Shevchuk, I., Tepp, K., Rebane-Klemm, E., Timohhina, N., Terasmaa, A., and Kaambre, T. *(2021). Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Frontiers in oncology 11, 698951. doi: 10.3389/fonc.2021.698951

9. Kaup, K.K., Toom, L., Truu, L., Miller, S., Puurand, M., Tepp, K., Kaambre, T., and Reile, I. (2021). A line-broadening free real-time (31)P pure shift NMR method for phosphometabolomic analysis. The Analyst 146, 5502-5507. doi: 10.1039/d1an01198g

10. Klepinin, A., Miller, S., Reile, I., Puurand, M., Rebane-Klemm, E., Klepinina, L., Vija, H., Zhang, S., Terzic, A., Dzeja, P., and Kaambre T*(2022). Stable Isotope Tracing Uncovers Reduced gamma/beta-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Frontiers in oncology 12, 892195. Doi: 10.3389/fonc.2022.892195

11. Tepp, K., Aid-Vanakova, J., Puurand, M., Timohhina, N., Reinsalu, L., Tein, K., Plaas, M., Shevchuk, I., Terasmaa, A., and Kaambre, T. (2022). Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles. Biochem Biophys Rep 30, 101250. Doi: 10.1016/j.bbrep.2022.101250
12. Gnaiger, E., Aasander, F., E, Abumrad, N., Acuna-Castroviejo, D., Adams, S., Ahn, B., Ali, S., Alves, M., Amati, F., Amoedo, N., et al. (2019). Mitochondrial respiratory states and rates. In MitoFit Preprint Arch (MitoFitPublication, MitoEAGLEPublication), pp. 40.

13. Mado, K., Chekulayev, V., Shevchuk, I., Puurand, M., Tepp, K., and Kaambre, T. (2019). On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 316, C657-C667.

14. Rodriguez-Enriquez, S., Kaambre, T., and Moreno-Sanchez, R. (2020). Editorial: Metabolic Plasticity of Cancer. Frontiers in oncology 10, 599723.

15. Ruiz-Meana, M., Boengler, K., Garcia-Dorado, D., Hausenloy, D.J., Kaambre, T., Kararigas, G., Perrino, C., Schulz, R., and Ytrehus, K. (2020). Ageing, sex, and cardioprotection. Br J Pharmacol 177, 5270-5286.

16. Zhang, S., Yamada, S., Park, S., Klepinin, A., Kaambre, T., Terzic, A., and Dzeja, P. (2021). Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis. Biochem Biophys Res Commun 546, 59-64.


ID: 419
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Role of NcoR1 and PGC-1 for mitochondrial dysfunction in skeletal muscle of ovariectomized mice

Jiyun Ahn, Tae Youl Ha

Korea Food Research Institute, Korea, Republic of (South Korea)

Bibliography
Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice, J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):1925-1939


ID: 431
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport

Laura Martinez Ruiz1,2,3, Javier Florido1,2,3, César Rodríguez Santana1,2, Alba López Rodríguez1,2, Germaine Escames1,2,3

1Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; 2Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; 3Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain

Bibliography
Martinez-Ruiz, L.; Florido, J.; Rodriguez-Santana, C.; López-Rodríguez, A.; Hidalgo-Gutiérrez, A.; Cottet-Rouselle, C.; Lamarche, F.; Schlattner, U.; Guerra-Librero, A.; Aranda-Martínez, P.; Acuña-Castroviejo, D.; López, LC.; Escames, G.. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. Journal of Pineal Research. 28/08/2022. ISSN 1600-079X


ID: 537
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Differences in life expectancy of rats with inherited high and low exercise capacity correlate with mitochondrial function in skeletal muscle

Estelle Heyne1, Lauren G. Koch2, Steven L. Britton3, Torsten Doenst1, Michael Schwarzer1

1University Hospital of Friedrich-Schiller-University Jena, Germany; 2The University of Toledo, Toledo, OH; 3University of Michigan, Ann Arbor, MI



ID: 395
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Modulation of the activity of human mitochondrial protease complex ClpXP as potential therapeutic strategy for cancer

Francesca Rizzo, Morena Miciaccia, Antonella Cormio, Savina Ferorelli, Maria Grazia Perrone, Antonio Scilimati, Paola Loguercio Polosa

University of Bari "Aldo Moro", Italy

Bibliography
1.Nouri, K. et al. Cell Death Dis 2020, 11, 841
2.Perrone, M.G. et al. Curr. Med. Chem. 2021, 28, 3287
3.Ishizawa, J. et al. Cancer Cell, 2019, 35, 721


ID: 437
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Mitochondrial respiratory function in peripheral blood cells across the human life span

Eleonor Åsander Frostner1, Johannes Ehinger1,2, Emil Westerlund1,3, Michael Karlsson4, Gesine Paul5, Fredrik Sjövall1,6, Eskil Elmér1

1Lund University, Department of Clinical Sciences Lund, Mitochondrial Medicine, Lund, Sweden; 2Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Lund, Sweden; 3A&E Department, Kungälv Hospital, Kungälv, Sweden; 4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark; 5Lund University, Department of Clinical Sciences Lund, Translational Neurology Group and Wallenberg Center for Molecular Medicine, Lund, Sweden; 6Skåne University Hospital, Department of Intensive- and perioperative Care, Malmö, Sweden

Bibliography
1. A. Trifunovic et al., Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423 (2004).
2. A. Trifunovic et al., Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102, 17993-17998 (2005).


ID: 607
Clinical 2: natural history, biomarkers and outcome measures

Diagnostic value of urine organic acid analysis for primary mitochondrial disorders

Tatiana Krylova, Marina Kurkina, Polina Baranova, Polina Tsygankova, Yulia Itkis, Ekaterina Zakharova

Research Centre for Medical Genetics, Russian Federation



ID: 240
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Exercise and melatonin counteract Bmal1 loss-dependent sarcopenia in mouse skeletal muscle by improving mitochondrial ultrastructure and function

José Fernández-Martínez1,2, Yolanda Ramírez-Casas1,2, Paula Aranda-Martínez1,2, Germaine Escames1,2,3, Darío Acuña-Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Fernández-Ortiz, M., Sayed, R. K. A., Román-Montoya, Y., de Lama MÁ, R., Fernández-Martínez, J., Ramírez-Casas, Y., . . . Acuña-Castroviejo, D. (2022). Age and Chronodisruption in Mouse Heart: Effect of the NLRP3 Inflammasome and Melatonin Therapy. Int J Mol Sci, 23(12). doi:10.3390/ijms23126846

Aranda-Martínez, P., Fernández-Martínez, J., Ramírez-Casas, Y., Guerra-Librero, A., Rodríguez-Santana, C., Escames, G., & Acuña-Castroviejo, D. (2022). The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci, 23(13). doi:10.3390/ijms23137438

Sayed, R. K., Fernández-Ortiz, M., Fernández-Martínez, J., Aranda Martínez, P., Guerra-Librero, A., Rodríguez-Santana, C., . . . Rusanova, I. (2021). The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants (Basel), 10(4). doi:10.3390/antiox10040524

Sayed, R. K. A., Fernández-Ortiz, M., Rahim, I., Fernández-Martínez, J., Aranda-Martínez, P., Rusanova, I., . . . Acuña-Castroviejo, D. (2021). The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage. Antioxidants (Basel), 10(8). doi:10.3390/antiox10081269

Sayed, R. K. A., Mokhtar, D. M., Fernández-Ortiz, M., Fernández-Martínez, J., Aranda-Martínez, P., Escames, G., & Acuña-Castroviejo, D. (2020). Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging (Albany NY), 12(13), 12648-12668. doi:10.18632/aging.103654

Fernández-Ortiz, M., Sayed, R. K. A., Fernández-Martínez, J., Cionfrini, A., Aranda-Martínez, P., Escames, G., . . . Acuña-Castroviejo, D. (2020). Melatonin/Nrf2/NLRP3 Connection in Mouse Heart Mitochondria during Aging. Antioxidants (Basel), 9(12). doi:10.3390/antiox9121187

Sayed, R. K. A., Fernández-Ortiz, M., Diaz-Casado, M. E., Aranda-Martínez, P., Fernández-Martínez, J., Guerra-Librero, A., . . . Acuña-Castroviejo, D. (2019). Lack of NLRP3 Inflammasome Activation Reduces Age-Dependent Sarcopenia and Mitochondrial Dysfunction, Favoring the Prophylactic Effect of Melatonin. J Gerontol A Biol Sci Med Sci, 74(11), 1699-1708. doi:10.1093/gerona/glz079

Rusanova, I., Fernández-Martínez, J., Fernández-Ortiz, M., Aranda-Martínez, P., Escames, G., García-García, F. J., . . . Acuña-Castroviejo, D. (2019). Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp Gerontol, 124, 110637. doi:10.1016/j.exger.2019.110637


ID: 619
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Uncovering the OXPHOS complexes' interdependence mechanism

Kristýna Čunátová1, Marek Vrbacký1, Guillermo Puertas-Frias1, Josef Houštěk1, Jiří Neužil2, Alena Pecinová1, Petr Pecina1, Tomáš Mráček1

1Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Czech Republic; 2Laboratory of Molecular Therapy of Cancer, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic

Bibliography
[1] K. Čunátová, D.P. Reguera, M. Vrbacký, E. Fernández-Vizarra, S. Ding, I.M. Fearnley, M. Zeviani, J. Houštěk, T. Mráček, P. Pecina, Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis, Cells, 10 (2021).


ID: 1658
Clinical 2: natural history, biomarkers and outcome measures

Challenging the norm – outcome measure selection for evaluating therapeutic response in patients with Primary Mitochondrial Myopathy after 12 weeks of treatment with REN001, a novel PPARδ agonist.

Lisa Alcock1,2, Renae J. Stefanetti2,3, Oliver Russell2,3, Alisdair P. Blain2,3, Jane Newman2,3,4, Naomi J.P. Thomas2,3,4, Charlotte Warren2,3, Huizhong Su2,3, Philip Brown5, David Houghton2,3, Heather Hunter5, Helen Tuppen2,3, Gavin Falkous4, Robert W. Taylor2,3,4, Albert Z. Lim2,3,4, Yi Shiau Ng2,3,4, Catherine Feeney2,3,4, Iwona Skorupinska6, Louise Germain7, Enrico Bugiardini6, Michael G. Hanna6, Robert McFarland2,3,4, Robert D.S. Pitceathly6,7, Lynn Rochester1,2,5, Gráinne S. Gorman2,3,4

1Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 5The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 6Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK



ID: 1100
Clinical 2: natural history, biomarkers and outcome measures

Indirect comparison of lenadogene nolparvovec gene therapy versus natural history in m.11778G>A MT-ND4 Leber hereditary optic neuropathy patients

Nancy J. Newman1, Mark L. Moster2, Valerio Carelli3, Patrick Yu-Wai-Man4, Valerie Biousse1, Prem S. Subramanian5, Catherine Vignal-Clermont6, An-Guor Wang7, Sean P. Donahue8, Bart P. Leroy9, Robert C. Sergott2, Thomas Klopstock10, Alfredo A. Sadun11, Gema Rebolleda Fernández12, Bart K. Chwalisz13, Rudrani Banik14, Magali Taiel15, José-Alain Sahel16

1Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA; 2Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 4Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 5Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA; 6Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 7Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan; 8Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; 9Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium; 10Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; 11Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA; 12Department of Ophthalmology, Alcala University, Madrid, Spain; 13Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA; 14Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 15GenSight Biologics, Paris, France; 16Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

Bibliography
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol. 2022 Sep 22:S1474-4422(22)00174-0. doi: 10.1016/S1474-4422(22)00174-0. Epub ahead of print. PMID: 36155660.

Yu-Wai-Man P, Newman NJ, Carelli V, La Morgia C, Biousse V, Bandello FM, Clermont CV, Campillo LC, Leruez S, Moster ML, Cestari DM, Foroozan R, Sadun A, Karanjia R, Jurkute N, Blouin L, Taiel M, Sahel JA; LHON REALITY Study Group. Natural history of patients with Leber hereditary optic neuropathy-results from the REALITY study. Eye (Lond). 2022 Apr;36(4):818-826. doi: 10.1038/s41433-021-01535-9. Epub 2021 Apr 28. PMID: 33911213; PMCID: PMC8956580.

Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol. 2021 May 24;12:662838. doi: 10.3389/fneur.2021.662838. PMID: 34108929; PMCID: PMC8181419.


ID: 1451
Clinical 2: natural history, biomarkers and outcome measures

The mitochondrial stress, brain imaging, and epigenetics study (MiSBIE)

Caroline Trumpff1, Anna S Monzel1, Catherine Kelly1, Kris Engelstad1, Shufang Li1, Kalpita Karan1, Gabriel Sturm1, Jeremy Michelson1, Mangesh Kurade1, Vincenzo Lauriola1, Sophia Tepler1, Grace Liu1, Peter Shapiro1, Robert-Paul Juster2, Stephanie Assuras1, Richard Sloan1, Michel Thiebaut de Schotten3, Tor Wager4, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2Université de Montréal, Canada; 3Université de Bordeaux, France; 4Dartmouth College, Uniter States of America

Bibliography
Picard et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 1;112(48):E6614-23 (2015) https://www.pnas.org/doi/full/10.1073/pnas.1515733112

Karan et al. Leukocyte cytokine responses in adult patients with mitochondrial DNA defects. J Mol Med 100, 963–971 (2022). https://doi.org/10.1007/s00109-022-02206-2

Picard and Shirihai. Mitochondrial signal transduction. Cell Metab 34(11):1620-1653 (2022) https://doi.org/10.1016/j.cmet.2022.10.008


ID: 1430
Inflammation and Immunity as mitochondrial contributor to pathology

Free cytosolic-mitochondrial DNA triggers a potent type-I Interferon response in Kearns–Sayre patients counteracted by mofetil mycophenolate

Michela Di Nottia1, Ivan Caiello2, Alessandra Torraco1, Martina Zoccola1, Fabrizio De Benedetti2, Carlo Dionisi-Vici3, Enrico Bertini4, Diego Martinelli3, Rosalba Carrozzo1

1Unit of Cellular Biology and Diagnosis of Mitochondrial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; 2Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 3Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 4Research Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy



ID: 1409
Inflammation and Immunity as mitochondrial contributor to pathology

Fumarate induces mtDNA release via mitochondrial-derived vesicles and drives innate immunity

Vincent Paupe1, Vincent Zecchini2, Christian Frezza2,3, Julien Prudent1

1Medical Research Council, MBU,University of Cambridge, UK; 2Medical Research Council Cancer Unit,University of Cambridge, UK; 3CECAD Research Centre, University of Cologne, Cologne, Germany

Bibliography
AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology.
Tilokani L, Russell FM, Hamilton S, Virga DM, Segawa M, Paupe V, Gruszczyk AV, Protasoni M, Tabara LC, Johnson M, Anand H, Murphy MP, Hardie DG, Polleux F, Prudent J.
Sci Adv. 2022 Nov 11;8(45):eabo7956. doi: 10.1126/sciadv.abo7956. Epub 2022 Nov 11. PMID: 36367943

Mitochondrial translation is required for sustained killing by cytotoxic T cells.
Lisci M, Barton PR, Randzavola LO, Ma CY, Marchingo JM, Cantrell DA, Paupe V, Prudent J, Stinchcombe JC, Griffiths GM.
Science. 2021 Oct 15;374(6565):eabe9977. doi: 10.1126/science.abe9977. Epub 2021 Oct 15.
PMID: 34648346

Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division.
Nagashima S, Tábara LC, Tilokani L, Paupe V, Anand H, Pogson JH, Zunino R, McBride HM, Prudent J.
Science. 2020 Mar 20;367(6484):1366-1371. doi: 10.1126/science.aax6089.
PMID: 32193326

SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, Shoubridge EA. EMBO Mol Med. 2016 Sep 1;8(9):1019-38. doi: 10.15252/emmm.201506159. Print 2016 Sep.
PMID: 27390132

CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter.
Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA.
Cell Metab. 2015 Jan 6;21(1):109-16. doi: 10.1016/j.cmet.2014.12.004.
PMID: 25565209


ID: 1209
Inflammation and Immunity as mitochondrial contributor to pathology

Impaired inflammatory response to lipopolysaccharide in fibroblasts from patients with long-chain fatty acid oxidation disorders

Signe Mosegaard1,2, Krishna Twayana3, Simone Denis1, Jeffrey Kroon4, Bauke Schomakers5, Michel van Weeghel5, Riekelt Houtkooper1, Rikke Olsen2, Christian Holm3

1Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 2Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark; 3Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark; 4Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 5Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

Bibliography
Mosegaard S*, Dipace G*, Bross P, Carlsen J, Gregersen N, Olsen RKJ. 2020. ”Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism”. International Journal of Molecular Sciences;21(11):3847. doi: 10.3390/ijms21113847.

Mosegaard S*, Bruun GH*, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. 2017. “An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency”. Molecular Genetics and Metabolism;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014.

Olsen RKJ*, Koňaříková E*, Giancaspero TA*, Mosegaard S*, Boczonadi V*, Mataković L*, ….. Barile M, Prokisch H. 2016. ”Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency”. American Journal of Human Genetics;98(6):1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

V.A. Yépez, M. Gusic, R. Kopajtich, C. Mertes, N.H. Smith, C.L. Alston, R. Ban, S. Beblo, R. Berutti, H. Blessing, E. Ciara, F. Distelmaier, P. Freisinger, J. Häberle, S.J. Hayflick, M. Hempel, Y.S. Itkis, Y. Kishita, T. Klopstock, T.D. Krylova, C. Lamperti, D. Lenz, C. Makowski, S. Mosegaard, M.F. Müller, G. Muñoz-Pujol, A. Nadel, A. Ohtake, Y. Okazaki, E. Procopio, T. Schwarzmayr, J. Smet, C. Staufner, S.L. Stenton, T.M. Strom, C. Terrile, F. Tort, R. Van Coster, A. Vanlander, M. Wagner, M. Xu, F. Fang, D. Ghezzi, J.A. Mayr, D. Piekutowska-Abramczuk, A. Ribes, A. Rötig, R.W. Taylor, S.B. Wortmann, K. Murayama, T. Meitinger, J. Gagneur, H. Prokisch, Clinical implementation of RNA sequencing for Mendelian disease diagnostics, Genome Med. 14 (2022) 38. https://doi.org/10.1186/s13073-022-01019-9.

Fogh S, Dipace G, Bie A, Veiga-da-Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. “Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria?” J Inherit Metab Dis. 2021 Sep;44(5):1215-1225. doi: 10.1002/jimd.12394.

Muru K., Reinson K., Künnapas K., Lilleväli H., Nochi Z., Mosegaard S., Pajusalu S., Olsen R. and Õunap K. “FLAD1 Asso-ciated Multiple Acyl-CoA Dehydrogenase Deficiency Identified by Newborn Screening.”. Molecular Genetics & Genomic Medicine;7(9). doi: 10.1002/mgg3.915.

García-Villoria J., de Azua B., Tort F., Mosegaard S., Matalonga L., Ugarteburu O., Teixidó L., Olsen R. and Ribes A. “FLAD1, a recently described gene associated to multiple acyl-CoA dehydrogenase deficiency (MADD) is mutated in a patient with myopathy, scoliosis and cataracts.”. Clinical Genetics;94(6):592-593. doi: 10.1111/cge.13452.

Auranen M., Paetau A., Piirilä P., Pohju A., Salmi T., Lamminen A., Thure H., Löfberg M., Mosegaard S., Olsen R., Tyni T. “FLAD1 gene mutation causes riboflavin responsive MADD disease”. Neuromuscular Disorders;27(6):581-584. doi: 10.1016/j.nmd.2017.03.003.


ID: 1413
Metabolic stress responses in mitochondrial diseases, ageing and cancer

Functional characterisation of the human mitochondrial disaggregase, CLPB

Megan J Baker1, Alexander J Anderson1, Catherine S Palmer1, David R Thorburn2,3, Ann E Frazier2, Diana Stojanovski1

1Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville VIC 3010, Australia; 2Murdoch Children’s Research Institute, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville VIC 3052, Australia; 3Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Parkville VIC 3052, Australia



ID: 1381
Metabolic stress responses in mitochondrial diseases, ageing and cancer

High fat diet ameliorates the mitochondrial cardiomyopathy of CHCHD10 mutant mice

Hibiki Kawamata, Nneka Southwell, Nicole Sayles, Giovanni Manfredi

Weill Cornell Medicine, United States of America



ID: 1448
Metabolic stress responses in mitochondrial diseases, ageing and cancer

The mitochondrial inhibitor IF1 has a dual role in cancer

Martina Grandi1, Cristina Gatto1, Simone Fabbian2, Natascia Tiso3, Francesco Argenton3, Massimo Bellanda2, Giancarlo Solaini1, Valentina Giorgio*1, Alessandra Baracca*1

1Department of Biomedical and Neuromotor Sciences, University of Bologna; 2Department of Chemical Science, University of Padova; 3Department of Biology, University of Padova, Padova

Bibliography
1. Galber, C; Fabbian, S; Gatto, C; Grandi, M; Carissimi, S; Acosta, MJ; Sgarbi, G; Tiso, N; Argenton, F; Solaini, G; Baracca, A; Bellanda, M; Giorgio,CELL DEATH & DISEASE, 2023, 14, pp. 1 - 19
2. Gatto, C; Grandi, M; Solaini, G; Baracca, A; Giorgio, V, FRONTIERS IN PHYSIOLOGY, 2022, 13, 917203, pp. 1 - 11
3. Galber C; Minervini G; Cannino G; Boldrin F; Petronilli V; Tosatto S; Lippe G; Giorgio V, CELL REPORTS, 2021, 35, 109111, pp. 1 - 14


ID: 657
Clinical 2: natural history, biomarkers and outcome measures

Tractography of the anterior optic pathway provides biomarkers of pathological change in Leber’s Hereditary Optic Neuropathy

David Neil Manners2,4, Giovanni Sighinolfi1,2, Laura Ludovica Gramegna1, Chiara La Morgia2, Alessandro Carrozzi1, Cristiana Fiscone1,2, Claudia Testa2,3, Raffaele Lodi1,2, Valerio Carelli1,2, Caterina Tonon1,2

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; 2IRCCS Instituto delle Scienze Neurologiche di Bologna, Bologna, Italy; 3Department of Physics and Astronomy, University of Bologna, Italy; 4Department of Life Quality Studies, University of Bologna

Bibliography
1 He J, et al. Hum Brain Mapp. 2021
2 Manners DN, et al. Int J Environ Res Public Health. 2022


ID: 661
Metabolic stress responses in mitochondrial diseases, ageing and cancer

A novel role of Keap1/PGAM5 complex: ROS sensor for inducing mitophagy

Akbar Zeb1, Vinay Choubey1, Ruby Gupta1, Malle Kuum1, Dzhamilja Safiulina1, Annika Vaarmann1, Nana Gogichaishvili1, Mailis Liiv1, Ivar Ilves1, Kaido Tämm1, Vladimir Veksler2, Allen Kaasik1

1University of Tartu, Estonia; 2University Paris-Saclay, INSERM UMR-S, France

Bibliography
Akbar Zeb, Vinay Choubey, Ruby Gupta, Malle Kuum, Dzhamilja Safiulina, Annika Vaarmann, Nana Gogichaishvili, Mailis Liiv, Ivar Ilves, Kaido Tämm, Vladimir Veksler, Allen Kaasik,
A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy,
Redox Biology, Volume 48, 2021,102186, ISSN 2213-2317, https://doi.org/10.1016/j.redox.2021.102186.
 
4:30pm - 6:00pmSession 3.4: Clinical 2: natural history, biomarkers and outcome measures
Location: Bologna Congress Center - Sala Europa
Session Chair: Costanza Lamperti
Session Chair: Alessandra Maresca
 
Invited
ID: 682
Invited Speakers

Optimising interventional trials: how natural history studies and digital technologies can drive innovation

Gráinne Gorman1, Michelangelo Mancuso2

1Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; 2University of Pisa, Italy



Invited
ID: 2105
Invited Speakers

Identifying circulating biomarkers to monitor mitochondrial disease severity

Rohit Sharma

Massachusetts General Hospital, United States of America



Oral presentation
ID: 593
Clinical 2: natural history, biomarkers and outcome measures

National mitochondrial disease registry in England: linking genetics with routinely collected healthcare data

Katherine R Schon1,2, Peter Stilwell3, Jeanette Aston3, Robert D S Pitceathly4, Michael G Hanna4, Carl Fratter5, Rita Horvath1, Mary Bythell3, Steven A Hardy3, Patrick F Chinnery1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; 3National Disease Registration Service, NHS Digital, Leeds, UK; 4Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 5NHS Highly Specialised Services for Rare Mitochondrial Disorders – Oxford Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK



Oral presentation
ID: 157
Clinical 2: natural history, biomarkers and outcome measures

Status epilepticus in POLG disease

Omar Hikmat1,2, Karin Naess3,4, Martin Engvall3,5, Claus Klingenberg6,7, Magnhild Rasmussen8,9,10, Eylert Brodtkorb11,12, Elsebet Ostergaard13, I.F.M de Coo14, Leticia Pias-Peleteiro15, Pirjo Isohanni16,17, Johanna Uusimaa18,19, Kari Majamaa20,21, Mikko Kärppä20,21, Juan Dario Ortigoza-Escobar22,23, Trine Tangeraas24,25, Siren Berland26, Rita Horvath27, Niklas Darin28, Shamima Rahman25,29,30, Laurence A. Bindoff2,31

1Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Norway; 2Department of Clinical Medicine (K1), University of Bergen, Norway; 3Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; 4Department of Neuropediatrics, Astrid Lindgren Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden; 5Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; 6Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway; 7Paediatric Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromso, Norway; 8Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway and Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway; 9Department of Neurology, Oslo University Hospital, Oslo, Norway; 10Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; 11Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; 12Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; 13Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; 14Facultiy of Health, Medicine and Life Sciences, Department of Toxicology, , University of Maastricht, Maastricht, The Netherlands; 15Neurometabolic Disorders Unit, Department of Child Neurology/ Department of Genetics and Molecular Medicine, Sant Joan de Déu Children´s Hospital, Barcelona, Spain; 16Department of Pediatric Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; 17Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.; 18Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; 19Department of Pediatric Neurology, Clinic for Children and Adolescents and Medical Research Center, Oulu University Hospital, Oulu, Finland; 20Research Unit of Clinical Medicine, Neurology, and Medical Research Center Oulu, Oulu University hospital and university of Oulu, Oulu Finland; 21Neurocenter , Oulu University Hospital ,Oulu Finland; 22Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII, Barcelona, Spain; 23European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain; 24Norwegian national Unit for Newborn Screening, Division of Pediatric and adolescent Medicine, Oslo University Hospital, Oslo, Norway; 25European Reference Network for Hereditary Metabolic Disorder; 26Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway; 27Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 28Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; 29Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; 30Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 31Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway

Bibliography
Omar Hikmat is a senior consultant in paediatric neurology, working at the Paediatric Neurology section- Paediatric Department, Haukeland University Hospital, Bergen, and researcher at the Mitochondrial Medicine and Neuro-genetic research group, Clinical Institute 1, University of Bergen, Norway.
Hikmat has a special interest in paediatric neuro-metabolic, mitochondrial disorders and complex epilepsies.
Main research interest is within mitochondrial medicine and particularly the clinical spectrum and natural history of POLG disease. Hikmat is responsible for the National Norwegian POLG registry and the multinational POLG database.


Flash Talk
ID: 658
Clinical 2: natural history, biomarkers and outcome measures

Challenging the norm – outcome measure selection for evaluating therapeutic response in patients with Primary Mitochondrial Myopathy after 12 weeks of treatment with REN001, a novel PPARδ agonist.

Lisa Alcock1,2, Renae J. Stefanetti2,3, Oliver Russell2,3, Alisdair P. Blain2,3, Jane Newman2,3,4, Naomi J.P. Thomas2,3,4, Charlotte Warren2,3, Huizhong Su2,3, Philip Brown5, David Houghton2,3, Heather Hunter5, Helen Tuppen2,3, Gavin Falkous4, Robert W. Taylor2,3,4, Albert Z. Lim2,3,4, Yi Shiau Ng2,3,4, Catherine Feeney2,3,4, Iwona Skorupinska6, Louise Germain7, Enrico Bugiardini6, Michael G. Hanna6, Robert McFarland2,3,4, Robert D.S. Pitceathly6,7, Lynn Rochester1,2,5, Gráinne S. Gorman2,3,4

1Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 2National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 5The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 6Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK



Flash Talk
ID: 100
Clinical 2: natural history, biomarkers and outcome measures

Indirect comparison of lenadogene nolparvovec gene therapy versus natural history in m.11778G>A MT-ND4 Leber hereditary optic neuropathy patients

Nancy J. Newman1, Mark L. Moster2, Valerio Carelli3, Patrick Yu-Wai-Man4, Valerie Biousse1, Prem S. Subramanian5, Catherine Vignal-Clermont6, An-Guor Wang7, Sean P. Donahue8, Bart P. Leroy9, Robert C. Sergott2, Thomas Klopstock10, Alfredo A. Sadun11, Gema Rebolleda Fernández12, Bart K. Chwalisz13, Rudrani Banik14, Magali Taiel15, José-Alain Sahel16

1Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA; 2Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 4Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 5Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA; 6Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; 7Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan; 8Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; 9Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium; 10Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; 11Doheny Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA; 12Department of Ophthalmology, Alcala University, Madrid, Spain; 13Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA; 14Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 15GenSight Biologics, Paris, France; 16Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France

Bibliography
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol. 2022 Sep 22:S1474-4422(22)00174-0. doi: 10.1016/S1474-4422(22)00174-0. Epub ahead of print. PMID: 36155660.

Yu-Wai-Man P, Newman NJ, Carelli V, La Morgia C, Biousse V, Bandello FM, Clermont CV, Campillo LC, Leruez S, Moster ML, Cestari DM, Foroozan R, Sadun A, Karanjia R, Jurkute N, Blouin L, Taiel M, Sahel JA; LHON REALITY Study Group. Natural history of patients with Leber hereditary optic neuropathy-results from the REALITY study. Eye (Lond). 2022 Apr;36(4):818-826. doi: 10.1038/s41433-021-01535-9. Epub 2021 Apr 28. PMID: 33911213; PMCID: PMC8956580.

Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel JA. Intravitreal Gene Therapy vs. Natural History in Patients With Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front Neurol. 2021 May 24;12:662838. doi: 10.3389/fneur.2021.662838. PMID: 34108929; PMCID: PMC8181419.


Flash Talk
ID: 451
Clinical 2: natural history, biomarkers and outcome measures

The mitochondrial stress, brain imaging, and epigenetics study (MiSBIE)

Caroline Trumpff1, Anna S Monzel1, Catherine Kelly1, Kris Engelstad1, Shufang Li1, Kalpita Karan1, Gabriel Sturm1, Jeremy Michelson1, Mangesh Kurade1, Vincenzo Lauriola1, Sophia Tepler1, Grace Liu1, Peter Shapiro1, Robert-Paul Juster2, Stephanie Assuras1, Richard Sloan1, Michel Thiebaut de Schotten3, Tor Wager4, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2Université de Montréal, Canada; 3Université de Bordeaux, France; 4Dartmouth College, Uniter States of America

Bibliography
Picard et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci USA 1;112(48):E6614-23 (2015) https://www.pnas.org/doi/full/10.1073/pnas.1515733112

Karan et al. Leukocyte cytokine responses in adult patients with mitochondrial DNA defects. J Mol Med 100, 963–971 (2022). https://doi.org/10.1007/s00109-022-02206-2

Picard and Shirihai. Mitochondrial signal transduction. Cell Metab 34(11):1620-1653 (2022) https://doi.org/10.1016/j.cmet.2022.10.008
 
6:00pm - 7:00pmPoster session
Location: Bologna Congress Center
Session topics:
- Mitochondrial mechanisms in neurodegeneration and neurodevelopment
- The impact of mtDNA variation and environment on rare and common diseases
 
ID: 290
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency

Carolina Montoro1,2, Hendrik Nolte3, Thibaut Molinie1,2, Giovanna Evangelista1,2, Simon Tröder2, Esther Barth1,2, Branko Zeivnik2, Thomas Langer2,3, Elena Rugarli1,2,4

1Institute for Genetics, University of Cologne, Cologne 50931, Germany; 2Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany; 3Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; 4Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany

Bibliography
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Frontiers in molecular biosciences. 2021;8:690899. doi:10.3389/fmolb.2021.690899.
Figley MD, DiAntonio A. The SARM1 axon degeneration pathway: control of the NAD(+) metabolome regulates axon survival in health and disease. Curr Opin Neurobiol. Aug 2020;63:59-66. doi:10.1016/j.conb.2020.02.012.
Figley MD, Gu W, Nanson JD, et al. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron. 2021;109(7):1118-1136.e11. doi:10.1016/j.neuron.2021.02.009.
König T, Tröder SE, Bakka K, et al. The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol Cell. 2016;64(1):148-162. doi:doi: 10.1016/j.molcel.2016.08.020
Koppen M, Metodiev MD, Casari G, Rugarli EI, Langer T. Variable and Tissue-Specific Subunit Composition of Mitochondrial m-AAA Protease Complexes Linked to Hereditary Spastic Paraplegia. Mol Cell Biol. Jan 2007;27(2):758-67.
Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell. Oct 21 2005;123(2):277-89.


ID: 203
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Pathobiology of cerebellar degeneration in the Harlequin mouse, a proteomic and system biology approach

Miguel Fernández de la Torre1, Carmen Fiuza-Luces1, Sara Laine-Menéndez1, Aitor Delmiro1,2,3, Joaquín Arenas1,2, Miguel A Martín1,2,4, Alejandro Lucía5,6, María Morán1,2

1Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital ‘12 de Octubre’ (‘imas12’), Madrid, Spain; 2Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain.; 3Servicio de Bioquímica Clínica. Hospital Universitario ‘12 de Octubre’. Madrid, Spain; 4Servicio de Genética. Hospital Universitario ‘12 de Octubre’. Madrid, Spain; 5Faculty of Sports Sciences, European University of Madrid, Madrid, Spain; 6Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain

Bibliography
DOI: 10.3390/ijms22126396
DOI: 10.3390/ijms22115598
DOI: 10.3389/fphys.2020.594223
DOI: 10.3389/fneur.2019.00790
DOI: 10.3390/pharmaceutics13020244.
DOI: 10.1249/MSS.0000000000001546.


ID: 484
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The role of mitochondrial transcriptional processes in the aetiology of Parkinson’s disease

Aine Fairbrother-Browne1,2,3, Ana Luisa Gil-Martínez3,5, Mina Ryten2,3,4, Alan Hodgkinson1

1Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom; 2Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK; 3Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK; 4NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, WC1N 1EH, UK; 5Department of Information and Communications Engineering Faculty of Informatics, Espinardo Campus, University of Murcia, Murcia, 30100, Spain



ID: 118
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Towards a unitary hypothesis of Alzheimer disease pathogenesis

Eric A. Schon1, Delfina Larrea1, Jorge Montesinos1,2, Marta Pera1, Mark Tambini1, Estela Area-Gomez1,2

1Columbia University, USA; 2Centro de Investigaciones Biológicas “Margarita Salas”, Madrid, Spain

Bibliography
Area-Gomez E, de Groof AJC, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA (2009). Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810-1816.

Area-Gomez E, Lara Castillo MdC, Tambini MD, de Groof AJC, Madra M, Ikenouchi J, Umeda M, Bird TD, Sturley SL, Schon EA (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106-4123.

Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E (2017). Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J. 36, 3356-3371.


ID: 433
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

An experimental protocol for in vivo imaging of brain mitochondrial properties with multiphoton microscopy

Renata Couto, Miguel Remondes, Vanessa A. Morais

Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal



ID: 550
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Exploiting hiPSCs-derived astrocytes from CoPAN patients as cell model to study iron accumulation.

Anna Cozzi1, Paolo Santambrogio1, Maddalena Ripamonti1,2, Chiara Cavestro3, Alicia Rubbio4, Ivano Di Meo3, Valeria Tiranti3, Sonia Levi1,2

1San Raffaele Scientific Institute; 2Vita-Salute San Raffaele, Italy; 3Fondazione IRCCS Istituto Neurologico Carlo Besta; 4Institute of Neuroscience National Research Council



ID: 533
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Secondary mitochondrial impairment in muscle of pediatric patients unrelated to the genes diagnosed by WES: are these mitochondrial diseases?

Flavia Palombo1, Mariantonietta Capristo1, Claudio Fiorini1, Concetta Valentina Tropeano1, Valentina Del Dotto1,2, Leonardo Caporali1, Maria Lucia Valentino1,2, Veronica Di Pisa3, Gaetano Cantalupo4, Marco Seri5,6, Duccio Maria Cordelli3,5, Caterina Garone3,5, Valerio Carelli1,2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 3IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; 4Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy; 5Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; 6Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy



ID: 377
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

In vitro 2D and 3D neuronal model generation of MERRF disease to test therapeutic strategies

Giada Capirossi1,2, Valentina Del Dotto2, Mariantonietta Capristo1, Giulia Sacchetti1, Claudio Fiorini1, Leonardo Caporali2, Chiara La Morgia1,2, Annalinda Pisano3, Carla Giordano3, Giulia D'Amati3, Alessandro Prigione4, Alessandra Maresca1, Valerio Carelli1,2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 3Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy; 4Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany



ID: 186
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Molecular mechanism of human mitochondrial chaperonin and its mutation in neurodegenerative disease

Lingling Chen

Indiana University, United States of America

Bibliography
Joseph Wang & Lingling Chen. Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60. Sci Rep 11, 14809, doi:10.1038/s41598-021-94236-y (2021)

Lingling Chen, Aiza Syed and Adhitya Balaji. Hereditary Spastic Paraplegia SPG13 Mutation Increases Structural Stability and ATPase Activity of Human Mitochondrial Chaperonin. Sci Rep 12, 18321, doi:10.1038/s41598-022-21993-9 (2022)


ID: 457
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Nucleus-associated mitochondria (NAM) control neuronal Ca2+ signalling and gene expression

Danilo Faccenda1,3, Radha Desai2, Eva Sidlauskaite3, Steven Lynham4, Jill Richardson2, Michelangelo Campanella3,5

1University of Hertfordshire, Department of Clinical, Pharmaceutical and Biological Science, Hatfield, United Kingdom; 2Discovery Research MRL UK, MSD, LBIC, London, United Kingdom; 3William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; 4Proteomics Facility, Centre of Excellence for Mass Spectrometry, King’s College London, London, United Kingdom; 5University of Padua, Department of Biomedical Sciences, Padua, Italy

Bibliography
Frison M, Faccenda D, Abeti R, Rigon M, Strobbe D, England-Rendon BS, Cash D, Barnes K, Sadeghian M, Sajic M, Wells LA, Xia D, Giunti P, Smith K, Mortiboys H, Turkheimer FE, Campanella M. The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Mol Psychiatry. 2021. 26(7):2721-2739.

Singh A*, Faccenda D*, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine. 2021. 65:103244. *Equally contributing authors.

Desai R, East DA, Hardy L, Faccenda D, Rigon M, Crosby J, Alvarez MS, Singh A, Mainenti M, Hussey LK, Bentham R, Szabadkai G, Zappulli V, Dhoot GK, Romano LE, Xia D, Coppens I, Hamacher-Brady A, Chapple JP, Abeti R, Fleck RA, Vizcay-Barrena G, Smith K, Campanella M. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020. 6(51):eabc9955.

Strobbe D, Pecorari R, Conte O, Minutolo A, Hendriks CMM, Wiezorek S, Faccenda D, Abeti R, Montesano C, Bolm C, Campanella M. NH-sulfoximine: A novel pharmacological inhibitor of the mitochondrial F1 Fo -ATPase, which suppresses viability of cancerous cells. Br J Pharmacol. 2021. 178(2):298-311.

Faccenda D, Gorini G, Jones A, Thornton C, Baracca A, Solaini G, Campanella M. The ATPase Inhibitory Factor 1 (IF1) regulates the expression of the mitochondrial Ca2+ uniporter (MCU) via the AMPK/CREB pathway. Biochim Biophys Acta Mol Cell Res. 2021. 1868(1):118860.

Faccenda D, Campanella M. Mitochondria Regulate Inflammatory Paracrine Signalling in Neurodegeneration. J Neuroimmune Pharmacol. 2020. 15(4):565-566.

Draper ACE, Wilson Z, Maile C, Faccenda D, Campanella M, Piercy RJ. Species-specific consequences of an E40K missense mutation in superoxide dismutase 1 (SOD1). FASEB J. 2020. 34(1):458-473.


ID: 500
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Autophagy controls the pathogenicity of OPA1 mutations in ADOA plus

Paola Zanfardino1, Alessandro Amati1, Easter Petracca1, Filippo M. Santorelli2, Vittoria Petruzzella1

1Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy; 2Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Pisa, Italy

Bibliography
1. Carelli, V.; Musumeci, O.; Caporali, L.; Zanna, C.; La Morgia, C.; Del Dotto, V.; Porcelli, A.M.; Rugolo, M.; Valentino, M.L.; Iommarini, L.; et al. Syndromic Parkinsonism and Dementia Associated with OPA 1 Missense Mutations. Ann Neurol. 2015, 78, 21–38, doi:10.1002/ana.24410.
2. Kane, M.S.; Alban, J.; Desquiret-Dumas, V.; Gueguen, N.; Ishak, L.; Ferre, M.; Amati-Bonneau, P.; Procaccio, V.; Bonneau, D.; Lenaers, G.; et al. Autophagy Controls the Pathogenicity of OPA1 Mutations in Dominant Optic Atrophy. J. Cell. Mol. Med. 2017, 21, 2284–2297, doi:10.1111/jcmm.13149.
3. Diot, A.; Agnew, T.; Sanderson, J.; Liao, C.; Carver, J.; Neves, R.P. das; Gupta, R.; Guo, Y.; Waters, C.; Seto, S.; et al. Validating the RedMIT/GFP-LC3 Mouse Model by Studying Mitophagy in Autosomal Dominant Optic Atrophy Due to the OPA1Q285STOP Mutation. Front. Cell Dev. Biol. 2018, 6, 103, doi:10.3389/fcell.2018.00103.


ID: 359
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Investigating the function of CHCHD2-CHCHD10 complexes in mitochondria

Kevin McAvoy1, Nicole Sayles1, Nneka Southwell1, Anna Stepanova1, Alba Pessini2, Catarina Quinzii2, Giovanni Manfredi1

1Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; 2Department of Neurology, Columbia University Medical Center, New York, NY, USA

Bibliography
Nguyen MK*, McAvoy K*, Liao SC, et al. Mouse midbrain dopaminergic neurons survive loss of the PD-associated mitochondrial protein CHCHD2. Hum Mol Genet. 2022;31(9):1500-1518.

Sayles NM, Southwell N, McAvoy K, et al. Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Rep. 2022;38(10):110475.

McAvoy K, Kawamata H. Glial mitochondrial function and dysfunction in health and neurodegeneration. Mol Cell Neurosci. 2019;101:103417.


ID: 278
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Sildenafil restores normal MMP in MILS-NPCs with impaired Complex V assembly and activity

Giulia Pedrotti1, Annika Zink2, Chiara Santanatoglia1, Marie-Thérèse Henke3, Alessia Di Donfrancesco4, Dario Brunetti4,5, Valeria Tiranti4, Markus Schuelke3, Alessandro Prigione2,6, Emanuela Bottani1

1University of Verona, Italy; 2Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany; 3Charité-Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany; 4Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy; 5Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy; 6Max Delbrueck Center for Molecular Medicine (MDC), 13125 Berlin, Germany

Bibliography
1.Bugiardini E, Bottani E, Marchet S, Poole OV, Beninca C, Horga A, Woodward C, Lam A, Hargreaves I, Chalasani A, Valerio A, Lamantea E, Venner K, Holton JL, Zeviani M, Houlden H, Quinlivan R, Lamperti C, Hanna MG, Pitceathly RDS. Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations. Neurol Genet. 2020 Jan 7;6(1):e381. doi: 10.1212/NXG.0000000000000381. PMID: 32042910; PMCID: PMC6984135.
2.Lorenz C, Lesimple P, Bukowiecki R, Zink A, Inak G, Mlody B, Singh M, Semtner M, Mah N, Auré K, Leong M, Zabiegalov O, Lyras EM, Pfiffer V, Fauler B, Eichhorst J, Wiesner B, Huebner N, Priller J, Mielke T, Meierhofer D, Izsvák Z, Meier JC, Bouillaud F, Adjaye J, Schuelke M, Wanker EE, Lombès A, Prigione A. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders. Cell Stem Cell. 2017 May 4;20(5):659-674.e9. doi: 10.1016/j.stem.2016.12.013. Epub 2017 Jan 26. PMID: 28132834.
3.Lorenz C, Zink A, Henke MT, Staege S, Mlody B, Bünning M, Wanker E, Diecke S, Schuelke M, Prigione A. Generation of four iPSC lines from four patients with Leigh syndrome carrying homoplasmic mutations m.8993T > G or m.8993T > C in the mitochondrial gene MT-ATP6. Stem Cell Res. 2022 May; 61:102742. doi: 10.1016/j.scr.2022.102742. Epub 2022 Mar 8. PMID: 35279592.
4.Wang X, Fisher PW, Xi L, Kukreja RC. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol. 2008 Jan;44(1):105-13. doi: 10.1016/j.yjmcc.2007.10.006. Epub 2007 Oct 16. PMID: 18021798.


ID: 202
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction due to mRNA transport defects as a mechanism of neurodegeneration? Unraveling the role of TBCK in a human neuronal model

Marco Flores-Mendez1, Jesus TIntos-Hernandez1, Xilma R Ortiz-Gonzalez1,2

1Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia; 2Division of Neurology, The Children's Hospital of Philadelphia



ID: 231
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Modelling COASY protein-associated neurodegeneration (CoPAN) in mice

Chiara Cavestro, Francesca Morra, Maria Nicol Colombo, Marco D’Amato, Valeria Tiranti, Ivano Di Meo

IRCCS Istituto Neurologico C. Besta, Italy

Bibliography
- Di Meo I, Cavestro C, Pedretti S, et al. Neuronal Ablation of CoA Synthase Causes Motor Deficits, Iron Dyshomeostasis, and Mitochondrial Dysfunctions in a CoPAN Mouse Model. Int J Mol Sci. 2020;21(24):9707. Published 2020 Dec 19.
- Cavestro C, Panteghini C, Reale C, et al. Novel deep intronic mutation in PLA2G6 causing early-onset Parkinson's disease with brain iron accumulation through pseudo-exon activation. Neurogenetics. 2021;22(4):347-351
- Santambrogio P, Ripamonti M, Cozzi A, et al. Massive iron accumulation in PKAN-derived neurons and astrocytes: light on the human pathological phenotype. Cell Death Dis. 2022;13(2):185. Published 2022 Feb 25
- Zanuttigh E, Derderian K, Güra MA, et al. Identification of Autophagy as a Functional Target Suitable for the Pharmacological Treatment of Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN) In Vitro. Pharmaceutics. 2023;15(1):267. Published 2023 Jan 12
- Santambrogio P, Cozzi A, Di Meo I, et al. PPAR Gamma Agonist Leriglitazone Recovers Alterations Due to Pank2-Deficiency in hiPS-Derived Astrocytes. Pharmaceutics. 2023;15(1):202. Published 2023 Jan 6. doi:10.3390/pharmaceutics15010202


ID: 644
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Neural stem cell niche-interactions in mitochondrial disease

Jelle van den Ameele

University of Cambridge, United Kingdom



ID: 398
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mutant SPART causes defects in mitochondrial protein import and bioenergetics reversed by Coenzyme Q

Chiara Diquigiovanni1,2,3, Nicola Rizzardi4, Antje Kampmeier5, Irene Liparulo4, Francesca Bianco1,6, Bianca De Nicolo1,2, Erica Cataldi-Stagetti1,2, Miriam Bertrand7, Tobias B. Haack7,8, Adela Della Marina9, Frederik Braun9, Alma Kuechler5, Romana Fato4, Christian Bergamini4, Elena Bonora1,2

1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy, 40138; 2U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, 40138; 3Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy, 40138; 4Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy, 40126; 5Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany, 45122; 6Department of Veterinary Sciences, University of Bologna, Bologna, Italy, 40064; 7Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany, 72076; 8Center for Rare Diseases, University of Tübingen, Tübingen, Germany, 72076; 9Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany, 45122



ID: 576
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Characterization of a novel brain-specific mouse model of Leigh Syndrome

Marta Luna-Sánchez, Marcos Blanco, Emma Puighermanal, Albert Quintana

Neuroscience Institute-Autonomous University of Barcelona, Spain

Bibliography
(1) N. J. Lake et al., Ann. Neurol. 79:190-203 (2016).
(2) C. Garone, C. Viscomi, Biochem. Soc. Trans. 46, 1247–1261 (2018).
(3) A. Quintana et al., Proc. Natl. Acad. Sci. U. S. A. 107, 10996–11001 (2010).
(4) C. Viscomi et al., Cell Metab, 14, 80–90. (2011).


ID: 630
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Investigating FA physiopathology in human iPSC-derived DRG organoïds

Valentine Mosbach1, Adèle Hennick1, Marek Napierala2, Hélène Puccio1

1Institut NeuroMyoGene, PGNM UMR5261, INSERM U1315, Université Claude Bernard Lyon I Faculté de médecine Rockefeller, Lyon 08 France; 2UT Southwestern Medical Center, 5323 Harry Hines Blvd. Suite NL.9.108 TX75390-8813 Dallas USA



ID: 214
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

A novel TUBB2A variant associated with pediatric neurodegeneration links microtubule stability to mitochondrial function

Jesus A Tintos-Hernandez1, Charis Ma1, Holly Dubbs2, Cesar A Alves3, Francesca Bartolini4, Xilma R Ortiz-Gonzalez1,2

1Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia; 2Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia; 3Department of Radiology, The Children’s Hospital of Philadelphia; 4Department of Pathology and Cell Biology, Columbia University



ID: 487
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Characterization and functional analysis of a zebrafish knockdown of the mitochondrial DNA replication gene ssbp1

Julian Perrin1, Vincent Gisbert1, Nicolas Cubedo2, Sandra Triacca1, Hala Alzaeem1, Dalia Chakra1, Mireille Rossel2, Marie Péquignot1, Cécile Delettre1

1Institute for Neurosciences of Montpellier (INM) U1298, France; 2Molecular Mechanisms in Neurodegenerative Dementia (MMDN) U1198, France

Bibliography
Jiang, M., Xie, X., Zhu, X., Jiang, S., Milenkovic, D., Misic, J., Shi, Y., Tandukar, N., Li, X., Atanassov, I., et al. (2021). The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Sci. Adv. 7.


ID: 584
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Deep mitochondrial genotyping reveals altered mitochondrial quality control mechanisms in advanced cellular models of Parkinson’s disease

Martin Lang, Valentina Gilmozzi, Peter P. Pramstaller, Irene Pichler

Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy

Bibliography
1.Lang et al., 2022; Cell Mol Life Sci. doi:10.1007/s00018-022-04304-3; A genome on shaky ground: exploring the impact of mitochondrial DNA integrity on Parkinson's disease by highlighting the use of cybrid models.


ID: 123
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Defining the nuclear genetic architecture of a maternally-inherited mitochondrial disorder

Róisín M Boggan1, Yi Shiau Ng1, Imogen G Franklin1, Charlotte L Alston1,2, Emma L Blakely1,2, Boriana Buchner3, Enrico Bugiardini4, Kevin Colclough5, Grainne S Gorman1, Catherine Feeney1, Michael G Hanna4, Andrew T Hattersly6, Thomas Klopstock3,7,8, Cornelia Kornblum9, Michelangelo Mancuso10, Kashyap A Patel6, Robert D S Pitceathly4, Chiara Pizzamiglio4, Holger Prokisch11,12, Jochen Schafer13, Andrew M Schaefer1, Maggie H Shepherd6, Annemarie Thaele14, Rhys Thomas1, Doug M Turnbull1, Cathy E Woodward15, Robert McFarland1, Robert W Taylor1,2, Heather J Cordell16, Sarah J Pickett1

1Wellcome Centre for Mitochondrial Research and Institute for Translational and Clinical Research, ewcastle University, United Kingdom; 2NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University (LMU Klinikum), Munich, Germany; 4Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 5Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK; 6Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; 7Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 8German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 9Department of Neurology, University Hospital Bonn, Bonn, Germany; 10Neurological Institute of Pisa, Italy; 11Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany; 12Institute of Neurogenomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; 13Department of Neurology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 14Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; 15Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London, UK; 16Population Health Sciences Institute, Newcastle University, UK

Bibliography
Boggan, R. M., Ng, Y. S., Franklin, I. G., Alston, C. L., Blakely, E. L., Büchner, B., Bugiardini, E., Colclough, K., Feeney, C., Hanna, M. G., Hattersley, A. T., Klopstock, T., Kornblum, C., Mancuso, M., Patel, K. A., Pitceathly, R. D. S., Pizzamiglio, C., Prokisch, H., Schäfer, J., … Pickett, S. J. (2022). Defining the nuclear genetic architecture of a common maternally inherited mitochondrial disorder. In medRxiv (p. 2022.11.18.22282450). https://doi.org/10.1101/2022.11.18.22282450

Boggan, R. M., Lim, A., Taylor, R. W., McFarland, R., & Pickett, S. J. (2019). Resolving complexity in mitochondrial disease: Towards precision medicine. Molecular Genetics and Metabolism, 128(1-2), 19–29.


ID: 375
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

OPA3 loss causes alterations in mitocondrial dynamics and autophagy processes

Concetta Valentina Tropeano1, Valentina Del Dotto2, Emanuela Scimonelli2, Danara Ormanbekova1, Claudio Fiorini1, Valerio Carelli1,2, Alessandra Maresca1

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy; 2Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy



ID: 481
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial fusion- and transport-specific roles in neuronal dysfunction

Elisa Motori1,2

1Institute for Biochemistry, University of Cologne, Cologne, Germany; 2Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany



ID: 468
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

ER-Mitochondria are affected during ageing in enteric neurons

Giada Delfino, Pascal Derkinderen, Michel Neunlist, Sébastien Paillusson

Inserm U1235, France

Bibliography
Delfino G, Bénardais K, Graff J, et al. Oligodendroglial primary cilium heterogeneity during development and demyelination/remyelination. Front Cell Neurosci. 2022;16:1049468. Published 2022 Nov 24. doi:10.3389/fncel.2022.1049468

Bénardais K, Delfino G, Samama B, et al. BBS4 protein has basal body/ciliary localization in sensory organs but extra-ciliary localization in oligodendrocytes during human development. Cell Tissue Res. 2021;385(1):37-48. doi:10.1007/s00441-021-03440-9


ID: 636
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Identification of dysregulated molecular pathways in Frataxin deficient Proprioceptive Neurons

Deepika Mokkachamy Chellapandi, Marie Paschaki, Helene Puccio

INMG-PGNM, France



ID: 387
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction in dorsal root ganglia in Friedreich ataxia mouse and cell models: role of SirT3

Arabela Sanz-Alcázar, Elena Britti, Fabien Delaspre, Marta Medina-Carbonero, Maria Pazos-Gil, Marta Portillo-Carrasquer, Jordi Tamarit, Joaquim Ros, Elisa Cabiscol

Dept. Ciències Mèdiques Bàsiques, Fac. Medicina, Universitat de Lleida. IRBLleida. Lleida (Spain).



ID: 239
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

MPTP-induced parkinsonism in zebrafish provokes chronodisruption-related loss of daily melatonin and locomotor activity rhythms and mitochondrial dynamics shift, which are restored by melatonin treatment

Paula Aranda Martínez1,2, Jose Fernández Martínez1,2, Yolanda Ramírez Casas1,2, Ana Guerra Librero1,2,3, Germaine Escames1,2,3, Darío Acuña Castroviejo1,2,3

1Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.; 2Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain.; 3Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.

Bibliography
Javier Florido Ruiz; Laura Martínez Ruiz; César Rodríguez Santana; Alba López Rodríguez; Agustín Hidalgo Gutiérrez; Cécile Cottet Rousselle; Frédéric Lamarche; Uwe Schlattner; Ana Guerra-Librero Rite; Paula Aranda Martínez; Darío Acuña Castroviejo; Luis Carlos López García; Germaine Escames. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport.Journal of Pineal Research. 73 - 3, pp. e12824. 03/10/2022.

Paula Aranda Martínez; Jose Fernández Martínez; Yolanda Ramírez Casas; Ana Guerra-Librero Rite; César Rodríguez Santana; Germaine Escames; Darío Acuña Castroviejo. The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases.International Journal of Molecular Sciences. 23 - 13, pp. 7438. MPDI, 04/07/2022.

Rammy Sayed; Marisol Fernández Ortiz; Ibtissem Rahim; Jose Fernández Martínez; Paula Aranda Martínez; Iryna Rusanova; Laura Martínez Ruiz; Reem M Alsaadawy; Germaine Escames; Darío Acuña Castroviejo. The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage. Antioxidants. 10 - 8, pp. 1269. 10/08/2021.

Rammy Sayed; Marisol Fernández Ortiz; Jose Fernández Martínez; Paula Aranda Martínez; Ana Guerra-Librero Rite; César Rodríguez Santana; Tomás de Haro; Germaine Escames; Darío Acuña Castroviejo; Iryna Rusanova. The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants. 10 - 4, pp. 524. 27/03/2021


ID: 360
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Activation of integrated mitochondrial stress response in PRKN Parkinson Disease

Francesc Josep García García1, Íngrid González Casacuberta1, Liliya Euro2, Mario Ezquerra3, Constanza Morén1, Aida Ormazabal4, Mariona Guitart Mampel1, Mercedes Casado4, Ester Tobías1, Judith Cantó Santos1, Laura Valls Roca1, Laia Farré Tarrats1, Félix Andújar Sánchez1, Lorena de Mena3, Francesc Carmona5, Manuel Palacín6, María José Martí3, Rafael Artuch4, Rubén Fernández Santiago3, Glòria Garrabou1

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), Department of Internal Medicine - Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U722), 28029 Madrid, Spain.; 2Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; HUSlab, Helsinki University Hospital, Helsinki 00290, Finland;; 3Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, IDIBAPS-Hospital Clínic de Barcelona, Institut de Neurociències, UB, 08036 Barcelona, Spain and Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED CB06/05/0018), 28029 Madrid, Spain.; 4Department of Clinical Biochemistry, Institut de Recerca de Sant Joan de Deu, Esplugues de Llobregat, 08036 Barcelona, Spain, and CIBERER, 28029 Madrid, Spain.; 5Department of Statistics, Biology Faculty, UB, Barcelona, Spain; 6Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, UB, E-08028 Barcelona, Spain; U731, CIBERER, 08028 Barcelona, Spain;



ID: 159
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Delineating the neurodegenerative mechanisms underpinning epilepsy in Alpers’ syndrome

Laura Alexandra Smith1,2, Chun Chen1,2, Alasdair Blain1,2, Robert W Taylor1,2,3, Gráinne Gorman1,2,3, Nichola Z Lax1,2, Daniel Erskine1,2, Robert McFarland1,2,3

1Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; 2Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK

Bibliography
Smith LA, Erskine D, Blain A, Taylor RW, McFarland R, Lax NZ. Delineating selective vulnerability of inhibitory interneurons in Alpers' syndrome. Neuropathol Appl Neurobiol. 2022:e12833.


ID: 148
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Understanding the effects of hyperbaric oxygen therapy on Alzheimer’s disease mouse model

Nofar Schottlender, Maya Gal, Irit Gottfried, Uri Ashery

Tel-Aviv University, Israel

Bibliography
Schottlender, N., Gottfried, I., Ashery, U. Hyperbaric oxygen therapy: effects on mitochondrial function and oxidative stress (2022). Biomolecules. 11. 1827. doi: 10.3390/biom11121827

Gottfried, I., Schottlender, N., Ashery, U. Hyperbaric oxygen therapy – from Mechanism to Cognitive Improvement. (2021). Biomolecules. 11(10). 1520. doi: 10.3390/biom11101520

Rimmerman, N., Verdiger, H. Ryan, K. M., Goldenberg, H., Naggan, L., Robinson, E., Reshef, R., Ayoun, L., Refaeli, R., Ashkenazi, E., Schottlender, N., Ben Hemo-Cohen, L., Pienica, C., Abargyl, M., Lazar, K., McLoughlin, D. M., Yirmiya, R (2021). Microglia and their LAG-3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive therapy (ECT). Molecular Psychiatry. doi: 10.1038/s41380-021-01338-0

Shvarts-Serebro, I., Sheinin, A., Gotfried, I., Schottlender, N., Adler, L., Ashery, U., Barak, B. (2021). miR-128 as a Regulator of Synaptic Properties in 5xFAD Mice Hippocampal Neurons. Journal of Molecular Neuroscience. 71 (12): 2593-2607. doi: 10.1007/s12031-021-01862-2

Radomir, L., Kramer, M. P., Perpinial, M., Schottlender, N., Rabani, S., David, K., Weiner, A., Lewinsky, H., Becker Hermann, S., Aharoni, R., Milo, R., Claduai, M. and Shachar, I. (2021). The survival and function of IL-10-producing regulatory B cells are negatively controlled by SLAMF5. Nature communications. 12. 1893. doi: 10.1038/s41467-021-22230-z

Aharoni, R., Eilam, R. Schottlender, N., Radomir, L., Leistner Segal, S., Feferman, T., Hirsch, D., Sela, M. and Arnon, R. (2020). Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. Journal of Neuroimmonology. 345. doi: 10.1016/j.jneuroim.2020.577281.

Sever, L., Radomir, L., Strim, K., Wiener A., Schottlender, N., Lewinsky, H., Barak, A., Friedlander, G., Ben-Dor, S., Shay, T., Becker Hermann, S. and Shachar, I. (2019). SLAMF9 regulates pDCs homeostasis and function in health and disease. PNAS. doi: 10.1073/pnas.1900079116.

Aharoni, R., Schottlender, N., Bar Lev, D. D., Tsoory, M., Sela, M., and Arnon, R. (2019). The effect of Glatiramer Acetate (GA) on cognitive function in an animal model of multiple sclerosis. Scientific Reports. 9:4140. doi: 10.1038/s41598-019-40713-4.

Rimmerman, N., Schottlender, N. Reshef, R., Dan-Goor, N., and Yirmiya, R. (2017). The hippocampal transcriptome signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain, Behavior and Immunity. 61: 184-196. doi: 10.1016/j.bbi.2016.11.023.


ID: 252
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Analyzing the mitochondrial HPDL protein in fish and human models

Filippo M Santorelli, Valentina Naef, Matteo Baggiani, Devid Damiani

IRCCS Fondazione Stella Maris, Italy



ID: 187
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Modulation of mitophagy, mitochondrial and autophagy phenotypes in LRRK2 Parkinson’s patient fibroblast-derived dopaminergic neurons by small molecules

Francesco Capriglia1, Tia Parker1, Tom Leah1, Hasan Ali1, Katy Barnes1, Chris Frank2, Thomas Nieland2, Heather Moeriboys1

1Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, UK.; 2Verge Genomics, South San Francisco, CA, USA.



ID: 384
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Proinflammatory cytokines induce alterations of mitochondrial functions and dynamics in neurons

Yeou San Lim, Yi-Chun Liao, Pei-Wen Chu, Shau-Kwaun Chen

Institute of Neuroscience, National Chengchi University, Taiwan



ID: 106
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction is involved in progranulin-related frontotemporal dementia

Javier S. Bautista1, Micol Falabella1, Shanti Lu1, Cathy E. Woodward2, Robyn Labrum2, Jonathan Rohrer3, Helene Plun-Favreau4, Selina Wray4, Jan-Willam Taanman5, Robert D.S. Pitceathly1,6

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2Neurogenetics Unit, Rare and Inherited Disease Genomic Laboratory, North Thames Genomic Laboratory Hub, London, UK; 3Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; 4Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; 5Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, UK; 6NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK

Bibliography
Bautista, Javier S., Micol Falabella, Padraig J. Flannery, Michael G. Hanna, Simon J.R. Heales, Simon A.S. Pope, and Robert D.S. Pitceathly. “Advances in Methods to Analyse Cardiolipin and Their Clinical Applications.” TrAC Trends in Analytical Chemistry 157 (December 1, 2022): 116808. https://doi.org/10.1016/j.trac.2022.116808.


ID: 208
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Morphological characterization of the progression of mitochondrial encephalopathy associated with CoQ10 deficiency

Juan M. Martínez-Gálvez1,2, Laura Jiménez-Sánchez3, Pilar González-García1,3, Julia Corral-Sarasa3, Mª. Elena Díaz-Casado1,3, Luis C. López1,3

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Biofisika Institute (CSIC, UPV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain; 3Ibs.Granada, Granada, Spain

Bibliography
1.Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).
2.Herebian, D., López, L. C. & Distelmaier, F. Bypassing human CoQ10 deficiency. Mol. Genet. Metab. 123, 289–291 (2018).
3.García-Corzo, L. et al. Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum. Mol. Genet. 22, 1233–1248 (2013).


ID: 485
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The vanishing dopamine in Parkinson’s disease

Chaitanya Chintaluri, Tim P Vogels

IST Austria, Austria

Bibliography
Chintaluri C and Vogels T.P. Metabolically driven action potentials serve neuronal energy homeostasis and protect from reactive oxygen species. bioRxiv 2022.10.16.512428; doi: https://doi.org/10.1101/2022.10.16.512428


ID: 656
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Effect of UPO04 depending on GAA triplet hyperexpansion in Friedreich’s ataxia disease.

Marta Talaveron Rey, José A. Sánchez Alcázar

Universidad Pablo de Olavide, Spain

Bibliography
Li, Y. et al.,(2015). Human Molecular Genetics.
Cai K, Markley JL. (2018) Molecules.
Daman Kumari (2012).Clinical epigenetics


ID: 401
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

New cell model for studying mitochondrial dysfunction in Fragile X-associated tremor/ataxia syndrome

Izabela Broniarek, Katarzyna Tutak, Krzysztof Sobczak

Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland



ID: 191
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Development of an in vitro platform for preclinical investigations on EPM1

Shekhar Singh1, Dr. Juzoh Umemori1, Dr. Lidiia Plotnikova1, Prof. Reetta Kälviäinen1,2, Dr. Riikka Martikainen1

1University of Eastern Finland, Finland; 2Kuopio University Hospital, Finalnd



ID: 579
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Metabolic rewiring in iPSCs-derived neuron progenitor cells of patients with mutations of mitochondrial SLC25A12/AGC1 carrier

Maria Chiara Magnifico1, Simona Nicole Barile1, Eleonora Poeta2, Luigi Viggiano1, Sabrina Petralla2, Giuseppe Fiermonte1, Nicola Balboni2, Federico Manuel Giorgi2, Antonella Pignataro1, Michele Protti2, Laura Mercolini2, Vito Porcelli1, Giorgia Babini2, Isabella Pisano1, Julia Hentschel3, Giacomo Volpe4, Luigi Palmieri1, Douglas C Wallace5, Felix Distelmaier6, Stewart Anderson5, Barbara Monti2, Francesco Massimo Lasorsa1

1Department of Biosciences Biotechnologies and Environment, University of Bari, Italy; 2Department of Pharmacy and BioTechnology, University of Bologna, Italy; 3Institute of Human Genetics, University Hospital, Leipzig, Germany; 4Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori "Giovanni Paolo II, Bari, Italy; 5Children's Hospital of Philadelphia Research Institute, Philadelphia, USA; 6University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany

Bibliography
[1] M.J. Falk, et al., AGC1 Deficiency Causes Infantile Epilepsy, Abnormal Myelination, and Reduced N-Acetylaspartate, JIMD Rep, 14 (2014) 77-85.
[2] M. Dahlin, et al., The ketogenic diet compensates for AGC1 deficiency and improves myelination Epilepsia, 56 (2015) e176-81.


ID: 614
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial function at the neuromuscular junction in motor neuron disease

Adam Creigh1, Gráinne Goman1, Rickie Patani2,3, Helen Devine1

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK; 3The Francis Crick Institute, London, UK.



ID: 228
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

A novel WDR45 variant in an encephalopathy mimicking Leigh syndrome with complex I deficiency

Giulia Ferrera1,2, Eleonora Lamantea3, Andrea Legati3, Celeste Panteghini3, Manuela Spagnolo3, Barbara Maria Garavaglia3, Valeria Sonia Tiranti3, Giovanna Simonetta Zorzi1, Daniele Ghezzi3,4, Anna Ardissone1

1Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.; 2Department of Health Sciences,University of Milan, Milan, Italy; 3Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 4Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy



ID: 142
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Characterisation of mitochondrial dysfunction in Huntington’s disease patient-derived fibroblasts

Naomi Hartopp1, Anastasia Thoma1, Emily Mossman1, Laura Ellis1, Rachel Hughes1, Gauri Bhosale2, Anachiara Gandini2, Alessandro Pristera2, Christopher Doe2, Scott Allen1, Laura Ferraiuolo1, Pamela Shaw1, Oliver Bandmann1, Heather Mortiboys1

1University of Sheffield, Sheffield Institute for Translational Neuroscience, United Kingdom; 2Nanna Therapeutics, Cambridge, UK



ID: 543
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Loss of mitochondrial chaperone Trap1 in mice causes changes in synaptic mitochondria function

Aleksandra Stawikowska, Marta Magnowska, Bożena Kuźniewska, Magdalena Dziembowska

Centre of New Technologies, University of Warsaw, Poland



ID: 435
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Unveiling the metabolic signature of synaptic mitochondria

Bernardo Cetra Antunes, Vanessa A. Morais

Instituto de Medicina Molecular João Lobo Antunes, Portugal

Bibliography
Proença, Susana*; Antunes, Bernardo*; Guedes, Rita C.; Ramilo-Gomes, Filipa; Cabral, M. Fátima; Costa, Judite; Fernandes, Ana S.; et al. "Pyridine-Containing Macrocycles Display MMP-2/9 Inhibitory Activity and Distinct Effects on Migration and Invasion of 2D and 3D Breast Cancer Models". International Journal of Molecular Sciences 20 20 (2019): 5109. http://dx.doi.org/10. 3390/ijms20205109.
* both authors contributed equally to this work.

Ana S. Serras*; Sérgio P. Camões*; Bernardo Antunes*; Vera M. Costa; Flávio Dionísio; Volkan Yazar; Rui Vitorino; et al. "The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells". International Journal of Molecular Sciences (2021): https: //doi.org/10.3390/ijms222313072.
* these authors contributed equally to this work.


ID: 454
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Aberration of mitochondrial ultrastructure in the skeletal muscle in patients with Parkinson’s disease

Laura Kytövuori1,2, Ilkka Miinalainen3, Maria Gardberg4, Mikko Kärppä1,2, Hannu Tuominen5, Juhana Leppilahti6, Kari Majamaa1,2

1Neurocenter, Oulu University Hospital, Oulu, Finland; 2Research Unit of Clinical Medicine, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu Finland; 3Electron microscopy, Biocenter Oulu, University of Oulu, Oulu, Finland; 4Pathology, Turku University Hospital and University of Turku, Turku, Finland; 5Pathology, Oulu University Hospital, Oulu, Finland; 6Division of Orthopaedic and Trauma Surgery, Department of Surgery, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland

Bibliography
1) Kytövuori L, Sipilä J, Doi H, Hurme-Niiranen A, Siitonen A, Koshimizu E, Miyatake S, Matsumoto N, Tanaka F, Majamaa K. Biallelic expansion in RFC1 as a rare cause of Parkinson’s disease. NPJ Parkinsons Dis 2022;8:6. DOI: 10.1038/s41531-021-00275-7

2) Korpioja A, Krüger J, Hurme-Niiranen A, Solje E, Katisko K, Lipponen J, Lehtilahti M, Remes AM, Majamaa K, Kytövuori L. Cognitive impairment is not uncommon in patients with biallelic RFC1 AAGGG repeat expansion, but the expansion is rare in patients with cognitive disease. Parkinsonism Relat Disord 2022;103:98-101. DOI: 10.1016/j.parkreldis.2022.08.034

3) Ylikotila P, Sipilä J, Alapirtti T, Ahmasalo R, Koshimizu E, Miyatake S, Hurme-Niiranen A, Siitonen A, Doi H, Tanaka F, Matsumoto N, Majamaa K, Kytövuori L. Association of biallelic RFC1 expansion with early-onset Parkinson’s disease. Eur J Neurol 2023, early-online, https://doi.org/10.1111/ene.15717


ID: 275
The impact of mtDNA variation and environment on rare and common diseases

New insights into the pathogenicity of the MT-ATP6: m.9176T>C mutation by a patient cohort and transmitochondrial cybrids combined approach

Pablo Serrano-Lorenzo1,5, Rocío Garrido-Moraga1, Alberto Blázquez1, Óscar García-Campos2, Miguel A. Fernández-Moreno3,5, Esther Gallardo4,5, María Moran1,5, Cristina Ugalde1,5, Joaquín Arenas1,5, Miguel A. Martín1,5

1Mitochondrial Diseases Laboratory, Research Institute, Universitary Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain.; 2Department of Pediatric Neurology, Hospital General Universitario de Toledo, Toledo, Spain.; 3Biochemistry Department, Biomedical Research Institute 'Alberto Sols', CSIC, Faculty of Medicine, Autonomous University of Madrid, and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain.; 4iPS Cells Translational Research Group, Research Institute, Universitary Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain.; 5Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.

Bibliography
Ganetzky RD, Stendel C, McCormick EM, Zolkipli-Cunningham Z, Goldstein AC, Klopstock T, Falk MJ. MT-ATP6 mitochondrial disease variants: Phenotypic and biochemical features analysis in 218 published cases and cohort of 14 new cases. Hum Mutat. 2019 May;40(5):499-515.


ID: 215
The impact of mtDNA variation and environment on rare and common diseases

Determining the contribution of mitochondrial alterations to lung cancer in vivo

Mara Mennuni, Stephen Eric Wilkie, Roberta Filograna, David Alsina, Nils-Göran Larsson

Karolinska Institute, Sweden

Bibliography
1.Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 0, (2020).
2.Ždralević, M. et al. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism. J. Biol. Chem. 293, 15947–15961 (2018).
3.Hensley, C. T. et al. Metabolic Heterogeneity in Human Lung Tumors. Cell 164, 681–694 (2016).
4.Momcilovic, M. et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 1–5 (2019). doi:10.1038/s41586-019-1715-0
5.Bensard, C. L. et al. Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metab. 31, 284-300.e7 (2020).
6.Smith, A. L. M. et al. Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nature Cancer (2020). doi:10.1038/s43018-020-00112-5
7.Filograna, R., Mennuni, M., Alsina, D. & Larsson, N. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 1873-3468.14021 (2020). doi:10.1002/1873-3468.14021
8.Hofmarcher, T. et al. Comparator Report on Cancer in Europe 2019 – Disease Burden, Costs and Access to Medicines. IHE Report 65–69 (2019).
9.Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).
10.Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. Elife 5, 1–20 (2016).
11.Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).
12.Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–8 (2001).


ID: 390
The impact of mtDNA variation and environment on rare and common diseases

Gamma Peptide Nucleic Acids as a Mechanism for Targeting the Mitochondrial Genome

Lily C. Farmerie1,2, Kevin M. Redding2, Colin T. Martin3, Taewon Jeon4, Harini Nagaraj4, Vince M. Rotello4, Bruce A. Armitage3, Brett A. Kaufman2

1Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; 2Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; 3Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; 4Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA

Bibliography
Farmerie L, Rustandi RR, Loughney JW, Dawod M. Recent advances in isoelectric focusing of proteins and peptides. J Chromatogr A. 2021 Aug 16;1651:462274. doi: 10.1016/j.chroma.2021.462274. Epub 2021 May 24. PMID: 34090060.


ID: 604
The impact of mtDNA variation and environment on rare and common diseases

Physiological variability in mitochondrial rRNA may predispose to metabolic syndrome

Tomas Mracek1, Petr Pecina1, Kristýna Čunátová1, Vilma Kaplanová1, Guillermo Puertas1, Jan Šilhavý2, Marek Vrbacký1, Kateřina Tauchmannová1, Tomáš Čajka3, Michal Pravenec2, Josef Houštěk1, Alena Pecinová1

1Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 2Laboratory of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 3Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic



ID: 590
The impact of mtDNA variation and environment on rare and common diseases

The European landscape of mitogenomes from LHON patients carrying the m.14484T>C/MT-ND6 pathogenic variant

Leonardo Caporali16, Anna Olivieri2, Francesco Petrizzelli3, Flavia Palombo4, Claudio Fiorini4, Bernd Wissinger5, Patrizia Amati-Bonneau6, Julio Montoya7, Costanza Lamperti8, Thomas Klopstock9, Alfredo A Sadun10, Antonio Federico11, Gavin Hudson12, Patrick Yu-Wai-Man13,14, Patrick F Chinnery13, René De Coo15, Tommaso Biagini3, Tommaso Mazza3, Alessandro Achilli2, Antonio Torroni2, Chiara La Morgia1,4, Valerio Carelli1,4

1University of Bologna, Italy; 2University of Pavia, Pavia, Italy; 3Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Rome, Italy; 4IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; 5University of Tuebingen, Tuebingen, Germany; 6Université LUNAM, Angers, France; 7Universidad de Zaragoza, Zaragoza, Spain; 8National Neurological Institute 'C. Besta', Milano, Italy; 9Ludwig-Maximilians-Universität München, Munich, Germany; 10UCLA, Los Angeles, California, USA; 11University of Siena, Siena, Italy; 12University of Newcastle, Newcastle upon Tyne, UK; 13University of Cambridge, Cambridge, UK; 14Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK; 15Erasmus Medical Centre, Rotterdam, The Netherlands; 16PhD, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna



ID: 458
The impact of mtDNA variation and environment on rare and common diseases

Mitochondrial DNA contribution to Parkinsonism: from mtDNA maintenance defects to primary mtDNA pathogenic variants

Raffaella Minardi1, Flavia Palombo1, Leonardo Caporali2, Claudio Fiorini1, Maria Pia Giannoccaro1,2, Alessia Fiornetino1, Maria Lucia Valentino1,2, Rocco Liguori1,2, Valerio Carelli1,2, Giovanni Rizzo1, Chiara La Morgia1,2

1IRCCS Istituto delle Scienze Neurologiche, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy



ID: 460
The impact of mtDNA variation and environment on rare and common diseases

Combined fiber atrophy and impaired muscle regeneration capacity driven by mitochondrial DNA alterations underlie the development of sarcopenia

Sammy Kimoloï1, Ayesha Sen2, Stefan Guenther3, Thomas Braun3, Tobias Brügmann4,5, Philipp Sasse5, Rudolf J. Wiesner2,6,7, David Pla-Martin2,6, Olivier R. Baris2,8

1Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology - Kakamega, Kenya; 2Institute of Vegetative Physiology, University of Cologne - Cologne, Germany; 3Max Planck Institute for Heart and Lung Research - Bad Nauheim, Germany; 4Institute for Cardiovascular Physiology, University Medical Center - Göttingen, Germany; 5Institute of Physiology I, Medical Faculty, University of Bonn - Bonn, Germany; 6Center for Molecular Medicine Cologne - Cologne, Germany; 7Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) - Cologne, Germany; 8University of Angers, UMR 6015 CNRS / 1083 INSERM, Mitovasc - Angers, France



ID: 291
The impact of mtDNA variation and environment on rare and common diseases

Examining the link between diet and metabolic risk score in individuals with bipolar disorder

Kassandra Alexis Zachos, Jaehyoung Choi, Ana Cristina Andreazza

University of Toronto, Canada

Bibliography
Kuang H, Duong A, Jeong H, Zachos K, Andreazza AC. Lactate in bipolar disorder: a systematic review and meta-analysis. Psychiatry Clin Neurosci. 2018.


ID: 254
The impact of mtDNA variation and environment on rare and common diseases

Mitochondrial morphology and function in mitochondrial disease

Julie Faitg1, Tracey Davey1, Doug Turnbull1, Amy Elizabeth Vincent1, Tiago Gomes2,3

1Newcastle University, United Kingdom; 2Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 3NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom

Bibliography
The AIMM Trial Group (2022). “Acipimox in Mitochondrial Myopathy (AIMM): study protocol for a randomised, double-blinded placebo-controlled, adaptive design trial of the efficacy of Acipimox in adult patients with mitochondrial myopathy.” Trials. 23(1).
Mito, T., Vincent, A.E., Faitg, J., Taylor, R.W., Khan, N., McWilliam, T.G., Suomalainen, A. “Mosaic dysfunction of mitophagy in mitochondrial disease”. Cell Metabolism.34: 1-12.
Faitg, J., Lacefield, C., Davey, T., White, K., Laws, R., Kosmidis, S., Reeve, A.K., Kandel, E.R., Vincent, A.E.*, Picard, M*. (2021) “3D Neuronal Mitochondrial Morphology in Axons Dendrites and Somata of the Ageing mouse Hippocampus”. Cell Reports. 36:109509.
Faitg, J., Davey, T., Turnbull, D.M., White, K., Vincent, A.E. (2020) “Mitochondrial morphology and function: Two for the price of one”. Journal of Microscopy. 278(2):89-106.


ID: 620
The impact of mtDNA variation and environment on rare and common diseases

MtDNA sequence and copy number analysis of buffy coat DNA of primary open-angle glaucoma patients

Antoni Vallbona-Garcia1,2,3, Patrick J. Lindsey2, Alphons P.M. Stassen4, Rick Kamps2, Florence H.J. van Tienen2,3, Nhan Nguyen2, Ilse H.J. Hamers2, Rianne Hardij2, Marike W. van Gisbergen5, Irenaeus F.M. de Coo2, Carroll A.B. Webers1, Theo G.M.F. Gorgels1,3, Bert J.M. Smeets2,3

1University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands; 2Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; 3School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; 4Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands; 5Department of Dermatology, GROW-school for oncology and reproduction, Maastricht University Medical Center, Maastricht, The Netherlands



ID: 592
The impact of mtDNA variation and environment on rare and common diseases

MELAS syndrome pathophysiology in cellular models of the disease

Suleva Povea-Cabello, Marina Villanueva-Paz, José Antonio Sánchez-Alcázar

Universidad Pablo de Olavide, Spain



ID: 349
The impact of mtDNA variation and environment on rare and common diseases

Pathogenic mtDNA variants, in particular single large-scale mtDNA deletions, are strongly associated with post-lingual onset sensorineural hearing loss in primary mitochondrial disease

Johanna Elander1, Elizabeth M McCormick2, Maria Värendh1, Karin Stenfeldt1,3, Rebecca D Ganetzky2,4, Amy Goldstein2,4, Zarazuela Zolkipli-Cunningham2,4, Laura E MacMullen2, Rui Xiao5, Marni J Falk2,4, Johannes K Ehinger1,6

1Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Sweden; 2Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, USA; 3Logopedics, Phoniatrics and Audiology, Department of Clinical Sciences Lund, Lund University, Sweden; 4Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, USA; 5Division of Biostatistics, Department of Pediatrics, Children's Hospital of Philadelphia, USA; 6Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Sweden



ID: 612
The impact of mtDNA variation and environment on rare and common diseases

What can we learn from detrimental mitogenome mutations in cattle?

Ino Curik1, Vladimir Brajkovic1, Tanja Svara2, Mojca Simčič3, Minja Zorc3, Karmen Branovic-Cakanic4, Andreja Jungić4, Betka Logar5, Peter Dovc3, Vlatka Cubric-Curik1, Dinko Novosel1,4

1University of Zagreb - Faculty of Agriculture, 10000 Zagreb, Croatia; 2University of Ljubljana - Veterinary Faculty, 1000 Ljubljana, Slovenia; 3University of Ljubljana - Biotechnical Faculty, 1000 Ljubljana, Slovenia; 4Croatian Veterinary Institute, 10000 Zagreb, Croatia; 5Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia



ID: 312
The impact of mtDNA variation and environment on rare and common diseases

Mitochondrial DNA copy number measurements reveal systemic evidence for mitochondrial dysfunction in age-related macular degeneration

Adriana Koller1, Caroline Brandl2, Claudia Lamina1, Martina Zimmermann2, Klaus Stark2, Iris Heid2, Florian Kronenberg1

1Medical University of Innsbruck, Austria; 2University of Regensburg, Germany



ID: 114
The impact of mtDNA variation and environment on rare and common diseases

Multiple mitochondrial DNA deletions in patients with myopathy

Jing Wang1,2, Ada Chan1, James Paterson1, Zarazuela Zolkipli-Cunningham1,2, Amy Goldstein1,2, Elizabeth McCormick1, Colleen Muraresku1, Matthew Dulik1,2, Douglas Wallace1,2, Marni Falk1,2

1Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; 2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA



ID: 363
The impact of mtDNA variation and environment on rare and common diseases

Utilizing donor mitochondrial haplogroup as a potential screening tool for the risk of primary graft dysfunction

Erika Leigh Beroncal1, Gabriel Siebiger2, Aizhou Wang2, Marcelo Cypel2, Ana Andreazza1

1University of Toronto, Canada; 2University Health Network, Toronto

Bibliography
Abdelnour-Berchtold, E., Ali, A., Baciu, C., Beroncal, E. L., Wang, A., Hough, O., Kawashima, M., Chen, M., Zhang, Y., Liu, M., Waddell, T., Andreazza, A. C., Keshavjee, S., & Cypel, M. (2022). Evaluation of 10°C as the optimal storage temperature for aspiration-injured donor lungs in a large animal transplant model. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 41(12), 1679–1688. https://doi.org/10.1016/j.healun.2022.08.025

Ali, A., Nykanen, A. I., Beroncal, E., Brambate, E., Mariscal, A., Michaelsen, V., Wang, A., Kawashima, M., Ribeiro, R. V. P., Zhang, Y., Fan, E., Brochard, L., Yeung, J., Waddell, T., Liu, M., Andreazza, A. C., Keshavjee, S., & Cypel, M. (2022). Successful 3-day lung preservation using a cyclic normothermic ex vivo lung perfusion strategy. EBioMedicine, 83, 104210. https://doi.org/10.1016/j.ebiom.2022.104210

Ali, A., Wang, A., Ribeiro, R. V. P., Beroncal, E. L., Baciu, C., Galasso, M., Gomes, B., Mariscal, A., Hough, O., Brambate, E., Abdelnour-Berchtold, E., Michaelsen, V., Zhang, Y., Gazzalle, A., Fan, E., Brochard, L., Yeung, J., Waddell, T., Liu, M., Andreazza, A. C., … Cypel, M. (2021). Static lung storage at 10°C maintains mitochondrial health and preserves donor organ function. Science translational medicine, 13(611), eabf7601. https://doi.org/10.1126/scitranslmed.abf7601


ID: 313
The impact of mtDNA variation and environment on rare and common diseases

A rare variant m.4135T>C in the MT-ND1 gene leads to LHON and altered OXPHOS supercomplexes

Hana Stufkova1, Tereza Rakosnikova1, Silvie Kelifova1, Katerina Lokvencova1, Petra Liskova2, Bohdan Kousal2, Vaclav Martinek3, Tomas Honzik1, Hana Hansikova1, Marketa Tesarova1

1Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; 2Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; 3Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.



ID: 283
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitophagy is stalled in cultured fibroblasts harbouring Parkin mutations

Xiao Liang1, Nynke van Polanen1, Derek Narendra2, Nicholas Ktistakis3, Jo Poulton1

1Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK.; 2Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA.; 3Signalling Programme. The Babraham Institute, Cambridge, UK.



ID: 662
The impact of mtDNA variation and environment on rare and common diseases

Impact of mitochondrial DNA modifications in shaping personalized ETC complex activities

Sandra Monica Bach de Courtade2, Marte Eikenes1, Yngve Thomas Bliksrud2, Berit Woldseth2, Lars Lars1,2

1University of Oslo, Norway; 2Oslo University Hospital



ID: 477
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Elucidating the role of ATF3 in the neuropathology of a mouse model of Leigh Syndrome

Marcos Blanco1, Patricia Prada-Dacasa1, Adán Domínguez-Martínez1, Alex Gella1, Elisenda Sanz1,2, Albert Quintana1,2

1Institut de Neurociències, Universitat Autònoma de Barcelona. Bellaterra (Barcelona) 08193. Spain; 2Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona. Bellaterra (Barcelona) 08193. Spain



ID: 541
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Deciphering the contribution of the Parvalbumin-expressing neurons in the motor, cognitive and social alterations in a mouse model of Leigh Syndrome

Laura Cutando1, Andrea Urpi1, Anna Pallé2, Elisenda Sanz1, Albert Quintana1

1Autonomous University of Barcelona, Bellaterra, Spain; 2Scripps Research, La Jolla, CA, USA

Bibliography
Cutando L, Puighermanal E, Castell L, Tarot P, Belle M, Bertaso F, Arango-Lievano M, Ango F, Rubinstein M, Quintana A, Chédotal A, Mameli M, Valjent E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat Neurosci. 2022 Jul;25(7):900-911. doi: 10.1038/s41593-022-01092-8. Epub 2022 Jun 16. PMID: 35710984.

Cutando L, Puighermanal E, Castell L, Tarot P, Bertaso F, Bonnavion P, de Kerchove d'Exaerde A, Isingrini E, Galante M, Dallerac G, Pascoli V, Lüscher C, Giros B, Valjent E. Regulation of GluA1 phosphorylation by d-amphetamine and methylphenidate in the cerebellum. Addict Biol. 2021 Jul;26(4):e12995. doi: 10.1111/adb.12995. Epub 2020 Dec 26. PMID: 33368923.

Martínez-Torres S*, Cutando L*, Pastor A, Kato A, Sakimura K, de la Torre R, Valjent E, Maldonado R, Kano M, Ozaita A. Monoacylglycerol lipase blockade impairs fine motor coordination and triggers cerebellar neuroinflammation through cyclooxygenase-2. Brain Behav Immun. 2019 Oct;81:399-409. doi: 10.1016/j.bbi.2019.06.036. Epub 2019 Jun 25. PMID: 31251974.
* First co-authors.

Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-González M, Delgado-García JM, Gruart A, Maldonado R, Ozaita A. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest. 2013 Jul;123(7):2816-31. doi: 10.1172/JCI67569. Epub 2013 Jun 24. PMID: 23934130; PMCID: PMC3696568.


ID: 267
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

CHCHD10 and SLP2 control the stability of the PHB complex : a key factor for motor neuron viability

Emmanuelle C Genin1, Sylvie Bannwarth1, Baptiste Ropert1, Françoise Lespinasse1, Alessandra Mauri-Crouzet1, Gaelle Augé1, Konstantina Fragaki1, Charlotte Cochaud1, Erminia Donnarumma2, Sandra Lacas-Gervais3, Luc Dupuis4, Timothy Wai2, Véronique Paquis-Flucklinger1

1Université Côte d’Azur, Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice (France); 2Mitochondrial Biology Group, Institut Pasteur, CNRS UMR 3691, Paris (France); 3Université Côte d’Azur, Centre Commun de Microscopie Appliquée, Nice (France); 4Mécanismes Centraux et Périphériques de la Neurodégénérescence, Inserm U1118, UMR S1118, CRBS, Université de Strasbourg, Strasbourg (France)

Bibliography
- Genin EC*, Bannwarth S*, Ropert B, Lespinasse F, Mauri-Crouzet A, Augé G, Fragaki K, Cochaud C, Donnarumma E, Lacas-Gervais S, Wai T, Paquis-Flucklinger V. CHCHD10 and SLP2 control the stability of the PHB complex : a key role factor for motor neuron viavility. Brain 2022 Oct 21 ;145(10) :3415-3430. doi : 10.1093/brain/awac197

- Genin EC*, Madji Hounoum B*, Bannwarth S, Fragaki K, Lacas-Gervais S, Mauri-Crouzet A, Lespinasse F, Neveu J, Ropert B, Augé G, Cochaud C, Lefebvre-Omar C, Bigou S, Chiot A, Mochel F, Boillée S, Lobsiger CL, Bohl D, Ricci J-E, Paquis-Flucklinger V. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse. Acta Neuropathologica, 2019 Jul;138(1) :123-145. doi: 10.1007/s00401-019-01988-z


ID: 280
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction in peripheral blood mononuclear cells in different stages of Huntington´s disease

Marie Vanisova1, Hana Stufkova1, Michael Pasak1, Jan Roth2, Irena Rysankova2, Marte Eikenes3, Lars Eide3, Jiri Klempir2, Hana Hansikova1

1Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic; 2Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic; 3Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway.

Bibliography
Bibliography of Vanisova ( Rodinova) Marie:

Vanisova M, Stufkova H, Kohoutova M, Rakosnikova T, Krizova J, Klempir J, Rysankova I, Roth J, Zeman J, Hansikova H. Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease. Ultrastruct Pathol. 2022 Aug 10:1-14. doi: 10.1080/01913123.2022.2100951.

Rodinova M, Krizova J, Stufkova H, Bohuslavova B, Askeland G, Dosoudilova Z, Juhas S, Juhasova J, Ellederova Z, Zeman J, Eide L, Motlik J, Hansikova H. Skeletal muscle in an early manifest transgenic minipig model of Huntington's disease revealed deterioration of mitochondrial bioenergetics and ultrastructure impairment.Dis Model Mech. 2019 Jul 5. pii: dmm.038737. doi: 10.1242/dmm.038737.

Skalnikova HK, Bohuslavova B, Turnovcova K, Juhasova J, Juhas S, Rodinova M, Vodicka P. Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma. Proteomes. 2019 Apr 25;7(2). pii: E17. doi: 10.3390/proteomes7020017.

Askeland G, Rodinova M, Štufková H, Dosoudilova Z, Baxa M, Smatlikova P, Bohuslavova B, Klempir J, Nguyen TD, Kuśnierczyk A, Bjørås M, Klungland A, Hansikova H, Ellederova Z, Eide L. A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. Dis Model Mech. 2018 Oct 24;11(10). pii: dmm035949. doi: 10.1242/dmm.035949.

Askeland G, Dosoudilova Z, Rodinova M, Klempir J, Liskova I, Kuśnierczyk A, Bjørås M, Nesse G, Klungland A, Hansikova H, Eide L. Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington's disease patients. Sci Rep. 2018 Jun 29;8(1):9817. doi: 10.1038/s41598- 018-27985-y.

Krizova J, Stufkova H, Rodinova M, Macakova M, Bohuslavova B, Vidinska D, Klima J, Ellederova Z, Pavlok A, Howland DS, Zeman J, Motlik J, Hansikova H. Mitochondrial Metabolism in a Large-Animal Model of Huntington Disease: The Hunt for Biomarkers in the Spermatozoa of Presymptomatic Minipigs. Neurodegener Dis. 2017;17(4-5):213-226. doi: 10.1159/000475467. Epub 2017 Jun 21

Dušek P, Rodinová M, Lišková I, Klempíř J, Zeman J, Roth J, Hansíková H.Buccal Respiratory Chain Complexes I and IV Quantities in Huntington's Disease Patients. Folia Biol (Praha). 2018;64(1):31-34.


ID: 322
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The mitochondrial DNA depletion syndrome protein FBXL4 mediates the degradation of the mitophagy receptors BNIP3 and NIX to suppress mitophagy

Keri-Lyn Kozul1, Giang Thanh Nguyen-Dien1,2, Yi Cui1, Prajakta Gosavi Kulkarni1, Michele Pagano3,4, Brett M. Collins5, Robert W. Taylor6,7, Mathew J.K. Jones8, Julia K. Pagan1,5,8

1School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia; 2Department of Biotechnology, School of Biotechnology, Viet Nam National University-International University, Ho Chi Minh City, Vietnam; 3Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA; 4Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA; 5The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia

Bibliography
Nguyen-Dien G, Kozul K, Cui Y, Townsend B, Gosavi Kulkarni P, Ooi S, Marzio A, Carrodus N, Zuryn S, Pagano M et al. (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv 2022.10.12.511867; doi: https://doi.org/10.1101/2022.10.12.511867


ID: 467
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondria released from astrocytes contribute to the striatal neuronal vulnerability in Huntington’s disease

Laura Lopez-Molina1,2,3,4, Alba Pereda-Velarde1,2,3,4, Silvia Ginés1,2,3,4

1Departament de Biomedicina, Facultat de Medicina. Universitat de Barcelona, Spain; 2Institut de Neurociències. Universitat de Barcelona, Spain; 3Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; 4Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.

Bibliography
Cherubini M, Lopez-Molina L, Gines S. Mitochondrial fission in Huntington's disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and Reactive Oxygen Species (ROS) homeostasis. Neurobiology of Disease, 2020. IF: 5,22. DOI: 10.1016/j.nbd.2020.104741.


ID: 554
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitophagy in CHCHD10 related disorders: beneficial or a deleterious pathway?

Willian Meira, Emmanuelle C. Genin, Mélanie Abou-Ali, Alessandra Mauri, Françoise Lespinasse, Sylvie Bannwarth, Véronique Paquis-Flucklinger

Institute for Research on Cancer and Aging, Nice (IRCAN) - France



ID: 582
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor

Hélène Cwerman-Thibault1, Vassilissa Malko-Baverel1, Gwendoline Le Guilloux1, Isabel Torres-Cuevas1,2,3, Iván Millán1,2,4, Bruno Saubaméa5, Edward Ratcliffe1, Djmila Mouri1, Virginie Mignon5,6, Odile Boespflug-Tanguy1, Pierre Gressens1, Marisol Corral-Debrinski1

1Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; 2Neonatal Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; 3Department of Physiology, University of Valencia, Vicent Andrés Estellés s/n, 46100 12 Burjassot, Spain; 4Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain; 5Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France; 6Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France

Bibliography
1.Hélène Cwerman-Thibault, Christophe Lechauve, Vassilissa Malko-Baverel, Sébastien Augustin, Gwendoline Le Guilloux, Élodie Reboussin, Julie Degardin-Chicaud, Manuel Simonutti, Thomas Debeir, Marisol Corral-Debrinski. Neuroglobin effectively halts vision loss in Harlequin mice at an advanced stage of optic nerve degeneration. Neurobiology of Disease, 2021. doi.org/10.1016/j.nbd.2021.105483.

2.Hélène Cwerman-Thibault, Vassilissa Malko-Baverel, Gwendoline Le Guilloux, Isabel Torres-Cuevas, Iván Millán, Bruno Saubaméa, Edward Ratcliffe, Djmila Mouri, Virginie Mignon, Odile Boespflug-Tanguy, Pierre Gressens, Marisol Corral-Debrinski. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Brain Pathology (In submission).


3.Hélène Cwerman-Thibault, Vassilissa Malko-Baverel, Gwendoline Le Guilloux, Edward Ratcliffe, Djmila Mouri, Isabel Torres-Cuevas, Ivan Millán, Virginie Mignon, Bruno Saubaméa, Odile Boespflug-Tanguy, Pierre Gressens, Marisol Corral-Debrinski. Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior. (In submission)


ID: 638
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Mitochondrial dysfunction and calcium dysregulation in COQ8A-Ataxia Purkinje neurons are rescued by CoQ10 treatment

Ioannis Manolaras1, Andrea Del Bondio2, Olivier Griso1, Bianca Habermann3, Hélène Puccio1,2

1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, France; 2Institut NeuroMyoGene, UMR5310, INSERM U1217, Université Claude Bernard Lyon I Faculté de médecine, Lyon, France; 3Institut de Biologie du Développement de Marseille (IBDM), CNRS, UMR7288, Aix-Marseille Université, Marseille, France.



ID: 1556
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Macromolecular crowding: A novel player in mitochondrial physiology and disease

Elianne P Bulthuis1, Cindy EJ Dieteren1, Jesper Bergmans1, Job Berkhout1, Jori A Wagenaars1, Els MA van de Westerlo1, Emina Podhumljak1, Mark A Hink2, Laura FB Hesp1, Hannah S Rosa3, Afshan N Malik3, Mariska Kea-te Lindert1, Peter HGM Willems1, Han JGE Gardeniers4, Wouter K den Otter4, Merel JW Adjobo-Hermans1, Werner JH Koopman1,5

1Radboud University Medical Center, The Netherlands; 2University of Amsterdam, The Netherlands; 3King's College, London, UK; 4University of Twente, The Netherlands; 5Wageningen University, The Netherlands

Bibliography
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MK, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J. 2023 Feb 24:e108533. doi: 10.15252/embj.2021108533. Epub ahead of print. PMID: 36825437.

Bulthuis EP, Adjobo-Hermans MJW, Willems PHGM, Koopman WJH. Mitochondrial Morphofunction in Mammalian Cells. Antioxid Redox Signal. 2019 Jun 20;30(18):2066-2109. doi: 10.1089/ars.2018.7534. Epub 2018 Nov 29.

Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ. Solute diffusion is hindered in the mitochondrial matrix. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8657-62. doi: 10.1073/pnas.1017581108. Epub 2011 May 9. PMID: 21555543; PMCID: PMC3102363.


ID: 1342
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

Preserved motor function and striatal innervation despite severe degeneration of dopamine neurons upon mitochondrial dysfunction

Thomas Paß1, Roy Chowdury2, Julien Prudent2, Yu Nie3, Patrick Chinnery3, Markus Aswendt4, Heike Endepols5, Bernd Neumaier5, Trine Riemer6, Bent Brachvogel6, Rudi Wiesner7

1Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Germany; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK; 3Medical Research Council Mitochondrial Biology Unit and Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, UK; 4Department of Neurology, Faculty of Medicine and University Hospital Cologne, Germany; 5Institute of Radiochemistry and Experiment Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Germany; 6Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, Germany; 7Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Center for Molecular Medicine Cologne, University of Cologne, Germany

Bibliography
(1) Ricke, K.M., T. Paß, S. Kimoloi, K. Fährmann, C. Jüngst, A. Schauss, O.R. Baris, M. Aradjanski, A. Trifunovic, T.M. Eriksson Faelker, M. Bergami and R.J. Wiesner (2020): Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. J Neuroscience 40: 1975-1986
(2) Dölle C., Flønes I., Nido G.S., Miletic H., Osuagwu N., Kristoffersen S., Lilleng P.K., Larsen J.P., Tysnes O.B., Haugarvoll K., Bindoff L.A., Tzoulis C. (2016): Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 7: 13548.


ID: 1320
Mitochondrial mechanisms in neurodegeneration and neurodevelopment

The mitochondrial DNA depletion syndrome protein FBXL4 mediates the degradation of the mitophagy receptors BNIP3 and NIX to suppress mitophagy

Keri-Lyn Kozul1, Giang Thanh Nguyen-Dien1,2, Yi Cui1, Prajakta Gosavi Kulkarni1, Michele Pagano3,4, Brett M. Collins5, Robert Taylor6,7, Mathew J.K. Jones8, Julia K. Pagan1,5,8

1School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia; 2Department of Biotechnology, School of Biotechnology, Viet Nam National University-International University, Ho Chi Minh City, Vietnam; 3Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, USA; 4Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA; 5The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia; 6Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 7NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 8The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia

Bibliography
Nguyen-Dien G, Kozul K, Cui Y, Townsend B, Gosavi Kulkarni P, Ooi S, Marzio A, Carrodus N, Zuryn S, Pagano M et al. (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv 2022.10.12.511867; doi: https://doi.org/10.1101/2022.10.12.511867


ID: 1329
The impact of mtDNA variation and environment on rare and common diseases

Parsing universal heteroplasmy in a large maternal lineage carrying the common LHON variant m.11778G>A/MT-ND4

Danara Ormanbekova1, Claudio Fiorini1, Leonardo Caporali2, Alberto Pasti1, Chiara Giannuzzi2, Francesco Musacchia3, Diego Vozzi3, Milton N Moraes-Filho4, Solange R Salomao5, Adriana Berezovsky5, Alfredo A Sadun6, Stefano Gustincich3, Patrick F Chinnery7, Valerio Carelli1,2

1Azienda USL di Bologna - IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 3Istituto Italiano di Tecnologia – IIT, Genova, Italy; 4Instituto de Olhos de Colatina, Colatina, Espírito Santo, Brazil; 5Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; 6Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 7Medical Research Council Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK



ID: 1441
The impact of mtDNA variation and environment on rare and common diseases

PNPLA3, MBOAT7 and TM6SF2 modify mitochondrial dynamics in NAFLD patients: dissecting the role of cell-free circulating mtDNA and copy number

Miriam Longo1, Erika Paolini1,2, Marica Meroni1, Michela Ripolone1, Laura Napoli1, Giada Tria1, Marco Maggioni1, Maurizio Maggio1, Anna Ludovica Fracanzani1,3, Paola Dongiovanni1

1Fondazione IRCCS Cà Granda Ospedale Policlinico, Italy; 2Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; 3Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy



ID: 444
The impact of mtDNA variation and environment on rare and common diseases

The overexpression of TM6SF2 and/or MBOAT7 wild-type genes restores the mitochondrial lifecycle and activity in an in vitro NAFLD model

Erika Paolini1,2, Miriam Longo1, Marica Meroni1, Giada Tria1, Massimiliano Ruscica2, Anna Ludovica Fracanzani1,3, Paola Dongiovanni1

1Fondazione IRCCS Cà Granda Ospedale Policlinico, Italy; 2Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; 3Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy