Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Date: Monday, 12/June/2023
8:00am - 6:30pmSlides Center
Location: Slides Center
8:00am - 6:30pmRegistration Desk
Location: Bologna Congress Center
9:00am - 10:45amSession 2.1: mtDNA maintenance and expression
Location: Bologna Congress Center - Sala Europa
Session Chair: Zofia Chrzanowska-Lightowers
Session Chair: Massimo Zeviani
Invited Speakers: M. Falkemberg; A. Filipovska
 
Invited
ID: 236
Invited Speakers

Initiation of mitochondrial DNA replication in mammalian cells.

Maria Falkenberg

Gothenburg University, Sweden

Bibliography
Maria Falkenberg defended her Ph.D. thesis (2000) at the University of Gothenburg, Sweden, after spending three years as a visiting student with Prof. I.R. Lehman, Stanford University School of Medicine. After postdoctoral work with Prof. Nils-Göran Larsson (2001-2002), she was appointed assistant professor at the Karolinska Institutet (2003). Since 2011, she is professor of medical biochemistry at the University of Gothenburg. The Falkenberg laboratory studies DNA replication in mammalian mitochondria, using in-vitro biochemistry, structural biology and and cell biology to study the underlying enzymatic processes. The laboratory also investigates the molecular consequences of disease-causing mutations affecting mitochondrial DNA replication and develops new, rational therapeutic approaches.


Invited
ID: 680
Invited Speakers

Regulation of mitochondrial gene expression in disease

Aleksandra Filipovska

University of Western Australia, Australia



Oral presentation
ID: 423
mtDNA maintenance and expression

Mitochondrial translation termination at non-canonical stop codons

Annika Krüger1, Cristina Remes2, Dmitrii Igorevich Shiriaev1, Yong Liu1, Henrik Spåhr1, Rolf Wibom1, Ilian Atanassov3, Minh Duc Nguyen1, Barry S. Cooperman2, Joanna Rorbach1,3

1Karolinska Institutet, Stockholm, Sweden; 2University of Pennsylvania, Pennsylvania, USA; 3Max-Planck-Institute for Biology of Ageing, Cologne, Germany

Bibliography
Krüger A, Remes C, Shiriaev DI, Liu Y, Spåhr H, Wibom R, Atanassov I, Nguyen MD, Cooperman BS, Rorbach J. Human mitochondria require mtRF1 for translation termination at non-canonical stop codons. Nat Commun 14, 30 (2023).


Oral presentation
ID: 268
mtDNA maintenance and expression

Pathological variants in TOP3A cause distinct disorders of mitochondrial and nuclear genome stability

Direnis Erdinc1, Alejandro Rodríguez-Luis2,3, Mahmoud R. Fassad2,4, Sarah Mackenzie5, Christopher M. Watson6,7, Sebastian Valenzuela1, Xie Xie1, Katja E. Menger2,3, Kate Sergeant8, Kate Craig2,9, Sila Hopton2,9, Gavin Falkous2,9, Joanna Poulton10, Hector Garcia-Moreno11, Paola Giunti11, Carlos A. de Moura Aschoff12, Jonas A. Morales Saute12,13,14, Amelia J. Kirby15, Camilo Toro16, Lynne Wolfe16, Danica Novacic16, Lior Greenbaum17,18,19, Aviva Eliyahu17,19, Ortal Barel20, Yair Anikster19,21, Robert McFarland2,4, Gráinne S. Gorman2,4, Andrew M. Schaefer2,9, Claes M. Gustafsson1,22, Robert W. Taylor2,4,9, Maria Falkenberg1, Thomas J Nicholls1

1Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden; 2Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; 3Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; 4Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; 5The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; 6North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK; 7Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK; 8Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 9NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK; 10Nuffield Department of Women’s & Reproductive Health, The Women's Centre, University of Oxford, Oxford, UK; 11Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; 12Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; 13Department of Internal Medicine, Universidade Federal do Rio Grande do Sul - Porto Alegre, Brazil; 14Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul - Porto Alegre, Brazil; 15Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; 16Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; 17The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; 18The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; 19The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; 20Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Israel; 21Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; 22Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden

Bibliography
Menger et al. (2022). Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Research; 50(19):11154-11174.

Tan et al. (2022). The human mitochondrial genome contains a second light strand promoter. Molecular Cell; 82(19): 3646-3660.

Misic et al. (2022). Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion. Nucleic Acids Research; 50(15): 8749-8766.

Menger et al. (2021). Controlling the topology of mammalian mitochondrial DNA. Open Biology; 11(9): 210168.

Jiang et al. (2021). The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Science Advances; 7(27): eabf8631.


Oral presentation
ID: 244
mtDNA maintenance and expression

The role of replicative exonucleases in mitochondrial DNA replication and degradation

Christian D Gonzalez, Nadee Nissanka, Carlos T Moraes

University of Miami Miller School of Medicine, United States of America

Bibliography
S27 of IFNα1 Contributes to Its Low Affinity for IFNAR2 and Weak Antiviral Activity

Nikunj Sharma, Anya J. O'Neal, Christian Gonzalez, Megen Wittling, Erisa Gjinaj, Lisa M. Parsons, Debasis Panda, Alexey Khalenkov, Dorothy Scott, Saurav Misra, and Ronald L. Rabin

Journal of Interferon & Cytokine Research 2019 39:5, 283-292


Flash Talk
ID: 127
mtDNA maintenance and expression

Processing of mitochondrial RNA in health and disease: the role of FASTKD5.

Hana Antonicka1, James B. Gibson2, Eric A. Shoubridge1

1The Neuro & McGill University, Montreal, Quebec, Canada; 2Dell School of Medicine, University of Texas at Austin, Austin, TX, USA

Bibliography
1.Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. (2021) ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 2021 Dec 21;37(12):110139. doi: 10.1016/j.celrep.2021.110139.

2.Go CD, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, Youn JY, Samavarchi-Tehrani P, Zhang H, Zhu LY, Popiel E, Lambert JP, Coyaud É, Cheung SWT, Rajendran D, Wong CJ, Antonicka H, Pelletier L, Palazzo AF, Shoubridge EA, Raught B, Gingras AC. (2021) A proximity-dependent biotinylation map of a human cell. Nature. 2021 Jul;595(7865):120-124. doi: 10.1038/s41586-021-03592-2.

3.Antonicka H, Lin ZY, Janer A, Aaltonen MJ, Weraarpachai W, Gingras AC, Shoubridge EA. (2020) A High-Density Human Mitochondrial Proximity Interaction Network. Cell Metab. 2020 Sep 1;32(3):479-497.e9. doi: 10.1016/j.cmet.2020.07.017.

4.Maiti P, Antonicka H, Gingras AC, Shoubridge EA, Barrientos A. (2020) Human GTPBP5 (MTG2) fuels mitoribosome large subunit maturation by facilitating 16S rRNA methylation. Nucleic Acids Res. 2020 Aug 20;48(14):7924-7943. doi: 10.1093/nar/gkaa592.

5.Antonicka H, Choquet K, Lin ZY, Gingras AC, Kleinman CL, Shoubridge EA. (2017) A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 2017 Jan;18(1):28-38. doi: 10.15252/embr.201643391.


Flash Talk
ID: 524
mtDNA maintenance and expression

Mechanisms of mtDNA maintenance and segregation in the female germline

Laura Kremer1, Lyuba Bozhilova2,3, Diana Rubalcava-Garcia1, Roberta Filograna1, Mamta Upadhyay1, Camilla Koolmeister1, Patrick Chinnery2,3, Nils-Göran Larsson1

1Karolinska Institutet, Stockholm, Sweden; 2MRC Mitochondrial Biology Unit, Cambridge, United Kingdom; 3Department of Clinical Neurosciences, University of Cambridge, United Kingdom



Flash Talk
ID: 116
mtDNA maintenance and expression

The human Mitochondrial mRNA Structurome reveals Mechanisms of Gene Expression in Physiology and Pathology

Antoni Barrientos1, Conor Moran1, Amir Brivanlou2, Flavia Fontanesi1, Silvi Rouskin2

1University of Miami, United States of America; 2Harvard Medical School, United States of America

Bibliography
1- Structural basis of LRPPRC-SLIRP-1 dependent translation by the
mitoribosome. Vivek Singh, J. Conor Moran, Yuzuru Itoh, Iliana C. Soto, Flavia Fontanesi, Mary Couvillion, Martijn A. Huynen4, Stirling Churchman, Antoni Barrientos*, Alexey Amunts*. Nat Struct Mol Bill. 2023 (in press)
2-Tissue-specific mitochondrial HIGD1C promotes oxygen sensitivity in carotid body chemoreceptors. Timón-Gómez A, Scharr AL, Wong NY, Ni E, Roy A, Liu M, Chau J, Lampert JL, Hireed H, Kim NS, Jan M, Gupta AR, Day RW, Gardner JM, Wilson RJA, Barrientos A, Chang AJ. Elife. 2022 Oct 18;11:e78915. doi: 10.7554/eLife.78915.
2- Coordination of metal center biogenesis in human cytochrome c oxidase.
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A.
Nat Commun. 2022 Jun 24;13(1):3615. doi: 10.1038/s41467-022-31413-1.
 
10:45am - 11:00amCoffee Break
Location: Bologna Congress Center
11:00am - 12:45pmSession 2.2: Clinical 1: from new genes to old and novel phenotypes
Location: Bologna Congress Center - Sala Europa
Session Chair: Agnes Rotig
Session Chair: Daniele Ghezzi
Invited Speakers: R. Horvath; H. Prokisch
 
Invited
ID: 672
Invited Speakers

The role of mitochondria in neuromuscular diseases

Rita Horvath

Cambridge-UK, United Kingdom

Bibliography
Van Haute L, et al. Nat Commun 2023 Feb 23;14(1):1009


Invited
ID: 696
Invited Speakers

Innovative approaches for the molecular diagnosis of mitochondrial disorders

Holger Prokisch

Technical University Munich Institute of Human Genetics



Oral presentation
ID: 615
Clinical 1: from new genes to old and novel phenotypes

Specialist multidisciplinary input maximises rare disease diagnoses from whole genome sequencing

William L Macken1,2, Micol Falabella1, Caroline McKittrick1, Chiara Pizzamiglio1,2, Rebecca Ellmers3, Kelly Eggleton3, Cathy E. Woodward2,3, Yogen Patel2,3, Robyn Labrum2,3, Genomics England Research Consortium9, Rahul Phadke4, Mary M. Reilly1, Catherine DeVille5, Anna Sarkozy4, Emma Footitt6, James Davison6,7, Shamima Rahman6,8, Henry Houlden1, Enrico Bugiardini1,2, Rosaline Quinlivan1,2,4, Michael G. Hanna1,2, Jana Vandrovcova1, Robert D.S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK; 4Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 5Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 6Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 7National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, London, UK; 8Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; 9Genomics England, One Canada Square London, UK

Bibliography
(1) Riley L.G. et al, The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease Genet Med, 2020 Jul;22(7):1254-1261.
(2) Davis R.L., Use of Whole-Genome Sequencing for Mitochondrial Disease Diagnosis, Neurology. 2022 Aug 16;99(7):e730-e742.


Oral presentation
ID: 553
Clinical 1: from new genes to old and novel phenotypes

Biallelic variants in MCAT in an infant with lactic acidosis, lipoylation disorder, and early death

Melanie T. Achleitner1, Maja Hempel2,3, Konstantinos Tsiakas4, René G. Feichtinger1, Saskia B. Wortmann1,5, René Santer4, Johannes A. Mayr1

1University Children's Hospital, Paracelsus Medical University, Salzburg, Austria; 2Institute of Human Genetics, University Medical Center Eppendorf, Hamburg, Germany; 3Current address: Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany; 4Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany; 5Amalia Children’s Hospital, Radboudumc, Nijmegen, The Netherlands.



Oral presentation
ID: 367
Clinical 1: from new genes to old and novel phenotypes

Biallelic PTPMT1 variants impair cardiolipin metabolism and cause mitochondrial myopathy and developmental regression

Micol Falabella1, Chiara Pizzamiglio1,2, Luis Carlos Tabara3, Ece Sonmezler4, Benjamin Munro5, William L. Macken1,2, Shanti Lu1, Lisa Tilokani3, Padraig J. Flannery6,7, Nina Patel7,8, Simon A. S. Pope7,8, Simon J. R. Heales7,8, Jana Vandrovcova1, Henry Houlden1, Robert W. Taylor9, Cathy E. Woodward6, Robyn Labrum6, Genomics England Research Consortium10, Semra Hiz11, Maha S. Zaki12, Efstathia Chronopoulou13, Germaine Pierre13, Reza Maroofian1, Michael G. Hanna1,2, Yavuz Oktay4,14,15, Rita Horvath5, Julien Prudent3, Robert D. S. Pitceathly1,2

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 3Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge UK; 4Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey; 5Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 6Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK; 7Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; 8Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK; 9Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle upon Tyne, UK; 10Genomics England, London, UK; 11Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; 12Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt; 13Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK; 14Izmir Biomedicine and Genome Center, Izmir, Turkey; 15Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir Turkey



Flash Talk
ID: 201
Clinical 1: from new genes to old and novel phenotypes

Heterozygous missense variants in NUTF2 (nuclear transport factor 2) gene, mapping at the OPA8 locus, cause Dominant Optic Atrophy

Agnese Macaluso1, Alessandra Maresca1, Concetta Valentina Tropeano1, Maria Antonietta Capristo1, Flavia Palombo1, Leonardo Caporali1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1, Piero Barboni2,3, Cristina Villaverde4,5, Carmen Ayuso4,5, Maria Esther Gallardo6,5, Majida Charif7, Sylvie Gerber8, Patrizia Amati-Bonneau7, Guy Lanaers7,9, Jean-Michel Rozet7, Bernd Wissinger10, Valerio Carelli1,11, Valentina Del Dotto11

1IRCCS - Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Studio Oculistico d'Azeglio - Bologna (Italy); 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele - Milano (Italy); 4Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD-UAM) - Madrid (Spain); 5Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Madrid (Spain); 6Grupo de investigación traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain; Centro de Investigación Biomédica en Red (CIBERER) - Madrid (Spain); 7Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc - Angers (France); 8Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University - Paris (France); 9Departments of Biochemistry and Genetics, University Hospital Angers - Angers (France); 10Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany; 11Depart. of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna - Bologna (Italy)



Flash Talk
ID: 348
Clinical 1: from new genes to old and novel phenotypes

Southern African paediatric patients with King Denborough syndrome are exclusively associated with an autosomal recessive STAC3 variant: is this a highly prevalent secondary mitochondrial disease in this African population?

Francois Hendrikus van der Westhuizen1, Maryke Schoonen1, Michelle Bisschoff1, Ronel Human2, Elsa Lubbe2, Malebo Nonyane2, Armand Vorster1, Karin Terburgh1, Robert McFarland3, Robert Taylor3, Mahmoud Fassad3, Krutik Patel3, Wilson Lindsay4, Michael Hanna4, Jana Vandrovcova4, The ICGNMD Consortium5, Izelle Smuts2

1Human Metabolomics, North-West University, Potchefstroom, South Africa; 2Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa; 3Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 4Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; 5https://www.ucl.ac.uk/genomic-medicine-neuromuscular-diseases/global-contributor-list

Bibliography
Schoonen, M., Smuts, I., Louw, R., Elson, J. L., van Dyk, E., Jonck, L. M., Rodenburg, R. J. T., van der Westhuizen, F. H. (2019). Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease. The Journal of molecular diagnostics 21, 503–513.

Meldau, S., Owen, E. P., Khan, K., & Riordan, G. T. (2022). Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings. Journal of clinical pathology 75, 34–38.

Reinecke, C. J., Koekemoer, G., van der Westhuizen, F. H., Louw, R., Lindeque, J. Z., Mienie, L. J., Smuts, I. (2012). Metabolomics of urinary organic acids in respiratory chain deficiencies. Metabolomics 8, 264-283.

Terburgh, K., Coetzer, J., Lindeque, J. Z., van der Westhuizen, F. H., Louw, R. (2021). Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochimica et biophysica acta. Molecular basis of disease 1867, 166082.


Flash Talk
ID: 428
Clinical 1: from new genes to old and novel phenotypes

AK3, adenylate kinase isozyme 3, is a new gene associated with PEO and multiple mtDNA deletions

Alessia Nasca1, Andrea Legati1, Teresa Ciavattini1, Nadia Zanetti1, Eleonora Lamantea1, Javier Ramón2, Ramon Martí2, Maria Antonietta Maioli3, Costanza Lamperti1, Holger Prokisch4,5, Daniele Ghezzi1,6

1Fondazione IRCCS Istituto Neurologico Besta, Italy; 2Vall d'Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain; 3Centro Sclerosi Multipla, P.O. Binaghi, ASL Cagliari, Italy; 4Technical University of Munich, School of Medicine, Institute of Human Genetics, 81675 Munich, Germany; 5Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany; 6Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy



Flash Talk
ID: 411
mtDNA maintenance and expression

Guanylate kinase 1 deficiency: a novel and potentially treatable form of mitochondrial DNA depletion/deletions syndrome

Agustin Hidalgo-Gutierrez1, Jonathan Shintaku1, Eliana Barriocanal-Casado1, Russ Saneto2, Javier Ramon4,7, Gloria Garrabou4,5, Frederic Tort3,4, Jose Cesar Milisenda6, Laura Gort3,4, Alba Pesini1, Saba Tadesse1, Mary-Claire King8, Ramon Marti4,7, Antonia Ribes3,4, Michio Hirano1

1Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; 2Seattle Children’s Hospital, Seattle, WA, USA; 3Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS, Barcelona.; 4Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona; 5Muscle Research and Mitochondrial Function Lab, Cellex - IDIBAPS. Faculty of Medicine and Health Science - University of Barcelona (UB), Barcelona.; 6Department of Internal Medicine, Hospital Clínic of Barcelona.; 7Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.; 8Department of Genome Sciences, University of Washington, Seattle, WA, U.S.A.

Bibliography
1DiMauro, S., Schon, E. A., Carelli, V. & Hirano, M. The clinical maze of mitochondrial neurology. Nat Rev Neurol 9, 429-444, doi:10.1038/nrneurol.2013.126 (2013).
2Lopez-Gomez, C., Camara, Y., Hirano, M., Marti, R. & nd, E. W. P. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 32, 609-620, doi:10.1016/j.nmd.2022.05.008 (2022).
3Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43, 2466-2485, doi:10.1093/nar/gkv047 (2015).
4Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S. & Elpeleg, O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29, 342-344, doi:10.1038/ng751 (2001).
5Mandel, H., Szargel, R., Labay, V., Elpeleg, O., Saada, A., Shalata, A., Anbinder, Y., Berkowitz, D., Hartman, C., Barak, M., Eriksson, S. & Cohen, N. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29, 337-341, doi:10.1038/ng746 (2001).
6Ostergaard, E., Christensen, E., Kristensen, E., Mogensen, B., Duno, M., Shoubridge, E. A. & Wibrand, F. Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81, 383-387, doi:10.1086/519222 (2007).
7Besse, A., Wu, P., Bruni, F., Donti, T., Graham, B. H., Craigen, W. J., McFarland, R., Moretti, P., Lalani, S., Scott, K. L., Taylor, R. W. & Bonnen, P. E. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab 21, 417-427, doi:10.1016/j.cmet.2015.02.008 (2015).
8Sommerville, E. W., Dalla Rosa, I., Rosenberg, M. M., Bruni, F., Thompson, K., Rocha, M., Blakely, E. L., He, L., Falkous, G., Schaefer, A. M., Yu-Wai-Man, P., Chinnery, P. F., Hedstrom, L., Spinazzola, A., Taylor, R. W. & Gorman, G. S. Identification of a novel heterozygous guanosine monophosphate reductase (GMPR) variant in a patient with a late-onset disorder of mitochondrial DNA maintenance. Clin Genet 97, 276-286, doi:10.1111/cge.13652 (2020).
9Shintaku, J., Pernice, W. M., Eyaid, W., Gc, J. B., Brown, Z. P., Juanola-Falgarona, M., Torres-Torronteras, J., Sommerville, E. W., Hellebrekers, D. M., Blakely, E. L., Donaldson, A., van de Laar, I., Leu, C. S., Marti, R., Frank, J., Tanji, K., Koolen, D. A., Rodenburg, R. J., Chinnery, P. F., Smeets, H. J. M., Gorman, G. S., Bonnen, P. E., Taylor, R. W. & Hirano, M. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. J Clin Invest 132, doi:10.1172/JCI145660 (2022).
10Bourdon, A., Minai, L., Serre, V., Jais, J. P., Sarzi, E., Aubert, S., Chretien, D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A. & Rotig, A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39, 776-780, doi:10.1038/ng2040 (2007).
11Khan, N., Shah, P. P., Ban, D., Trigo-Mourino, P., Carneiro, M. G., DeLeeuw, L., Dean, W. L., Trent, J. O., Beverly, L. J., Konrad, M., Lee, D. & Sabo, T. M. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J Biol Chem 294, 11920-11933, doi:10.1074/jbc.RA119.009251 (2019).
12Li, Y., Zhang, Y. & Yan, H. Kinetic and thermodynamic characterizations of yeast guanylate kinase. J Biol Chem 271, 28038-28044, doi:10.1074/jbc.271.45.28038 (1996).
13Agarwal, K. C., Miech, R. P. & Parks, R. E., Jr. Guanylate kinases from human erythrocytes, hog brain, and rat liver. Methods Enzymol 51, 483-490, doi:10.1016/s0076-6879(78)51066-5 (1978).
14Dummer, R., Duvic, M., Scarisbrick, J., Olsen, E. A., Rozati, S., Eggmann, N., Goldinger, S. M., Hutchinson, K., Geskin, L., Illidge, T. M., Giuliano, E., Elder, J. & Kim, Y. H. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous T-cell lymphomas (CTCL) (Mycosis fungoides and Sezary syndrome). Ann Oncol 25, 1807-1812, doi:10.1093/annonc/mdu231 (2014).
 
12:45pm - 1:45pmLunch
Location: Bologna Congress Center - Sala Europa
1:45pm - 3:30pmSession 2.3: Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity
Location: Bologna Congress Center - Sala Europa
Session Chair: Cristina Ugalde
Session Chair: Giovanni Manfredi
 
Invited
ID: 176
Invited Speakers

Metabolic adaptations of respiratory chain organization and function

Erika Fernandez-Vizarra1,2

1Department of Biomedical Sciences, University of Padova, Italy; 2Veneto Institute of Molecular Medicine, Padova, Italy

Bibliography
1.Fernandez-Vizarra, E., Lopez-Calcerrada, S., Sierra-Magro, A., Perez-Perez, R., Formosa, L.E., Hock, D.H., Illescas, M., Penas, A., Brischigliaro, M., Ding, S., et al. (2022). Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab 34, 1792-1808. 10.1016/j.cmet.2022.09.005.
2.Fernandez-Vizarra, E., and Ugalde, C. (2022). Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem Sci 47, 999-1008. 10.1016/j.tibs.2022.07.005.
3.Fernandez-Vizarra, E., Lopez-Calcerrada, S., Formosa, L.E., Perez-Perez, R., Ding, S., Fearnley, I.M., Arenas, J., Martin, M.A., Zeviani, M., Ryan, M.T., and Ugalde, C. (2021). SILAC-based complexome profiling dissects the structural organization of the human respiratory supercomplexes in SCAFI(KO) cells. Biochim Biophys Acta Bioenerg 1862, 148414. 10.1016/j.bbabio.2021.148414.
4.Palenikova, P., Harbour, M.E., Prodi, F., Minczuk, M., Zeviani, M., Ghelli, A., and Fernandez-Vizarra, E. (2021). Duplexing complexome profiling with SILAC to study human respiratory chain assembly defects. Biochim Biophys Acta Bioenerg 1862, 148395. 10.1016/j.bbabio.2021.148395.
5.Protasoni, M., Perez-Perez, R., Lobo-Jarne, T., Harbour, M.E., Ding, S., Penas, A., Diaz, F., Moraes, C.T., Fearnley, I.M., Zeviani, M., Ugalde, C., and Fernandez-Vizarra, E. (2020). Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. The EMBO journal 39, e102817. 10.15252/embj.2019102817.


Invited
ID: 403
Invited Speakers

Pluripotent stem cells and brain organoids for drug discovery of mitochondrial diseases

Alessandro Prigione

Heinrich Heine University, Düsseldorf, Germany



Oral presentation
ID: 347
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

High-throughput single cell analysis reveals progressive mitochondrial DNA mosaicism developing throughout life

Angelos Glynos1,2, Lyuba V. Bozhilova1,2, Michele Frison1,2, Stephen P. Burr1,2, James B. Stewart3, Patrick F. Chinnery1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 3Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK

Bibliography
Burr, S. P., et al. (2023). "Cell lineage-specific mitochondrial resilience during mammalian organogenesis." Cell.
Alzaydi, M. M., et al. (2023). "Intracellular Chloride Channels Regulate Endothelial Metabolic Reprogramming in Pulmonary Arterial Hypertension." Am J Respir Cell Mol Biol 68(1): 103-115.
Kayhanian, S., et al. (2022). "Cell-Free Mitochondrial DNA in Acute Brain Injury." Neurotrauma Rep 3(1): 415-420.


Oral presentation
ID: 238
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A coordinated multiorgan metabolic response contributes to human mitochondrial myopathy.

Guido Primiano3, Nneka Southwell1, Viraj Nadkarni1, Emelie Beattie1, Maria Lucia Valentino4, Valerio Carelli4, Serenella Servidei3, Giovanni Manfredi1, Qiuying Chen2, Marilena D'Aurelio1

1Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY; 2Weill Cornell Medicine, Department of Pharmacology, New York, NY; 3Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; 4IRCCS, Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy



Oral presentation
ID: 520
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Succinylation as a novel pathogenic mechanism in a children's mitochondrial brain disease

Pieti Elonkirjo1, Tuomas Kukkonen1, Juan Liu2, Jason W. Locasale2, Sami Jalil1, Birgit Schilling3, Eric Verdin3,4, Marco Reidelbach5, Outi Haapanen5, Vivek Sharma5,6, Elsebet Oestergaard7, Rosalba Carrozzo8, Berge Minassian9,10, Anu Suomalainen1

1STEMM, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; 2Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; 3Buck Institute for Research on Aging, Novato, CA 94945, USA; 4Gladstone Institutes and University of California, San Francisco, CA 94158, USA; 5Department of Physics, University of Helsinki, Finland; 6HiLIFE Institute of Biotechnology, University of Helsinki, Finland; 7Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; 8Unit of Cellular Biology and Mitochondrial Diseases, “Bambino Gesù” Children's Hospital, IRCCS, Rome, Italy; 9Program in Genetics and Genome Biology, The Hospital for Sick Children, Institute of Medical Science University of Toronto, Toronto, Ontario, Canada; 10Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA

Bibliography
Gut, P., Matilainen, S., Meyer, J. G., Pällijeff, P., Richard, J., Carroll, C. J., ... & Verdin, E. (2020). SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nature communications, 11(1), 5927.


Flash Talk
ID: 226
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The levels and activation state of the pyruvate dehydrogenase complex modulate the SCAFI-dependent organization of the mitochondrial respiratory chain

Sandra Lopez-Calcerrada1, Ana Sierra-Magro1, Erika Fernández-Vizarra2, Cristina Ugalde1,3

1Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; 2Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain

Bibliography
Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. 2022 Nov 1;34(11):1792-1808.e6. doi: 10.1016/j.cmet.2022.09.005. PMID: 36198313.


Flash Talk
ID: 301
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oxphos deficiency indicates novel functions for the mitochondrial protein import subunit tim50

Jordan J Crameri1, Catherine S Palmer1, David Coman2, David A Stroud1, David R Thorburn3,4,5, Ann E Frazier3,4, Diana Stojanovski1

1Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia; 2Queensland Children’s Hospital, Department of Metabolic Medicine, South Brisbane, Brisbane, Queensland, 4001, Australia; 3Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia; 4Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia; 5Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia



Flash Talk
ID: 300
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Microproteins in metabolic regulation

Jiemin Nah1, Baptiste Kerouanton1, David Robinson2, Kyle Dunlap3, Pooja Sridnivasan1, Sonia Chothani1, Greg Ducker3, Owen Rackham4, David Stroud2, Lena Ho1

1Duke-NUS Medical School, Singapore; 2University of Melbourne, Australia; 3University of Utah, USA; 4University of Southampton, UK

Bibliography
Lena Ho, PhD (lead PI), is regarded as a pioneer in the field of microprotein research with over 30 primary research articles (5991 citations, H-index of 21) in top-tier journals. With more than 12 years of experience in microprotein discovery, functionalization and therapeutic development, Lena and her team have developed a framework of bioinformatic tools for mining ribo-seq data for disease-relevant small ORF peptides, as well as an extensive range of biochemical tools to validate their function and uncover their molecular mechanism. Lena is an EMBO Young Investigator and HHMI international scholar.
Recent publications :
1) Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity.
Lee CQE, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, Hock DH, Lim R, Nadkarni R, Huynh VT, Lim D, Chew WL, Zhong FL, Stroud DA, Schafer S, Tergaonkar V, St John AL, Rackham OJL, Ho L. Nat Commun. 2021 Apr 9;12(1):2130. doi: 10.1038/s41467-021-22397-5.

2) Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis.
Liang C, Zhang S, Robinson D, Ploeg MV, Wilson R, Nah J, Taylor D, Beh S, Lim R, Sun L, Muoio DM, Stroud DA, Ho L. Cell Rep. 2022 Aug 16;40(7):111204. doi: 10.1016/j.celrep.2022.111204.

3) Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly.
Zhang S, Reljić B, Liang C, Kerouanton B, Francisco JC, Peh JH, Mary C, Jagannathan NS, Olexiouk V, Tang C, Fidelito G, Nama S, Cheng RK, Wee CL, Wang LC, Duek Roggli P, Sampath P, Lane L, Petretto E, Sobota RM, Jesuthasan S, Tucker-Kellogg L, Reversade B, Menschaert G, Sun L, Stroud DA, Ho L.

4) Viral proteases activate the CARD8 inflammasome in the human cardiovascular system.
Nadkarni R, Chu WC, Lee CQE, Mohamud Y, Yap L, Toh GA, Beh S, Lim R, Fan YM, Zhang YL, Robinson K, Tryggvason K, Luo H, Zhong F, Ho L. J Exp Med. 2022 Oct 3;219(10):e20212117. doi: 10.1084/jem.20212117. Epub 2022 Sep 21.
 
3:30pm - 3:50pmIndustry Workshop: Abliva AB
Location: Bologna Congress Center - Sala Europa
3:30pm - 4:30pmTea Break and poster session
Location: Bologna Congress Center
Session topics:
- Clinical 1: from new genes to old and novel phenotypes
- New technological developments and OMICS - Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity
 
ID: 495
Clinical 1: from new genes to old and novel phenotypes

Recessive MECR pathogenic variants cause a LHON-like optic neuropathy

Claudio Fiorini1, Andrea Degiorgi2, Maria Lucia Cascavilla3, Concetta Valentina Tropeano1, Chiara La Morgia1,4, Marco Battista3, Danara Ormanbekova1, Flavia Palombo1, Michele Carbonelli4, Francesco Bandello3, Valerio Carelli1,4, Alessandra Maresca1, Piero Barboni3, Enrico Baruffini2, Leonardo Caporali4

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy; 4Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy



ID: 213
Clinical 1: from new genes to old and novel phenotypes

Variants in ATP5F1B are associated with dominantly inherited dystonia

Alessia Nasca1, Niccolò Mencacci2, Federica Invernizzi1, Michael Zech3, Andrea Legati1, Giovanna Zorzi1, Holger Prokisch3, Steven Lubbe2, Barbara Garavaglia1, Daniele Ghezzi1,4

1Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy; 2Northwestern University, Feinberg School of Medicine, Chicago, USA; 3Helmholtz Zentrum München, Technical University of Munich, Munich, Germany; 4Università di Milano, Milan, Italy



ID: 143
Clinical 1: from new genes to old and novel phenotypes

Toward clinical implementation of quantitative proteomics in the detection of mitochondrial disorders

Daniella H Hock1, Liana N Semcesen1, Nikeisha J Caruana1,2, Sumudu Amarasekera1,3, Teresa Zhao1,3,4, Ann E Frazier1,3, Shabnam Bakhshalizadeh1,3, Megan Ball1,3,4, Tegan Stait3,4, Jessie Jacobsen5,6, Emma Glamuzina5,6, Bryony Ryder5,6, Johan L K Van Hove7, Elena Tucker1,3, Andrew Sinclair1,3,4, Cas Simons8,9, Alison G Compton1,3,4, John Christodoulou1,3,4, David R Thorburn1,3,4, David A Stroud1,3,4

1University of Melbourne, Parkville, Australia; 2Victoria University, Footscray, Australia; 3Murdoch Children’s Research Institute, Melbourne, Australia; 4Victorian Clinical Genetics Services, Melbourne, Australia; 5National Metabolic Service Auckland City Hospital, Auckland, New Zealand; 6Starship Children's Hospital, Auckland, New Zealand; 7University of Colorado, Aurora, United States of America; 8Centre for Population Genomics, Melbourne, Australia; 9Garvan Institute of Medical Research, Sydney, Australia

Bibliography
Amarasekera S.S.C., Hock D.H., Lake N.J., Calvo S.E., Grønborg S.W., Krzesinski E.I., Amor D.J., Fahey M.C., Simons C., Wibrand F., Mootha V.K., Lek M., Lunke S., Stark Z., Østergaard E., Christodoulou J., Thorburn D.R., *Stroud D.A., *Compton A.G. (2023) Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. In revision.

van Bergen N.J., Gunanayagam K., Bournazos A.M., Walvekar A.S., Warmoes M.O., Semcesen L.N., Lunke S., Bommireddipalli S., Sikora T., Jones D.L., Garza D., Sebire D., Gooley S., McLean C.A., Naidoo P., Rajasekaran M., *Stroud D.A., *Linster C.L., *Wallis M., *Cooper S.T., *Christodoulou J. (2023) Severe NAD(P)HX dehydratase (NAXD) neurometabolic syn-drome may present in adulthood after mild head trauma. IJMS 24,4. 10.3390/ijms24043582.

Robinson D.R.L., Hock D.H., Muellner-Wong L., Kugapreethan R., Reljic B., Surgenor E.S., Rodrigues C.H.M., Caruana N.J., *Stroud D.A. (2022) Applying Sodium Carbonate Extraction Mass Spectrometry to Investigate Defects in the Mitochondrial Respiratory Chain. Front. Cell Dev. Biol. 10, 786268.

Hock D.H., Robinson D.R.L., *Stroud D.A. (2020) Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem. J. 477, 4085.

Helman G., Compton A.G., Hock D.H., Walkiewicz M., Brett G.R., Pais L., Tan T.Y., De Paoli-Iseppi R., Clark M.B., Christodoulou J., White S.M., Thorburn D.R., Stroud D.A., Stark Z., Simons C. (2021) Multiomic analysis elucidates Complex I deficiency caused by a deep intronic variant in NDUFB10. Hum. Mutat. 42, 29.

Frazier A.E., Compton A.G., Kishita Y., Hock D.H., Welch A.E., Amarasekera S.S.C., Rius R., Formosa L.E., Imai-Okazaki A., Francis D., Wang M., Lake N.J., Tregoning S., Jabbari J.S., Lucattini A., Nitta K.R., Ohtake A., Murayama K., Amor D.J., McGillivray G., Wong F.Y., van der Knaap M.S., Jeroen Vermeulen R., Wiltshire E.J., Fletcher J.M., Lewis B., Baynam G., Ellaway C., Balasubramaniam S., Bhattacharya K., Freckmann M.L., Arbuckle S., Rodriguez M., Taft R.J., Sadedin S., Cowley M.J., Minoche A.E., Calvo S.E., Mootha V.K., Ryan M.T., Okazaki Y., Stroud D.A., Simons C., Christodoulou J., Thorburn D.R. (2021) Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. Med 2, 49.

Hock D.H., Reljic B., Ang C.S., Muellner-Wong L., Mountford H.S., Compton A.G., Ryan M.T., Thorburn D.R., *Stroud D.A. (2020) HIGD2A Is Required for Assembly of the COX3 Module of Human Mitochondrial Complex IV. Mol. Cell Proteomics. 19, 107541.

*, corresponding author


ID: 611
Clinical 1: from new genes to old and novel phenotypes

A DNM2-related myopathy mimicking a primary mitochondrial disorder

Ignazio Giuseppe Arena1, Rosalba Carrozzo2, Mattia Porcino1, Alba Migliorato3, Carmelo Rodolico1, Olimpia Musumeci1

1Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.; 2Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; 3Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.



ID: 594
Clinical 1: from new genes to old and novel phenotypes

Assessing the association of mitochondrial DNA genes with Primary Mitochondrial Disease using the ClinGen Clinical Validity Framework

Elizabeth M. McCormick1, James T. Peterson1, Julie P. Taylor2, Krista Bluske2, Amanda R. Clause2, Anjana Chandrasekhar2, Josh Lowry2, Alison J. Coffey2, Xiaowu Gai3,4, Marni J. Falk1,5, Zarazuela Zolkipli-Cunningham1,5, Shamima Rahman6

1Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA; 2Illumina Laboratory Services, Illumina Inc., San Diego, CA; 3Center for Personalized Medicine, Department of Pathology & Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA; 4Keck School of Medicine, University of Southern California, Los Angeles, CA; 5Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; 6Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom



ID: 282
Clinical 1: from new genes to old and novel phenotypes

Functional characterisation of the m.8424T>C MT-ATP8 variant using quantitative proteomics

Liana Semcesen1, Nikeisha Caruana1,2, Daniella Hock1, Alison Compton1,3,4, Zornitza Stark1,4,5, John Christodoulou1,3,4, David Thorburn1,3,4, David Stoud1,3,4

1University of Melbourne, Parkville, Australia; 2Victoria University, Footscray, Australia; 3Murdoch Children’s Research Institute, Melbourne, Australia; 4Victorian Clinical Genetics Services, Melbourne, Australia; 5Australian Genomics, Melbourne, Australia



ID: 493
Clinical 1: from new genes to old and novel phenotypes

COX18 variants cause isolated Complex IV deficiency associated with neonatal hypertrophic cardiomyopathy, myopathy and axonal sensory neuropathy

Dario Ronchi1, Megi Meneri1,2, Francesca Magri2, Francesca Menni2, Manuela Garbellini2, Maria Francesca Bedeschi2, Robertino Dilena2, Valeria Cecchetti2, Irene Picciolli2, Francesca Furlan2, Valentina Polimeni2, Sabrina Salani2, Laura Pezzoli2, Francesco Fortunato1, Matteo Bellini3, Sara Antognozzi2, Daniela Piga2, Michela Ripolone2, Simona Zanotti2, Laura Napoli2, Patrizia Ciscato2, Monica Sciacco2, Giovanna Mangili3, Fabio Mosca2, Stefania Corti1,2, Maria Iascone3, Giacomo Pietro Comi1,2

1Dino Ferrari Center, University of Milan, Italy; 2IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy; 3ASST Papa Giovanni XXIII, Bergamo, Italy



ID: 255
Clinical 1: from new genes to old and novel phenotypes

Severe mitochondrial encephalomyopathy caused by de novo variants in OPA1

Daria Diodato1, Michela Di Nottia2, Alessandra Torraco2, Teresa Rizza2, Claudia Nesti3, Enrico Baruffini3, Diego Martinelli4, Margherita Verardo1, Adele D'Amico1, Filippo Maria Santorelli5, Enrico Bertini1, Rosalba Carrozzo2

1Muscular and Neurodegenerative Disorders Unit, Children Hospital Bambino Gesù; 2Cellular biology and mitochondrial diseases diagnostics, Children Hospital Bambino Gesù; 3Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma; 4Metabolism Division, Children Hospital Bambino Gesù, Rome; 5Molecular Medicine, IRCCS Stella Maris, Pisa

Bibliography
1) Hypoventilation and sleep hypercapnia in a case of congenital variant-like Rett syndrome.
Ghirardo S, Sabatini L, Onofri A, Testa MBC, Paglietti MG, Diodato D, Travaglini L, Stregapede F, Ciofi Degli Atti ML, Cherchi C, Cutrera R.
Ital J Pediatr. 2022 Sep 7;48(1):167. doi: 10.1186/s13052-022-01359-7.
PMID: 36071486 Free PMC article.

2) Neuropsychological and behavioral profile in a cohort of Becker muscular dystrophy pediatric patients.
Cumbo F, Tosi M, Catteruccia M, Diodato D, Nicita F, Capitello TG, Alfieri P, Vicari S, Bertini E, D'Amico A.
Neuromuscul Disord. 2022 Sep;32(9):736-742. doi: 10.1016/j.nmd.2022.07.402. Epub 2022 Jul 27.
PMID: 35953344

4) Response to: Phenotypic heterogeneity of Leigh syndrome due to NDUFA12 variants is multicausal.
Torraco A, Maroofian R, Rötig A, Bertini E, Ghezzi D, Carrozzo R, Diodato D.
Hum Mutat. 2022 Jan;43(1):99-100. doi: 10.1002/humu.24303. Epub 2021 Dec 9.
PMID: 34888984 No abstract available.

5) Clinical, imaging, biochemical and molecular features in Leigh syndrome: a study from the Italian network of mitochondrial diseases.
Ardissone A, Bruno C, Diodato D, Donati A, Ghezzi D, Lamantea E, Lamperti C, Mancuso M, Martinelli D, Primiano G, Procopio E, Rubegni A, Santorelli F, Schiaffino MC, Servidei S, Tubili F, Bertini E, Moroni I.
Orphanet J Rare Dis. 2021 Oct 9;16(1):413. doi: 10.1186/s13023-021-02029-3.
PMID: 34627336 Free PMC article.

6) Elucidating the molecular mechanisms associated with TARS2-related mitochondrial disease.
Zheng WQ, Pedersen SV, Thompson K, Bellacchio E, French CE, Munro B, Pearson TS, Vogt J, Diodato D, Diemer T, Ernst A, Horvath R, Chitre M, Ek J, Wibrand F, Grange DK, Raymond L, Zhou XL, Taylor RW, Ostergaard E.
Hum Mol Genet. 2022 Feb 21;31(4):523-534. doi: 10.1093/hmg/ddab257.
PMID: 34508595

7) Age-related sensory neuropathy in patients with spinal muscular atrophy type 1.
Pro S, Tozzi AE, D'Amico A, Catteruccia M, Cherchi C, De Luca M, Nicita F, Diodato D, Cutrera R, Bertini E, Valeriani M.
Muscle Nerve. 2021 Nov;64(5):599-603. doi: 10.1002/mus.27389. Epub 2021 Aug 23.
PMID: 34368972

8) Antenatal Membranous Nephropathy and Type 2 (Axonal) Charcot-Marie-Tooth With Mutations in the Metallo-Membrane Endopeptidase Gene: A Call for Family Screening and Pharmacovigilance.
Nortier JL, Remiche G, Delrée P, Nauta J, Notermans NC, Vivarelli M, Diodato D, Solé G, Debiec H, Ronco P.
Kidney Int Rep. 2021 May 12;6(7):1981-1986. doi: 10.1016/j.ekir.2021.04.034. eCollection 2021 Jul.
PMID: 34307994 Free PMC article. No abstract available.

9) Movement Disorders in Children with a Mitochondrial Disease: A Cross-Sectional Survey from the Nationwide Italian Collaborative Network of Mitochondrial Diseases.
Ticci C, Orsucci D, Ardissone A, Bello L, Bertini E, Bonato I, Bruno C, Carelli V, Diodato D, Doccini S, Donati MA, Dosi C, Filosto M, Fiorillo C, La Morgia C, Lamperti C, Marchet S, Martinelli D, Minetti C, Moggio M, Mongini TE, Montano V, Moroni I, Musumeci O, Pancheri E, Pegoraro E, Primiano G, Procopio E, Rubegni A, Scalise R, Sciacco M, Servidei S, Siciliano G, Simoncini C, Tolomeo D, Tonin P, Toscano A, Tubili F, Mancuso M, Battini R, Santorelli FM.
J Clin Med. 2021 May 12;10(10):2063. doi: 10.3390/jcm10102063.
PMID: 34065803 Free PMC article.

10) Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation.
Torraco A, Nasca A, Verrigni D, Pennisi A, Zaki MS, Olivieri G, Assouline Z, Martinelli D, Maroofian R, Rizza T, Di Nottia M, Invernizzi F, Lamantea E, Longo D, Houlden H, Prokisch H, Rötig A, Dionisi-Vici C, Bertini E, Ghezzi D, Carrozzo R, Diodato D.
Hum Mutat. 2021 Jun;42(6):699-710. doi: 10.1002/humu.24195. Epub 2021 Mar 25.
PMID: 33715266


ID: 438
Clinical 1: from new genes to old and novel phenotypes

Bi-allelic TEFM variants are associated with a treatable mitochondrial myopathy

Alessandra Torraco1, Guido Primiano2,3, Anastasia Altobelli1, Teresa Rizza1, Michela Di Nottia1, Rosalba Carrozzo1, Serenella Servidei2,3

1Unit of Cellular Biology and Diagnosis of Mitochondrial Disease, Bambino Gesù Children’s Hospital, IRCCS, Rome Italy.; 2Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.; 3Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.

Bibliography
1-Torraco A, Morlino S, Rizza T, Di Nottia M, Bottaro G, Bisceglia L, Montanari A, Cappa M, Castori M, Bertini E, Carrozzo R. A novel homozygous variant in COX5A causes an attenuated phenotype with failure to thrive, lactic acidosis, hypoglycemia, and short stature. Clin Genet. 2022 Jul;102(1):56-60.
2-Torraco A, Nasca A, Verrigni D, Pennisi A, Zaki MS, Olivieri G, Assouline Z, Martinelli D, Maroofian R, Rizza T, Di Nottia M, Invernizzi F, Lamantea E, Longo D, Houlden H, Prokisch H, Rötig A, Dionisi-Vici C, Bertini E, Ghezzi D, Carrozzo R, Diodato D. Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation. Hum Mutat. 2021 Jun;42(6):699-710.
3-Torraco A, Stehling O, Stümpfig C, Rösser R, De Rasmo D, Fiermonte G, Verrigni D, Rizza T, Vozza A, Di Nottia M, Diodato D, Martinelli D, Piemonte F, Dionisi-Vici C, Bertini E, Lill R, Carrozzo R. ISCA1 mutation in a patient with infantile-onset leukodystrophy causes defects in mitochondrial [4Fe-4S] proteins. Hum Mol Genet. 2018 Oct 15;27(20):3650.


ID: 486
Clinical 1: from new genes to old and novel phenotypes

TOMM40L as a new causative gene for autosomal recessive mitochondrial disease.

Francisco Javier Cotrina Vinagre1, María Elena Rodríguez García1, Lucía Del Pozo Filiú1, Elena Martín Hernández2,3, Francisco Martínez Azorín1,3

1Laboratorio de Enfermedades Mitocondriales. Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain.; 2Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain.; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain.

Bibliography
Rodríguez-García, M. E., Cotrina-Vinagre, F. J., et al., (2022). First splicing variant in HECW2 with an autosomal recessive pattern of inheritance and associated with NDHSAL. Human mutation, 43(10), 1361–1367. https://doi.org/10.1002/humu.24426

Lopes Abath Neto, O., Medne, L., Donkervoort, S., Rodríguez-García, M. E., Bolduc, V., Hu, Y., Guadagnin, E., Foley, A. R., Brandsema, J. F., Glanzman, A. M., Tennekoon, G. I., Santi, M., Berger, J. H., Megeney, L. A., Komaki, H., Inoue, M., Cotrina-Vinagre, F. J.,et al., (2021). MLIP causes recessive myopathy with rhabdomyolysis, myalgia and baseline elevated serum creatine kinase. Brain : a journal of neurology, 144(9), 2722–2731. https://doi.org/10.1093/brain/awab275

Cotrina-Vinagre, F. J., et al., (2021). Characterization of a complex phenotype (fever-dependent recurrent acute liver failure and osteogenesis imperfecta) due to NBAS and P4HB variants. Molecular genetics and metabolism, 133(2), 201–210. https://doi.org/10.1016/j.ymgme.2021.02.007

Rodríguez-García, M. E., Cotrina-Vinagre, F. J., et al., (2021). New subtype of PCH1C caused by novel EXOSC8 variants in a 16-year-old Spanish patient. Neuromuscular disorders : NMD, 31(8), 773–782. https://doi.org/10.1016/j.nmd.2021.05.008

Rodríguez-García, M. E., Cotrina-Vinagre, F. J., et al., (2019). A novel de novo MTOR gain-of-function variant in a patient with Smith-Kingsmore syndrome and Antiphospholipid syndrome. European journal of human genetics : EJHG, 27(9), 1369–1378. https://doi.org/10.1038/s41431-019-0418-1


ID: 528
Clinical 1: from new genes to old and novel phenotypes

A primary cardiological phenotype caused by an inherited mtDNA single deletion: a case report from an Italian pedigree

Piervito Lopriore1, Christiane Neuhofer2,3, Vincenzo Montano1, Adriana Meli1, Annalisa Lo Gerfo4, Giulia Cecchi4, Maria Adelaide Caligo4, Riccardo Berutti2,3, Robert Kopajtich2,3, Gabriele Siciliano1, Holger Prokisch2,3, Michelangelo Mancuso1

1Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy; 2Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; 3Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany; 4Laboratory of Molecular Genetics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy

Bibliography
1) Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Donati MA, Federico A, Minetti C, Moggio M, Mongini T, Santorelli FM, Servidei S, Tonin P, Toscano A, Bruno C, Bello L, Caldarazzo Ienco E, Cardaioli E, Catteruccia M, Da Pozzo P, Filosto M, Lamperti C, Moroni I, Musumeci O, Pegoraro E, Ronchi D, Sauchelli D, Scarpelli M, Sciacco M, Valentino ML, Vercelli L, Zeviani M, Siciliano G. Redefining phenotypes associated with mitochondrial DNA single deletion. J Neurol. 20
2) Grady JP, Campbell G, Ratnaike T, Blakely EL, Falkous G, Nesbitt V, Schaefer AM, McNally RJ, Gorman GS, Taylor RW, Turnbull DM, McFarland R (2014) Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 137:323–334
3) Yamashita S, Nishino I, Nonaka I, Goto Y (2008) Genotype and phenotype analyses in 136 patients with single large-scale mitochondrial DNA deletions. J Hum Genet 53:598–606 15 May;262(5):1301-9. doi: 10.1007/s00415-015-7710-y. Epub 2015 Mar 26. Erratum in: J Neurol. 2015 Dec;262(12):2800. PMID: 25808502.
4) Chinnery PF, DiMauro S, Shanske S, Schon EA, Zeviani M, Mariotti C, Carrara F, Lombes A, Laforet P, Ogier H, Jaksch M, Lochmüller H, Horvath R, Deschauer M, Thorburn DR, Bindoff LA, Poulton J, Taylor RW, Matthews JN, Turnbull DM. Risk of developing a mitochondrial DNA deletion disorder. Lancet. 2004 Aug 14-20;364(9434):592-6. doi: 10.1016/S0140-6736(04)16851-7. PMID: 15313359.


ID: 150
Clinical 1: from new genes to old and novel phenotypes

Genetic characterization of a large cohort of Spanish patients with TK2 deficiency. A founder effect of two TK2 variants partially contributes to a higher prevalence of the disorder in Spain.

Cristina Domínguez-González1,2, Pablo Serrano-Lorenzo1,2, Alberto Blázquez1,2, Juan Francisco Quesada-Espinosa1, Jorge Amigo Lechuga3, Pablo Mínguez2,4, Carmen Ayuso2,4, Elena García-Arumí5, Nuria Muelas2,6, Teresa Jaijo6, Andrés Nascimento7, Beatriz Galán-Rodriguez8, Carmen Paradas8,9, Joaquín Arenas1,2, Ángel Carracedo2,3, Ramon Martí2,5, Miguel A. Martin1,2

1Hospital Universitario 12 de Octubre, imas12 Research Institute, Madrid, Spain; 2Spanish Network for Biomedical Research in Rare Diseases (CIBERER); 3Fundación Galega de Medicina Xenómica, Santiago de Compostela, Spain; 4Instituto de Investigación Sanitaria, Hospital Universitario FundaciónJiménez Díaz, Madrid, Spain; 5Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona; 6Hospital Universitari I Politècnic La Fe, Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia; 7Sant Joan de Déu Research Institute, Sant Joan de Déu Hospital, Barcelona, Spain.; 8Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío, Sevilla, Spain.; 9Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED)

Bibliography
1.Domínguez-González C, Fernández-Torrón R, Moore U, de Fuenmayor-Fernández de la Hoz CP, Vélez-Gómez B, Cabezas JA, Alonso-Pérez J, González-Mera L, Olivé M, García-García J, Moris G, León Hernández JC, Muelas N, Servian-Morilla E, Martin MA, Díaz-Manera J, Paradas C. Muscle MRI characteristic pattern for late-onset TK2 deficiency diagnosis. J Neurol. 2022 Jul;269(7):3550-3562. doi: 10.1007/s00415-021-10957-0. Epub 2022 Mar 14. PMID: 35286480; PMCID: PMC9217784.
2.Berardo A, Domínguez-González C, Engelstad K, Hirano M. Advances in Thymidine Kinase 2 Deficiency: Clinical Aspects, Translational Progress, and Emerging Therapies. J Neuromuscul Dis. 2022;9(2):225-235. doi: 10.3233/JND-210786. PMID: 35094997; PMCID: PMC9028656.
3.Domínguez-González C, Madruga-Garrido M, Hirano M, Martí I, Martín MA, Munell F, Nascimento A, Olivé M, Quan J, Sardina MD, Martí R, Paradas C. Collaborative model for diagnosis and treatment of very rare diseases: experience in Spain with thymidine kinase 2 deficiency. Orphanet J Rare Dis. 2021 Oct 2;16(1):407. doi: 10.1186/s13023-021-02030-w. PMID: 34600563; PMCID: PMC8487573.
4.Domínguez-González C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodríguez FJ, Donati MA, Kleinsteuber K, Martí I, Martín-Hernández E, Morealejo-Aycinena JP, Munell F, Nascimento A, Kalko SG, Sardina MD, Álvarez Del Vayo C, Serrano O, Long Y, Tu Y, Levin B, Thompson JLP, Engelstad K, Uddin J, Torres-Torronteras J, Jimenez-Mallebrera C, Martí R, Paradas C, Hirano M. Deoxynucleoside Therapy for Thymidine Kinase 2-Deficient Myopathy. Ann Neurol. 2019 Aug;86(2):293-303. doi: 10.1002/ana.25506. Epub 2019 Jun 17. PMID: 31125140; PMCID: PMC7586249.
5.Domínguez-González C, Hernández-Laín A, Rivas E, Hernández-Voth A, Sayas Catalán J, Fernández-Torrón R, Fuiza-Luces C, García García J, Morís G, Olivé M, Miralles F, Díaz-Manera J, Caballero C, Méndez-Ferrer B, Martí R, García Arumi E, Badosa MC, Esteban J, Jimenez-Mallebrera C, Encinar AB, Arenas J, Hirano M, Martin MÁ, Paradas C. Late-onset thymidine kinase 2 deficiency: a review of 18 cases. Orphanet J Rare Dis. 2019 May 6;14(1):100. doi: 10.1186/s13023-019-1071-z. PMID: 31060578; PMCID: PMC6501326.
6.Domínguez-González C, Hernández-Voth A, de Fuenmayor-Fernández de la Hoz CP, Guerrero LB, Morís G, García-García J, Muelas N, León Hernández JC, Rabasa M, Lora D, Blázquez A, Arenas J, Martin MÁ. Metrics of progression and prognosis in untreated adults with thymidine kinase 2 deficiency: An observational study. Neuromuscul Disord. 2022 Sep;32(9):728-735. doi: 10.1016/j.nmd.2022.07.399. Epub 2022 Jul 16. PMID: 35907766.


ID: 198
Clinical 1: from new genes to old and novel phenotypes

HSD17B10 interacts with CBR4 to form human mitochondrial 3-ketoacyl-acyl carrier protein reductase 2 (KAR2) in the mitochondrial fatty acid synthesis pathway

Ali Julfiker Md Masud, Guangyu Jiang, Kaija J Autio, J Kalervo Hiltunen, Alexander J Kastaniotis

Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland

Bibliography
I.Shvetsova, A., Masud, A. J., Schneider, L., Bergmann, U., Monteuuis, G., Miinalainen, I. J., ... & Kastaniotis, A. J. (2021). A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. MicrobiologyOpen, 10(5), e1238. doi.org/10.1002/mbo3.1238
II.Masud, A. J., Kastaniotis, A. J., Rahman, M. T., Autio, K. J., & Hiltunen, J. K. (2019). Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 118540. doi.org/10.1016/j.bbamcr.2019.118540

III.Monteuuis, G., Suomi, F., Kerätär, J. M., Masud, A. J. & Kastaniotis, A. J. (2017). A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3. Biochemical Journal, 474(22), 3783-3797. doi.org/10.1042/BCJ20170416
IV.Nair, R. R., Kerätär, J. M., Autio, K. J., Masud, A. J., Finnilä, M. A., Autio-Harmainen, H. I., Miinalainen, I. J., Nieminen, P. A., Hiltunen, J. K. & Kastaniotis, A. J. (2017). Genetic modifications of Mecr reveal a role for mitochondrial 2-enoyl-CoA/ACP reductase in placental development in mice. Human Molecular Genetics, 26(11), 2104-2117. doi.org/10.1093/hmg/ddx105
V.Masud, A. J. M., Mia, M. A., Islam, M. M., Begum, S. N., & Prodhan, S. H. (2014). Morpho-Molecular Screening of Rice (Oryza Sativa L.) Genotypes At Seedling Stage for Salt Tolerance. The Journal of Microbiology, Biotechnology and Food Sciences, 4(2), 164. doi.org/10.15414/jmbfs.2014.4.2.164-169


ID: 668
Clinical 1: from new genes to old and novel phenotypes

Novel atypical variants causing pyruvate dehydrogenase complex deficiency

Helene Bruhn1,2, Karin Naess1,2, Sofia Ygberg2,3, Nicole Lesko2,4, Rolf Wibom1,2, Anna Wedell2,4, Anna Wredenberg1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Centre of inherited metabolic diseases, Karolinska University Hospital, Stockholm, Sweden; 3Neuropediatric Unit, Dept of Women’s, and Children's Health, Karolinska Institutet, Stockholm, Sweden; 4Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden



ID: 492
Clinical 1: from new genes to old and novel phenotypes

Novel genetic discoveries detected using diagnostic OMICSs in patients suspected to suffer from multiple acyl-CoA dehydrogenation deficiency

Signe Mosegaard1,11, Mirjana Gusic2,3, Yasuhiko Ago4, Xiao Yue4, Vincente Yépez3,5, Julien Gagneur3,5, Robert Kopajtich3, Dmitrii Smirnov3, Sarah Stenton2, Robert Barski6, Mark Sharrard7, Stanley H. Korman8, Jolanta Sykut-Cegielska9, Anibh M. Das10, Helle H. Nygaard11, Margrethe Kjeldsen11, Yusof Rahman12, Skadi Beblo13, Mirian C. H. Janssen14, Eva Morava15, Leo A. J. Kluijtmans16, Alexander Asamoah17, Emma Buckley18, Isaque Qureshi18, Godfrey T. Gillett19, Ole H. Larsen20, Niels Gregersen11, Toshiyuki Fukao4,21, Hideo Sasai4, Simon Olpin22, Holger Prokisch2,3, Rikke K. J. Olsen11

1Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; 2Institute of Neurogenomics, Helmholtz Zentrum München, Germany; 3Institute of Human Genetics, School of Medicine, Technical University Munich, München, Germany.; 4Department of Pediatrics, Graduate School of Medicine, Gifu University Hospital, Gifu, Japan.; 5Department of Informatics, Technical University of Munich, Garching, Germany.; 6Department of Biochemical Genetics, St James's University Hospital, Leeds, UK.; 7Department of Pediatrics, Sheffield Children's Hospital, Sheffield, UK.; 8Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel.; 9Department of Inborn Errors of Metabolism and Paediatrics, The Institute of Mother and Child, Warsaw, Poland.; 10Department of Pediatrics, Hannover Medical School, Hannover, Germany.; 11Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark.; 12Center for Inherited Metabolic Disorders, Guy’s & St Thomas’ Hospital NHS Foundation Trust, London, UK.; 13University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany.; 14Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.; 15Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA; 16Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.; 17UofL Physicians Novak Center for Children's Health, Louisville, USA.; 18Nottingham Children’s Hospital, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK; 19Sheffield Teaching Hospitals NHS Trust, University of Sheffield, Sheffield, UK; 20Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.; 21Clinical Genetics Center, Gifu University Hospital, Gifu, Japan.; 22Department of Clinical Chemistry, Sheffield Children’s Hospital, Sheffield, UK.

Bibliography
First and shared first (3):
Mosegaard S*, Dipace G*, Bross P, Carlsen J, Gregersen N, Olsen RKJ. 2020. ”Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism”. International Journal of Molecular Sciences;21(11):3847. doi: 10.3390/ijms21113847.

Mosegaard S*, Bruun GH*, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, Annexstad E, Tangeraas T, Olsen RKJ, Andresen BS. 2017. “An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency”. Molecular Genetics and Metabolism;122(4):182-188. doi: 10.1016/j.ymgme.2017.10.014.

Olsen RKJ*, Koňaříková E*, Giancaspero TA*, Mosegaard S*, Boczonadi V*, Mataković L*, ….. Barile M, Prokisch H. 2016. ”Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency”. American Journal of Human Genetics;98(6):1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

Co-author (5):

V.A. Yépez, M. Gusic, R. Kopajtich, C. Mertes, N.H. Smith, C.L. Alston, R. Ban, S. Beblo, R. Berutti, H. Blessing, E. Ciara, F. Distelmaier, P. Freisinger, J. Häberle, S.J. Hayflick, M. Hempel, Y.S. Itkis, Y. Kishita, T. Klopstock, T.D. Krylova, C. Lamperti, D. Lenz, C. Makowski, S. Mosegaard, M.F. Müller, G. Muñoz-Pujol, A. Nadel, A. Ohtake, Y. Okazaki, E. Procopio, T. Schwarzmayr, J. Smet, C. Staufner, S.L. Stenton, T.M. Strom, C. Terrile, F. Tort, R. Van Coster, A. Vanlander, M. Wagner, M. Xu, F. Fang, D. Ghezzi, J.A. Mayr, D. Piekutowska-Abramczuk, A. Ribes, A. Rötig, R.W. Taylor, S.B. Wortmann, K. Murayama, T. Meitinger, J. Gagneur, H. Prokisch, Clinical implementation of RNA sequencing for Mendelian disease diagnostics, Genome Med. 14 (2022) 38. https://doi.org/10.1186/s13073-022-01019-9.

Fogh S, Dipace G, Bie A, Veiga-da-Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. “Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria?” J Inherit Metab Dis. 2021 Sep;44(5):1215-1225. doi: 10.1002/jimd.12394.

Muru K., Reinson K., Künnapas K., Lilleväli H., Nochi Z., Mosegaard S., Pajusalu S., Olsen R. and Õunap K. “FLAD1 Asso-ciated Multiple Acyl-CoA Dehydrogenase Deficiency Identified by Newborn Screening.”. Molecular Genetics & Genomic Medicine;7(9). doi: 10.1002/mgg3.915.


García-Villoria J., de Azua B., Tort F., Mosegaard S., Matalonga L., Ugarteburu O., Teixidó L., Olsen R. and Ribes A. “FLAD1, a recently described gene associated to multiple acyl-CoA dehydrogenase deficiency (MADD) is mutated in a patient with myopathy, scoliosis and cataracts.”. Clinical Genetics;94(6):592-593. doi: 10.1111/cge.13452.

Auranen M., Paetau A., Piirilä P., Pohju A., Salmi T., Lamminen A., Thure H., Löfberg M., Mosegaard S., Olsen R., Tyni T. “FLAD1 gene mutation causes riboflavin responsive MADD disease”. Neuromuscular Disorders;27(6):581-584. doi: 10.1016/j.nmd.2017.03.003.


ID: 439
Clinical 1: from new genes to old and novel phenotypes

The Australian genomics mitochondrial flagship: a national program delivering mitochondrial diagnoses

David Thorburn1,2,3, Naomi Baker2,3, Shanti Balasubramaniam4, Stephanie Best5, Kaustuv Bhattacharya4, Kristen Boggs4, Sarah Borrie6, Drago Bratkovic6, Jeffrey Braithwaite5, Alessandra Bray4, Jo Burke7, David Coman8,9, Alison Compton1,2, Mark Cowley10, Martin Delatycki2,3, Michelle de Silva1,2,3, Carolyn Ellaway4, Michael Fahey11, Janice Fletcher12, Leah Frajman1,2, Ann Frazier1,2, Velimer Gayeskiv9, Roula Ghaoui12, Himanshu Goel13, Ilias Goranitis2, Daniella Hock2, Denise Howting14, Matilda Jackson6, Maina Kava15, Sarah King-SMith6, Nicole Lake1,16, Phillipa Lamont15,17, Joy Lee2,18, Janet Long5, Mandi MacShane15, Ellenore Martin4, Jim McGill8, Sean Murray19, Julie Panetta11, Liza Phillips20, Michael Quinn21, Rocio Rius1,2, Michael Ryan22, Nicholas Smith6, David Stroud1,2,3, Michel Tchan23, Melanie Tom21, Matthew Wallis7, Tyson Ware24, AnneMarie Welch1, Christine Wools11, Eunice Wu2, John Christodoulou1,2,3

1Murdoch Children's Research Institute, Melbourne, Australia; 2University of Melbourne, Melbourne, Australia; 3Victorian Clinical Genetics Services, Melbourne,; 4Sydney Children’s Hospitals Network, Westmead, Australia; 5Macquarie University, Sydney, Australia; 6Women’s and Children’s Hospital, Adelaide, Australia; 7Tasmanian Clinical Genetics Service, Hobart, Australia; 8Queensland Children’s Hospital, Brisbane, Australia; 9Wesley Hospital, Brisbane, Australia; 10Garvan Institute, Sydney, Australia; 11Royal Melbourne Hospital, Melbourne, Australia; 12Royal Adelaide Hospital, Adelaide, Australia; 13John Hunter Hospital, Newcastle, Australia; 14Harry Perkins Institute of Medical Research, Perth, Australia; 15Perth Children’s Hospital, Perth, Australia; 16Yale School of Medicine, New Haven, CT, USA; 17Royal Perth Hospital, Perth, Australia; 18Royal Children’s Hospital, Melbourne, Australia; 19Mito Foundation, Sydney, Australia; 20Mater Hospital, Brisbane, Australia; 21Genetic Health Queensland, Brisbane, Australia; 22Monash University, Melbourne, Australia; 23Westmead Hospital, Westmead, Australia; 24Royal Hobart Hospital, Hobart, Australia

Bibliography
Granata C, Caruana NJ, Botella J, Jamnick NA, Huynh K, Kuang J, Janssen HA, Reljic B, Mellett NA, Laskowski A, Stait TL, Frazier AE, Coughlan MT, Meikle PJ, Thorburn DR, Stroud DA and Bishop DJ (2021) Training-induced bioenergetic improvement in human skeletal muscle is associated with non-stoichiometric changes in the mitochondrial proteome without reorganisation of respiratory chain content. Nat Commun 12:7056

Wu Y, Balasubramaniam S, Rius R, Thorburn DR, Christodoulou J & Goranitis I (2021) Genomic sequencing for the diagnosis of childhood mitochondrial disorders: a health economic evaluation. Eur J Hum Genet 30:577-586

Frazier AE, Compton AG, Kishita Y, Hock DH, Welch AME, Amarasekera SS, Rius R, Formosa LE, Imai-Okazaki A, Francis D, Wang N, Lake NJ, Tregoning S, Jabbari JS, Lucattini A, Nitta KR, Ohtake A, Murayama K, Amor DJ, McGillivray G, Wong FY, van der Knaap MS, Vermeulen RJ, Wiltshire EJ, Fletcher JM, Lewis B, Baynam G, Ellaway C, Balasubramaniam S, Bhattacharya K, Freckmann ML, Arbuckle S, Rodriguez M, Taft RJ, Sadedin S, Cowley MJ, Minoche AE, Calvo SE, Mootha VK, Ryan MT, Okazaki V, Stroud DA, Simons C, Christodoulou J and Thorburn DR (2021) Fatal Perinatal Mitochondrial Cardiac Failure Caused by Recurrent De Novo Duplications in the ATAD3 Locus. Med 2:49-73

Riley LG, Cowley MJ, Gayevskiy V, Minoche AE, Puttick C, Thorburn DR, Rius, Compton AG, Menezes MJ, Battacharya K, Coman D, Ellaway C, Alexander IE, Adams L, Kava M, Robinson J, Sue CM, Balasubramaniam S and Christodoulou J (2020) The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet Med 22:1254-1261


ID: 649
Clinical 1: from new genes to old and novel phenotypes

A new family with a case of severe early-onset muscle fatigue and a peculiar maternally inherited painful swelling in chewing muscles associated with homoplasmic m.15992A>T mutation in mitochondrial tRNAPro

Irene Bruno1, Elena Ghirigato2, Mirko Baglivo3, Francesca Terenzi2, Nadia Zanetti3, Massimo Zeviani1, Eleonora Lamantea3

1Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy; 2Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy; 3Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Bibliography
1. Auré K, Fayet G, Chicherin I, Rucheton B, Filaut S, Heckel AM, Eichler J, Caillon F, Péréon Y, Entelis N, Tarassov I, Lombès A. Homoplasmic mitochondrial tRNAPro mutation causing exercise-induced muscle swelling and fatigue. Neurol Genet. 2020 Jul 15;6(4):e480.


ID: 358
Clinical 1: from new genes to old and novel phenotypes

A novel MT-ATP6 variant associated with complicated ataxia in two unrelated Italian patients: case report and functional studies. 

Daniele Sala1, Silvia Marchet1, Lorenzo Nanetti1, Andrea Legati1, Caterina Mariotti1, Eleonora Lamantea1, Daniele Ghezzi1,2, Alessia Catania1, Costanza Lamperti1

1Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta; 2Department of Pathophysiology and Transplantation (DEPT), University of Milan



ID: 618
Clinical 1: from new genes to old and novel phenotypes

Biallelic pathogenic variants of PARS2 cause Developmental and Epileptic Encephalopathy with Spike-and-Wave Activation in Sleep

Laura Licchetta1, Carlotta Stipa1, Raffaella Minardi1, Margherita Santucci1,2, Lucia Di Giorgi2,3, Martina Soldà1, Valerio Carelli1,2, Francesca Bisulli1,2

1IRCCS, Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; 3Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy.



ID: 548
Clinical 1: from new genes to old and novel phenotypes

Novel KARS1 mutation causes early-onset lethal cardiomyopathy

Sara Casalini1, Silvia Buratti1, Chiara Panicucci1, Maria Elena Derchi1, Marco Scaglione1, Claudia Nesti2, Monica Traverso1, Francesca Madia1, Michela Di Nottia3, Chiara Fiorillo1, Valeria Capra1, Filippo Maria Santorelli2, Andrea Moscatelli1, Rosalba Carrozzo3, Claudio Bruno1

1IRCCS Istituto Giannina Gaslini, Genoa; 2IRCCS Fondazione Stella Maris, Calambrone (PI); 3IRCCS Ospedale Bambin Gesù, Rome



ID: 277
Clinical 1: from new genes to old and novel phenotypes

The ER-MITO (Emilia Romagna-Mitochondrial) project: prevalence and genetics of Chronic Progressive External Ophthalmoplegia (CPEO) in an Italian region

Maria Lucia Valentino1,2, Leonardo Caporali1, Chiara La Morgia1,2, Flavia Palombo1, Martina Romagnoli1, Cristina Fonti1, Alessandra Maresca1, Rocco Liguori1,2, Corrado Zenesini1, Roberto D'Alessandro1, Valerio Carelli1,2

1IRCCS Institute of Neurological Sciences of Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy

Bibliography
Primary mitochondrial myopathy: 12-month follow-up results of an Italian cohort. J Neurol. 2022; 269(12): 6555–6565.
Mammalian RNase H1 directs RNA primer formation for mtDNA replication initiation and is also necessary for mtDNA replication completion. Nucleic Acids Res. 2022 Aug 26; 50(15): 8749–8766
Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNALys. Mol Med. 2022; 28: 90. Published online 2022 Aug 3. doi: 10.1186/s10020-022-00519-z


ID: 504
Clinical 1: from new genes to old and novel phenotypes

UCHL1 missense and loss-of-function variants as an emerging cause of autosomal dominant optic atrophy (ADOA)

Claudio Fiorini1, Giada Capirossi1,2, Eleonora Pizzi1, Federico Sadun3, Maria Lucia Cascavilla4, Chiara La Morgia1,2, Marco Battista4, Piero Barboni4, Danara Ormanbekova1, Valentina Del Dotto2, Flavia Palombo1, Valerio Carelli1,2, Alessandra Maresca1, Leonardo Caporali2

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; 3Ospedale Oftalmico Roma, Rome, Italy; 4Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy



ID: 345
Clinical 1: from new genes to old and novel phenotypes

Mitochondrial dysfunction in patients with early-onset UFM1-linked encephalopathy

Samira Ait El Mkadem - Saadi1,2, Cécile Rouzier1,2, Annabelle Chaussenot1,2, Konstantina Fragaki1,2, Sylvie Bannwarth1,2, Julien Neveu3, Aline Cano3, Brigitte Chabrol3, Véronique Paquis-Flucklinger1,2

1National Centre for Mitochondrial Diseases, Nice Teaching Hospital (CHU de Nice), Department of Medical Genetics, Nice, France; 2Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, France; 3APHM, La Timone Hospital, Department of Neuropediatrics, Marseille, France

Bibliography
UQCRC2-related mitochondrial complex III deficiency, about 7 patients. Bansept C, Gaignard P, Lebigot E, Eyer D, Delplancq G, Hoebeke C, Mazodier K, Ledoyen A, Rouzier C, Fragaki K, Ait-El-Mkadem Saadi S, Philippe C, Bruel AL, Faivre L, Feillet F, Abi Warde MT. Mitochondrion. 2022 Dec 9;68:138-144. doi: 10.1016/j.mito.2022.12.001.

ABEILLE: a novel method for ABerrant Expression Identification empLoying machine LEarning from RNA-sequencing data. Labory J, Le Bideau G, Pratella D, Yao JE, Ait-El-Mkadem Saadi S, Bannwarth S, El-Hami L, Paquis-Fluckinger V, Bottini S. Bioinformatics. 2022 Oct 14;38(20):4754-4761. doi: 10.1093/bioinformatics/btac603.

Splicing variants in NARS2 are associated with milder phenotypes and intra-familial variability. Ait-El-Mkadem Saadi S, Kaphan E, Morales Jaurrieta A, Fragaki K, Chaussenot A, Bannwarth S, Maues De Paula A, Paquis-Flucklinger V, Rouzier C. Eur J Med Genet. 2022 Dec;65(12):104643. doi: 10.1016/j.ejmg.2022.104643.

A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare Diseases. Pratella D, Ait-El-Mkadem Saadi S, Bannwarth S, Paquis-Fluckinger V, Bottini S. Int J Mol Sci. 2021 Oct 8;22(19):10891. doi: 10.3390/ijms221910891.

Improved detection of mitochondrial DNA instability in mitochondrial genome maintenance disorders. Bris C, Goudenège D, Desquiret-Dumas V, Gueguen N, Bannwarth S, Gaignard P, Rucheton B, Trimouille A, Allouche S, Rouzier C, Saadi S, Jardel C, Slama A, Barth M, Verny C, Spinazzi M, Cassereau J, Colin E, Armelle M, Pereon Y, Martin-Negrier ML, Paquis-Flucklinger V, Letournel F, Lenaers G, Bonneau D, Reynier P, Amati-Bonneau P, Procaccio V. Genet Med. 2021 Sep;23(9):1769-1778. doi: 10.1038/s41436-021-01206-w.

CHCHD10-Related Disorders. Ait-El-Mkadem Saadi S, Chaussenot A, Bannwarth S, Rouzier C, Paquis-Flucklinger V. 2015 Jul 1 [updated 2021 May 27]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2021.

Multi-Omics Approaches to Improve Mitochondrial Disease Diagnosis: Challenges, Advances, and Perspectives. Labory J, Fierville M, Ait-El-Mkadem S, Bannwarth S, Paquis-Flucklinger V, Bottini S. Front Mol Biosci. 2020 Nov 2;7:590842. doi: 10.3389/fmolb.2020.590842.

Single-fiber studies for assigning pathogenicity of eight mitochondrial DNA variants associated with mitochondrial diseases. Zereg E, Chaussenot A, Morel G, Bannwarth S, Sacconi S, Soriani MH, Attarian S, Cano A, Pouget J, Bellance R, Tranchant C, Lannes B, de Paula AM, Saadi Ait-El-Mkadem S, Chafino B, Berthet M, Fragaki K, Paquis-Flucklinger V, Rouzier C. Hum Mutat. 2020 Aug;41(8):1394-1406. doi: 10.1002/humu.24037.

NDUFS6 related Leigh syndrome: a case report and review of the literature. Rouzier C, Chaussenot A, Fragaki K, Serre V, Ait-El-Mkadem S, Richelme C, Paquis-Flucklinger V, Bannwarth S. J Hum Genet. 2019 Jul;64(7):637-645. doi: 10.1038/s10038-019-0594-4.

MT-CYB deletion in an encephalomyopathy with hyperintensity of middle cerebellar peduncles. Chaussenot A, Rouzier C, Fragaki K, Sacconi S, Ait-El-Mkadem S, Paquis-Flucklinger V, Bannwarth S. Neurol Genet. 2018 Sep 19;4(5):e268. doi: 10.1212/NXG.0000000000000268. eCollection 2018 Oct. PMID: 30294674

Targeted next generation sequencing with an extended gene panel does not impact variant detection in mitochondrial diseases. Plutino M, Chaussenot A, Rouzier C, Ait-El-Mkadem S, Fragaki K, Paquis-Flucklinger V, Bannwarth S. BMC Med Genet. 2018 Apr 7;19(1):57. doi: 10.1186/s12881-018-0568-y. PMID: 29625556


ID: 580
Clinical 1: from new genes to old and novel phenotypes

A novel dominant variant in the ISCU gene is associated with mitochondrial myopathy

Joanna Rusecka1,2, Dominika Szczęśniak2,3, Magdalena Kacprzak2, Damian Loska2, Kamila Czerska2, Agnieszka Sobczyńska-Tomaszewska2

1Maria Sklodowska-Curie, Medical Academy in Warsaw, Poland; 2MedGen Medical Center, Warsaw, Poland; 3Institute of Psychiatry and Neurology, Warsaw, Poland

Bibliography
1. Mochel F, Knight MA, Tong WH, Hernandez D, Ayyad K, Taivassalo T, Andersen PM, Singleton A, Rouault TA, Fischbeck KH, Haller RG. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet 2008;82:652–60.
2. Olsson A, Lind L, Thornell LE, Holmberg M. Myopathy with lactic acidosis is linked to chromosome 12q23.3-24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum Mol Genet 2008;17:1666–72.
3. Legati A., Reyes A., Ceccatelli Berti C., Stehling O., Marchet S., Lamperti C., Ferrari A., Robinson A.J., Mühlenhoff U., Lill R., et al. A Novel de Novo Dominant Mutation in ISCU Associated with Mitochondrial Myopathy. J. Med. Genet. 2017;54:815–824.


ID: 499
Clinical 1: from new genes to old and novel phenotypes

Expanding the spectrum of clinical presentations associated with COA8 pathogenic

Sara Antognozzi1, Magi Meneri1,2, Francesca Magri1, Manuela Garbellini1, Sabrina Salani1, Francesco Fortunato2, Michela Ripolone1, Simona Zanotti1, Patrizia Ciscato1, Monica Sciacco1, Stefania Corti1,2, Giacomo Pietro Comi1,2, Dario Ronchi2

1IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; 2Dino Ferrari Center, University of Milan, Milan, Italy



ID: 332
Clinical 1: from new genes to old and novel phenotypes

A novel mitochondrial DNA variant, m.14430A>C, in MT-ND6 as the likely cause of Leigh syndrome with mitochondrial complex I deficiency.

Surita Meldau1,2, Gillian T M Riordan1,3, Sally Ackermann4, Sharika Raga1,3,6, Careni Spencer1,5, George F Van der Watt1,2, Kashief Khan2, Francois H Van der Westhuizen7

1University of Cape Town, Cape Town, South Africa; 2National Health Laboratory Sevices, South Africa; 3Red Cross War Memorial Children's Hospital, Cape Town, South Africa; 4Constantiaberg Mediclinic, Cape Town, South Africa; 5Grootte Schuur Hospital, Cape Town, South Africa; 6Neuroscience Institute, University of Cape Town, Cape Town, South Africa; 7Human Metabolomics, North-West University, Potchefstroom, South Africa

Bibliography
Meldau S, Owen EP, Khan K, Riordan GT. “Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings.” J Clin Pathol. 2022 [https://doi.org/10.1136/jclinpath-2020-207026]

A.C. Muller-Nedebock, S. Meldau, C. Lombard, S. Abrahams, F.H. van der Westhuizen, S. Bardien, Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson's disease Parkinsonism Relat Disord 101 (2022) 1-5. DOI: 10.1016/j.parkreldis.2022.06.003

Meldau S, Fratter C, Bhengu LN, et al. Pitfalls of relying on genetic testing only to diagnose inherited metabolic disorders in non-western populations - 5 cases of pyruvate dehydrogenase deficiency from South Africa. Mol Genet Metab Rep 2020;24:100629 doi: 10.1016/j.ymgmr.2020.100629.

Roberts L, Julius S, Dawlat S, Yildiz S, Rebello G, Meldau S, Pillay K, Esterhuizen A, Vorster A, Benefeld G, Da Rocha J, Beighton P, Sellars SL, Thandrayen K, Pettifor JM, Ramesar RS. Renal dysfunction, rod-cone dystrophy, and sensorineural hearing loss caused by a mutation in RRM2B. Hum Mutat 2020 doi: 10.1002/humu.24094

Meldau, S., De Lacy R, Riordan G, Goddard L, Pillay K, Fieggen K, Marais D, Van der Watt G, “Identification of a single MPV17 nonsense-associated altered splice variant in 24 South African infants with mitochondrial neurohepatopathy.” Clin Genet, 2018 [PMID:29318572 DOI:10.1111/cge.13208]

O’Keefe, H., Queen, R.A., Meldau, S., Lord, P., Elson, J.L. (2018) “Haplogroup context is less important in the penetrance of Mitochondrial DNA complex I mutations compared to mt-tRNA mutations.” J Mol Evol 86:395-403.

Ng, Y. S., Lax, N. Z., Maddison, P., Alston, C. L., Blakely, E. L., Hepplewhite, P. D., Riordan, G., Meldau, S., Chinnery, P. F., Pierre, G., Chronopoulou, E., Du, A., Hughes, I., Morris, A. A., Kamakari, S., Chrousos, G., Rodenburg, R. J., Saris, C. G. J., Feeney, C., Hardy, S. A., Sakakibara, T., Sudo, A., Okazaki, Y., Murayama, K., Mundy, H., Hanna, M. G., Ohtake, A., Schaefer, A. M., Champion, M. P., Turnbull, D. M., Taylor, R. W., Pitceathly, R. D. S., McFarland, R. and Gorman, G. S., MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. EBioMedicine 2018.

Meldau, S., G. Riordan, F. Van der Westhuizen, J. L. Elson, I. Smuts, M. S. Pepper and H. Soodyall (2016). "Could we offer mitochondrial donation or similar assisted reproductive technology to South African patients with mitochondrial DNA disease?" S Afr Med J 106(3): 234-236. (Invited editorial)

Van der Westhuizen, F. H., P. Z. Sinxadi, C. Dandara, I. Smuts, G. Riordan, S. Meldau, A. N. Malik, M. G. Sweeney, Y. Tsai, G. W. Towers, R. Louw, G. S. Gorman, B. A. Payne, H. Soodyall, M. S. Pepper and J. L. Elson (2015). "Understanding the Implications of Mitochondrial DNA Variation in the Health of Black Southern African Populations: The 2014 Workshop." Hum Mutat 36(5): 569-571.


ID: 379
Clinical 1: from new genes to old and novel phenotypes

Leigh syndrome and Fanconi renotubular syndrome are the main clinical phenotype due to mutations in NDUFAF6 gene.

Teresa Rizza1, Alessandra Torraco1, Michela Di Nottia1, Daniela Verrigni1, Anastasia Altobelli1, Diego Martinelli1, Daria Diodato1, Stephanie Efthymiou2, Carlo Dionisi-Vici1, Enrico Bertini1, Reza Maroofian2, Agnes Rotig3, Rosalba Carrozzo1

1Bambino Gesù Children Hospital, Italy; 2UCL Queen Square Institute of Neurology; 3Université Paris Descartes, Sorbonne Paris Cité



ID: 544
Clinical 1: from new genes to old and novel phenotypes

Mitochondrial encephalomyopathy associated with the m.618T>C in MT-TF

Aryane Silva Coutinho2, Tainara Zappia Tessaro1, Rodrigo Fonseca Vilanova1, Celia Harumi Tengan2

1Hospital Municipal Dr. José de Carvalho, Brazil; 2Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil



ID: 296
Clinical 1: from new genes to old and novel phenotypes

TWNK in Parkinson's disease: a Movement Disorder and Mitochondrial Disease Center perspective study

Marco Percetti1,2,3, Giulia Franco3,4, Edoardo Monfrini3,4, Leonardo Caporali5, Raffaella Minardi5, Chiara La Morgia5, Maria Lucia Valentino5,6, Rocco Liguori5,6, Ilaria Palmieri7, Donatella Ottaviani8, Maria Vizziello3, Dario Ronchi3, Federica Di Berardino9, Antoniangela Cocco10,11, Bertil Macao12, Maria Falkenberg12, Giacomo Pietro Comi3,4, Alberto Albanese11, Bruno Giometto8, Enza Maria Valente7,13, Valerio Carelli5,6, Alessio Di Fonzo3,4

1School of Medicine and Surgery and Milan Center for Neuroscience, University of Milan-Bicocca.; 2Foundation IRCCS San Gerardo dei Tintori, Monza; 3Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy; 4Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; 5IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; 6Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; 7Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy; 8Neurology Unit, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy; 9Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Audiology Unit, Milan, Italy; 10University of Milan, Milan, Italy; 11Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Research Hospital, Milan, Italy; 12Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE 405 30 Gothenburg, Sweden; 13Department of Molecular Medicine, University of Pavia, Pavia, Italy.



ID: 394
Clinical 1: from new genes to old and novel phenotypes

Novel pathogenic MT-ND3 variant causing a particular MELAS phenotype

Lucile Riera-Navarro1, Cécile Rouzier1, Samira Saadi Ait-El-Mkadem1, Konstantina Fragaki1,2, Sylvie Bannwarth1,2, Pierre Thomas3, Luisa Villa4, Véronique Paquis Flucklinger1,2, Annabelle Chaussenot1

1CHU de Nice, France; 2Université Côte d'Azur, CNRS, INSERM, IRCAN; 3Service de Neurologie- Hôpital Pasteur 2, CHU de Nice; 4Centre de référence des Maladies neuromusculaires



ID: 474
Clinical 1: from new genes to old and novel phenotypes

Mitochondrial molecular genetic findings in the South African diagnostic setting

Surita Meldau1,2, Elizabeth Patricia Owen1,2, Kashief Khan2, Gillian Tracy Riordan3

1University of Cape Town, Cape Town, South Africa; 2National Health Laboratory Sevices, South Africa; 3Red Cross War Memorial Children's Hospital, Cape Town, South Africa

Bibliography
Meldau S, Owen EP, Khan K, Riordan GT. “Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings.” J Clin Pathol. 2022 [https://doi.org/10.1136/jclinpath-2020-207026]

A.C. Muller-Nedebock, S. Meldau, C. Lombard, S. Abrahams, F.H. van der Westhuizen, S. Bardien, Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson's disease Parkinsonism Relat Disord 101 (2022) 1-5. DOI: 10.1016/j.parkreldis.2022.06.003

Meldau S, Fratter C, Bhengu LN, et al. Pitfalls of relying on genetic testing only to diagnose inherited metabolic disorders in non-western populations - 5 cases of pyruvate dehydrogenase deficiency from South Africa. Mol Genet Metab Rep 2020;24:100629 doi: 10.1016/j.ymgmr.2020.100629.

Roberts L, Julius S, Dawlat S, Yildiz S, Rebello G, Meldau S, Pillay K, Esterhuizen A, Vorster A, Benefeld G, Da Rocha J, Beighton P, Sellars SL, Thandrayen K, Pettifor JM, Ramesar RS. Renal dysfunction, rod-cone dystrophy, and sensorineural hearing loss caused by a mutation in RRM2B. Hum Mutat 2020 doi: 10.1002/humu.24094

Meldau, S., De Lacy R, Riordan G, Goddard L, Pillay K, Fieggen K, Marais D, Van der Watt G, “Identification of a single MPV17 nonsense-associated altered splice variant in 24 South African infants with mitochondrial neurohepatopathy.” Clin Genet, 2018 [PMID:29318572 DOI:10.1111/cge.13208]

O’Keefe, H., Queen, R.A., Meldau, S., Lord, P., Elson, J.L. (2018) “Haplogroup context is less important in the penetrance of Mitochondrial DNA complex I mutations compared to mt-tRNA mutations.” J Mol Evol 86:395-403.

Ng, Y. S., Lax, N. Z., Maddison, P., Alston, C. L., Blakely, E. L., Hepplewhite, P. D., Riordan, G., Meldau, S., Chinnery, P. F., Pierre, G., Chronopoulou, E., Du, A., Hughes, I., Morris, A. A., Kamakari, S., Chrousos, G., Rodenburg, R. J., Saris, C. G. J., Feeney, C., Hardy, S. A., Sakakibara, T., Sudo, A., Okazaki, Y., Murayama, K., Mundy, H., Hanna, M. G., Ohtake, A., Schaefer, A. M., Champion, M. P., Turnbull, D. M., Taylor, R. W., Pitceathly, R. D. S., McFarland, R. and Gorman, G. S., MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. EBioMedicine 2018.

Meldau, S., G. Riordan, F. Van der Westhuizen, J. L. Elson, I. Smuts, M. S. Pepper and H. Soodyall (2016). "Could we offer mitochondrial donation or similar assisted reproductive technology to South African patients with mitochondrial DNA disease?" S Afr Med J 106(3): 234-236. (Invited editorial)

Van der Westhuizen, F. H., P. Z. Sinxadi, C. Dandara, I. Smuts, G. Riordan, S. Meldau, A. N. Malik, M. G. Sweeney, Y. Tsai, G. W. Towers, R. Louw, G. S. Gorman, B. A. Payne, H. Soodyall, M. S. Pepper and J. L. Elson (2015). "Understanding the Implications of Mitochondrial DNA Variation in the Health of Black Southern African Populations: The 2014 Workshop." Hum Mutat 36(5): 569-571.


ID: 183
Clinical 1: from new genes to old and novel phenotypes

Known genes, new genes and new phenotypes in inherited mitochondrial eye diseases

Neringa Jurkute1,2,3, Gavin Arno1,2,4, Patrick Yu-Wai-Man1,2,5,6, Andrew R Webster1,2

1Moorfields Eye Hospital NHS Foundation Trust, London, UK; 2Institute of Ophthalmology, University College London, London, UK; 3The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK; 4North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 5John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; 6Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK

Bibliography
Jurkute N et al. Clinical utility gene card for: inherited optic neuropathies including next-generation sequencing-based approaches. Eur J Hum Genet. 2018. doi:10.1038/s41431-018-0235-y. PMID: 30143805.

Jurkute N et al. SSBP1 mutations in dominant optic atrophy with variable retinal degeneration. Ann Neurol. 2019 Sep;86(3):368-383. doi: 10.1002/ana.25550. Epub 2019 Jul 31. PMID: 31298765.

Jurkute N et al. SSBP1-Disease Update: Expanding the Genetic and Clinical Spectrum, Reporting Variable Penetrance and Confirming Recessive Inheritance. Invest Ophthalmol Vis Sci. 2021 Dec 1;62(15):12. doi: 10.1167/iovs.62.15.12. PMID: 34905022.

Jurkute N et al. Expanding the FDXR-Associated Disease Phenotype: Retinal Dystrophy Is a Recurrent Ocular Feature. Invest Ophthalmol Vis Sci. 2021 May 3;62(6):2. doi: 10.1167/iovs.62.6.2. PMID: 33938912.

Jurkute N et al. Whole Genome Sequencing Identifies a Partial Deletion of RTN4IP1 in a Patient With Isolated Optic Atrophy. J Neuroophthalmol. 2022 Apr 19. doi: 10.1097/WNO.0000000000001589. PMID: 35439212.

Jurkute N et al. Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model. Brain Commun. 2021 Jul 20;3(3):fcab162. doi: 10.1093/braincomms/fcab162. PMID: 34466801.

Jurkute N et al. Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype. NPJ Genom Med. 2022 Oct 20;7(1):60. doi: 10.1038/s41525-022-00330-z. PMID: 36266294; PMCID: PMC9581764.

Other publications available at: https://pubmed.ncbi.nlm.nih.gov/?term=jurkute.


ID: 652
Clinical 1: from new genes to old and novel phenotypes

LHON spectrum disorder: new phenotypes and genotypes

Marco Battista1, Leonardo Caporali2, Enrico Borrelli1, Giorgio Lari1, Alice Galzignato3, Claudio Fiorini2, Paolo Nucci4, Francesco Bandello1, Maria Lucia Cascavilla1, Valerio Carelli2,5, Piero Barboni1

1San Raffaele Hospital, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica (Bologna, Italy); 3Studio Oculistico d’Azeglio (Bologna, Italy); 4Department of Clinical Science and Community Health, University of Milan, (Milan, Italy); 5Unit of Neurology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna (Bologna, Italy)



ID: 218
Clinical 1: from new genes to old and novel phenotypes

Chronic asymmetric progressive external ophthalmoplegia without eyelid weakness

Jae Ho Jung

Seoul National University Hospital, Korea, Republic of (South Korea)



ID: 586
New technological developments and OMICS

Bayesian inference enables discovery of functional effects of heteroplasmic mitochondrial mutations in the developing brain

Aidan Scott Marshall, Yue Nie, Nick.S Jones, Patrick.F Chinnery

Imperial College London, United Kingdom



ID: 337
New technological developments and OMICS

Cell lineage-specific mitochondrial gene expression is established in the early embryo, prior to organ maturation

Stephen P. Burr1,2, Florian Klimm1,2,3, Angelos Glynos1,2, Malwina Prater1,2,4, James B. Stewart5,6, Patrick F. Chinnery1,2, Michele Frison1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 3Novo Nordisk Research Centre Oxford, Innovation Building, University of Oxford, Old Road Campus, Oxford, UK; 4Functional Genomics Centre, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK; 5Max Planck Institute for Biology of Ageing, Cologne, Germany; 6Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK

Bibliography
1. Burr et al., Cell, 2023, DOI: 10.1016/j.cell.2023.01.034


ID: 563
New technological developments and OMICS

Identifying mitochondrial methyltransferases using unbiased proteome-ligand profiling

Alissa Wilhalm1, David Moore1, Florian Rosenberger1, Anna Wedell2, Christoph Freyer1, Anna Wredenberg1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden, Sweden; 2Centre of Inherited metabolic diseases, Karolinska University Hospital, Stockholm, Sweden



ID: 185
New technological developments and OMICS

Engineering mitochondrial aminoacyl-tRNA synthetases as a tool to investigate mitochondrial protein synthesis

Christin A Albus, Ellyn N Willsher, Syeda Z Akthar, Robert N Lightowlers, Zofia MA Chrzanowska-Lightowlers

Newcastle University, United Kingdom

Bibliography
Albus CA, Berlinguer-Palmini R, Hewison C, McFarlane F, Savu EA, Lightowlers RN, Chrzanowska-Lightowlers ZM, Zorkau M. Mitochondrial Translation Occurs Preferentially in the Peri-Nuclear Mitochondrial Network of Cultured Human Cells. Biology (Basel). 2021 Oct 15; 10 (10):1050.

Zorkau M, Albus CA, Berlinguer-Palmini R, Chrzanowska-Lightowlers ZMA, Lightowlers RN. High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cells. Proc Natl Acad Sci U S A.2021 Feb 9; 118(6):e2008778118.


ID: 405
New technological developments and OMICS

Short-read NGS for the screening of structural and copy number alterations in mtDNA as powerful diagnostic tool.

Christiane Neuhofer1,2, Rossella Izzo3, Riccardo Berutti1,2, Martin Pavlov2, Eleonora Lamantea3, Elisabeth Graf1, Costanza Lamperti3, Thomas Klopstock4, Holger Prokisch1,2, Daniele Ghezzi3,5, Andrea Legati3

1Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, (Munich, Germany); 2Institute of Neurogenomics, Helmholtz Zentrum München (Neuherberg, Germany); 3Fondazione IRCCS Istituto Neurologico Carlo Besta (Milan, Italy); 4Department of Neurology, Friedrich-Baur-Institute, LMU Hospital, Ludwig Maximilians University (Munich, Germany); 5Department of Pathophysiology and Transplantation, University of Milan (Milan, Italy)



ID: 613
New technological developments and OMICS

Ethical dilemmas and diagnostic uplifts; primary mitochondrial disease the era of first line whole genome sequencing

William L. Macken1,2, Rachel L. Horton3,4, Michael G. Hanna1,2, Anneke M. Lucassen3,4, Robert D.S. Pitceathly1,2

1UCL Queen Square Institute of Neurology, United Kingdom; 2NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK.; 3Centre for Personalised Medicine, and Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; 4Clinical Ethics, Law and Society, Faculty of Medicine, University of Southampton, Southampton, UK

Bibliography
(1) Raymond, F. L., Horvath, R. & Chinnery, P. F. First-line genomic diagnosis of mitochondrial disorders. Nat. Rev. Genet. 19, 399–400 (2018).
(2) Macken, W. L., Vandrovcova, J., Hanna, M. G. & Pitceathly, R. D. S. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat. Rev. Neurol. 0123456789, (2021).
(3) Macken WL et al Mitochondrial DNA variants in genomic data: diagnostic uplifts and predictive implications. Nat Rev Genet. 2021 Sep;22(9):547-548.


ID: 506
New technological developments and OMICS

Analysis of mitochondrial metabolism using 13C-labeled mass isotopologue analysis and mass spectrometry as a new approach for the diagnostics of mitochondrial disorders

Liesbeth T. Wintjes1, Arno van Rooij1, Sacha Hendriks1, Coby M. Laarakkers1, Richard J.T. Rodenburg1,2

1Department of Genetics, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands.; 2Department of Pediatrics, Radboud Centre for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands

Bibliography
Barbosa-Gouveia S, Vázquez-Mosquera ME, Gonzalez-Vioque E, Hermida-Ameijeiras Á, Valverde LL, Armstrong-Moron J, Fons-Estupiña MDC, Wintjes LT, Kappen A, Rodenburg RJ, Couce ML. Characterization of a Novel Splicing Variant in Acylglycerol Kinase (AGK) Associated with Fatal Sengers Syndrome. Int J Mol Sci. 2021 Dec 15;22(24):13484. doi: 10.3390/ijms222413484. PMID: 34948281; PMCID: PMC8708263.
Wintjes LTM, Kava M, van den Brandt FA, van den Brand MAM, Lapina O, Bliksrud YT, Kulseth MA, Amundsen SS, Selberg TR, Ybema-Antoine M, Tutakhel OAZ, Greed L, Thorburn DR, Tangeraas T, Balasubramaniam S, Rodenburg RJT. A novel variant in COX16 causes cytochrome c oxidase deficiency, severe fatal neonatal lactic acidosis, encephalopathy, cardiomyopathy, and liver dysfunction. Hum Mutat. 2021 Feb;42(2):135-141. doi: 10.1002/humu.24137. Epub 2020 Nov 30. PMID: 33169484; PMCID: PMC7898715.


ID: 421
New technological developments and OMICS

Subcellular metabolomics: a pipeline for compartment-specific metabolic investigations in a mouse model of Leigh syndrome

Gunter van der Walt, Jason Elferink, Zander Lindeque, Shayne Mason, Roan Louw

North-West University, South Africa

Bibliography
Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R (2021) Cross‑comparison of systemic and tissue‑specific metabolomes in a mouse model of Leigh syndrome. Metabolomics. 17:101 (IF 4.290

Van der Walt G, Lindeque JZ, Mason S, Louw R (2021) Sub-cellular metabolomics contributes mitochondria-specific metabolic insights to a mouse model of Leigh syndrome. Metabolites 11, 658 (IF 4.932).

Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R (2021) Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. BBA Molecular Basis of Disease. 1867 (5) 166082 (IF 4.352).


ID: 480
New technological developments and OMICS

High‐content screening for modulators of mitochondria‐ER contact sites and identification of their protein targets

Tomas Knedlik1, Federica Dal Bello1, Marta Giacomello1,2

1Department of Biology, University of Padova, Italy; 2Department of Biomedical Sciences, University of Padova, Italy



ID: 617
New technological developments and OMICS

A novel Approach to assess the pathogenicity of mtDNA Variants

Omar Tutakhel, Frans van den Brandt, Kai Francke, Hatice Nur Ozhan, Frans Maas, Daan Panneman, Liesbeth Wintjes, Roel Smeets, Dirk Lefeber, Bert van den Heuvel, Richard J. Rodenburg

RadboudUMC, Translational Metabolic Laboratory, Dept of Pediatrics, Nijmegen, The Netherlands



ID: 508
New technological developments and OMICS

At the core of the apoptotic foci

Hector Flores-Romero, Aida Peña Blanco, Lisa Hohorst, Jonas Aufdermauer, Shashank Dadsena, Cristiana Zollo, Rodrigo Cuevas-Arenas, Ana J. Garcia-Saez.

CECAD, Germany



ID: 167
New technological developments and OMICS

Clinical utility of ultra-rapid genomic testing for infants and children with a suspected mitochondrial disorder

John Christodoulou1,2,3,4, Sophie Bouffler5, Chirag Patel6, Sarah Sandaradura4,7, Meredith Wilson4,7,8, Jason Pinner8,9, Matthew Hunter10,11, Christopher Barnett12,13,14, Mathew Wallis15,16, Benjamin Kamien17, Tiong Tan1,2,3, Mary-Louise Freckmann18, Karin Kassahn13,14, Tony Roscioli19,20,21, Alison Compton1,2,3, David Thorburn1,2,3, Sebastian Lunke1,2,3,5, Zornitza Stark1,2,3,5

1Murdoch Children's Research Institute, Melbourne, Australia; 2University of Melbourne, Melbourne, Australia; 3Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; 4University of Sydney, Sydney, Australia; 5Australian Genomics, Melbourne, Australia; 6Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia; 7Sydney Children’s Hospitals Network – Westmead, Sydney, Australia; 8Sydney Children’s Hospitals Network – Randwick, Sydney, Australia; 9University of New South Wales, Sydney, Australia; 10Monash Genetics, Monash Health, Melbourne, Australia; 11Department of Paediatrics, Monash University, Melbourne, Australia; 12Paediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, North Adelaide, Australia; 13Adelaide Medical School, The University of Adelaide, Adelaide, Australia; 14Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; 15Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; 16School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; 17Genetic Services of Western Australia, Perth, Australia; 18Department of Clinical Genetics, The Canberra Hospital, Canberra, Australia; 19Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; 20Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia; 21Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, UNSW, Sydney, Australia

Bibliography
1.Van Bergen, N.J., Walvekar, A.S., Linster, C.L., Christodoulou, J. Reply: Niacin therapy improves outcome and normalizes metabolic abnormalities in an NAXD-deficient patient. Editorial in Brain accepted 3 June 2022, 145 (5); e41-e42, doi: https://doi.org/10.1093/brain/awac066. PMID 35254397
2.Horton, A., Hong, K.M., Pandithan, D., Allen, M., Killick, C., Goergen, S., Springer, A., Phelan, D., Marty, M., Halligan, R., Lee, J., Pitt, J., Chong, B., Christodoulou, J., Lunke, S., Stark, Z., Fahey, M. Ethylmalonic encephalopathy masquerading as meningococcemia. Cold Spring Harb Mol Case Stud 2022: 8 (2); a006193.
3.Stephenson, S.E.M., Costain, G., Silk, M., Nguyen T.B., Alhuzaimi, D.E., Blok. L., Dong, X., Pais, L., Dowling, J.J., Walker, S., Ambergey, K., Hayeems, R.Z., Roday L.H., Lynch, S., Gupta, A., Rasmussen, K.J., Schimmenti, L., Klee, E.W., Niu, Z., Agre, K.E., Chilton, I., Politi, A., Chung, W.K., Au, P.Y.B., Griffith, C., Racobaldo, M., Raas-Rothschild, A., Ben Zeev, B., Barel, O., Moutton, O., Morice-Picard, F., Carmignac, V., Marle, N., Devinsky, O., Stimach, C., Wechsler, S.B., Hainline, B.E., Sapp, K., Willems, M., Bruel, A., Buckley, M., Dias, K-R., Evans, C-A., Roscioli, T., Sachdev, R., Lindsey-Temple, S., Zhu, Y., Baer, J.J., Scheffer, I., Gardiner, F., Schneider, A.L., Muir, A.M., Mefford, H.C., Torti, E., Isidor, B., Nizon, M., Thomas, B., Piton, A., Marcelis, C., Kato, K., Koyama, N., Ogi, T., Richmond, C., Lim, S.C., Amor, D.J., Boyce, J., Morgan, A., Hildebrand, M., Kaspi, A., Bahlo, M., Sadedin, S., Ascher, D.B., Schenck, A., White, S.M., Lockhart, P.J., Christodoulou, J., Tan, T.Y. Germline variants in tumour suppressor FBXW7 lead to impaired ubiquitination and a novel neurodevelopmental syndrome. Amer J Hum Genet 2022: 109 (4); 601-617.
4.Akesson, L.S., Rius, R., Brown, N.J., Rosenbaum, J., Donoghue, S., Stormon, M., Borador, E., Guo, Y., Hakonarson, H., Compton, A.G., Thorburn, D.R., Amarasekera, S., Marum, J., Monaco, A., Lee, C., Chong, B., Lunke, S., Stark Z, Christodoulou, J. Distinct diagnostic trajectories in NBAS-associated acute liver failure highlights the need for timely functional studies. J Inher Metab Rep 2022: 63 (3); 240-249.
5.Steinkellner, H., Kempaiah, P., Beribisky, A.V., Pferschy, A., Etzler, J., Huber, A., Sarne, V., Neuhous, W., Kuttke, M., Bauer, J., Arunachalam, J.P., Christodoulou, J., Dressel, R., Mildner, A., Prinz, M., Laccone, F. Protein therapy for Rett Syndrome. TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett Syndrome. Int J Biol Macromol 1 June 2022: 209 (Part A); 973-983.

6.Beribisky, A.V., Steinkellner, H., Geislberger, S., Huber, A., Sarne, V., Christodoulou, J., Laccone, F. Expression, purification, characterization and cellular uptake of MeCP2 variants. Protein J. 2022: 41 (2); 345-359.

7.Davis R. L., Kumar, K.R., Puttick, C., Liang, C., Ahmad, K., Edema-Hildebrand, F., Park, J-S., Minoche, A., Gayevskiy, V., Mallawaarachchi, A., Christodoulou, J., Schofield, D., Dinger, M., Cowley, M., and Sue, C. Use of whole genome sequencing for mitochondrial disease diagnosis. Neurology. 2022: 99(7):e730-e742.
8.Karaa, A., MacMullen, L.E., Campbell, J.C., Christodoulou, J., Cohen, B.H., Klopstock, T., Koga, Y., Lamperti, C., van Maanen, R., McFarland, R., Parikh, S., Rahman, S., Scaglia, F., Sherman A., Yeske, P., Falk, M.J. Community consensus guidelines to support FAIR data sharing standards for clinical research studies in primary mitochondrial disease. Adv Genet 2022: 3(1):2100047. doi: 10.1002/ggn2.202100047.
9.Andzelm, M.M., Balasubramaniam, S., Yang, E., Compton, A.G., Millington, K., Zhu, J., Anselm, I., Rodan, L.H., Thorburn, D.R., Christodoulou, J., Srivastava, S. Expansion of the clinical and neuroimaging spectrum associated with NDUFS8-related disorder. J Inher Metab Dis Reports 2022: 63 (5); 391-399.
10.Van Bergen, N.J., Walvekar, A.S., Patraskaki, M., Sikora, T., Linster, C.L., Christodoulou, J. Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency. J Inher Metab Dis. 2022: 45(6); 1028-1038., doi: 10.1002/jimd.12541
11.Van Bergen, N., Massey, S., Quigley, A., Rollo, B., Harris, A., Kapsa, R., Christodoulou J. CDKL5 Deficiency Disorder: Molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans. 2022: 50(4); 1207-1224
12.Levy, M., Relator, R., McConkey, H., Prankeviciene, E., Kerkhof, J., Barat-Houari, M., Bargiacchi, S., Biamino, E., Bralo M.P., Cappuccio, G., Ciolfi, A., Clarke, A., DuPont, B.R., Elting, M.W., Faivre, L., Fee, T., Fletcher, R.S., Florian, C., Foroutan, A., Friez, M. J., Gervasini, C., Haghshenas, S., Hilton, B.A., Jenkins, Z., Kaur, S., Lewis, S., Louie, R.J., Maitz, S., Milani, D., Morgan, A.T., Oegema, R., Ostergaard, E., Pallares, N.R., Piccione, M., Simone, P., Plomp, A.S., Poulton, C., Reilly, J., Rius, R., Robertson, S., Rooney, K., Rousseau, J., Santen, G.W.E., Santos-Simarro, R., Schijns, J., Squeo, G.M. St John, M., Thauvin-Robinet, C., Traficante, G., van der Sluijs, P.J., Vergano, S.A., Vos N., Walden, K.K., Azmanov, D., Balci, T., Banka, S., Gecz, J., Henneman, P., Lee, J.A., Mannens, M.M.A.M., Roscioli, T., Siu, V., Amor, D.J., Baynam, G., Bend, E.G., Boycott, K., Brunetti-Pierri, N., Campeau, P.M., Christodoulou, J., Dyment, D., Esber, N. Fahrner, J.A., Fleming M.D., Genevieve, D., Kerrnohan, K.D., McNeill, A., Menke, L.A., Merla, G., Prontera, P., Rockman-Greenberg, C., Schwartz, C., Skinner, S.A., Stevenson, R.E., Vitobello, A., Tartaglia, M., Tedder, M.L., Alders, M., Sadikovic, B. Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders. Human Mutation. 2022: 43(11); 1609-1628.
13.Rius R., Bennett, N.K., Bhattacharya, K., Riley. L.G., Yüksel, Z., Formosa. L.E., Compton, A.G., Dale, R.C., Cowley, M.J., Gayevskiy, V., Al Tala, S., Almehery, A.A., Ryan, M.T., Thorburn, D.R., Nakamura, K., Christodoulou, J. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Human Mut. 2022: 43 (12); 1970-1978.
14.Long, J., Best, S., Nic Giolla Easpaig, B., Hatem, S., Fehlberg, Z., Christodoulou, J., Braithwaite, J. Needs of people with rare diseases that can be supported by electronic resources: a scoping review. Published by BMJ Open 2022 Sep 1;12(9):e060394. doi: 10.1136/bmjopen-2021-060394.
15.Temple, S.E.L., Ho, G., Bennetts, B., Gayagay, T., Boggs, K., Buckley, M., Roscioli, T., Zhu, Y., Mowat, D., Christodoulou, J., Schultz, A., Vidic, N., Lunke, S., Stark, Z., Jaffe,A. The role of exome sequencing in interstitial or diffuse lung disease of childhood. Orphanet J Rare Dis. 2022: 17(1); 350
16.Tudini E, Andrews J, Lawrence D, King-Smith SL, Baker N, Baxter L, Beilby J, Bennetts B, Beshay V, Black M, Boughtwood TF, Brion K, Cheong PL, Christie M, Christodoulou J, Chong B, Cox K, Davis MR, Dejong L, Dinger ME, Doig KD, Douglas E, Dubowsky A, Ellul M, Fellowes A, Fisk K, Fortuno C, Friend K, Gallagher RL, Gao S, Hackett E, Hadler J, Hipwell M, Ho G, Hollway G, Hooper AJ, Kassahn K, Krishnaraj R, Lau C, Le H, Leong HS, Lundie B, Lunke S, Marty A, McPhillips M, Nguyen LT, Nones K, Palmer K, Pearson JV, Quinn MCJ, Rawlings LH, Sadedin S, Sanchez L, Schreiber AW, Sigalas E, Simsek A, Soubrier J, Stark Z, Thompson BA, James U J, Vakulin CG, Wells AV,Wise CA, Woods R, Ziolkowski A, Brion M-J, Scott HS,Thorne NP, Spurdle AB, on behalf of the Shariant Consortium. Shariant platform: enabling evidence sharing across Australian clinical genetic testing laboratories to support variant interpretation. Amer J Human Genet 2022: 109(11); 1960-197.
17.Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Brennenstuhl H, Pechlaner A, Baker JJ, Morrison K, Marina AD, Khan A, Burnyte B, Coman D, Soler-Alfonso C, Scaglia F, Ciara E, M Das AM, Teles EL, Nicastro E, Distelmaier F, Gaignard P, Gonzales E, Baric I, Margolis MG, Christodoulou J, Thorburn DR, Murayama K, Darin N, Pennisi A, Schiff M, Rötig A, Ganetzky RD, Santer R, Konstantopoulou V, Fang W, Wang J-S, McFarland R, Taylor RW, Shagrani MA, Alkuraya FS, Braverman N, Ersoy M Kose M, Feichtinger R, Mayr J, Weghuber D, Wortmann S. Genotypic diversity and phenotypic spectrum of infantile liver failure due to variants in TRMU. Genet Med accepted 26th September 2022.
18.Kline BL, Sylvie Jaillard S, Bell KM, Bakhshalizadeh S, 1 Robevska G, van den Bergen J, Dulon J, Ayers KL, Christodoulou J, Tchan MC, Touraine P, Sinclair AH, Tucker EJ. Integral role of the mitochondrial ribosome in supporting ovarian function: MRPS7 variants in syndromic premature ovarian insufficiency. Genes, accepted 11th November 2022.
19.Neyroud, A.S., Rudinger-Thirion, J., Frugier, M., Riley, L.G., Bidet, M., Akloul, L., Gilot, D., Christodoulou, J., Ravel, C., Sinclair, A.H., Belaud-Rotureau, M-A., Tucker, E.J., Jaillard, S. LARS2 variants can present as isolated premature ovarian insufficiency in the absence of overt hearing loss. Eur J Human Genet, 1 December 2022, Online ahead of print doi: 10.1038/s41431-022-01252-1


ID: 511
New technological developments and OMICS

Contribution of RNA-seq to diagnosis and determination of functional impact of candidate variants in 45 patients suspected of mitochondrial disease.

Gerard Muñoz-Pujol1, Olatz Ugarteburu1, Blai Morales1, Judit García-Villoria1, Laura Gort1, Vicente A. Yépez2, Julien Gagneur2, Mirjana Gusic2, Holger Prokisch2, Marc Dabad3, Anna Esteve-Codina3, Antonia Ribes1, Frederic Tort1

1Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain; 2Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; 3CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain



ID: 560
New technological developments and OMICS

Dynamics of NAD and glutathione metabolites in blood during aging, in disease and upon supplementation with NAD-booster

Liliya Euro1,2, Kimmo Haimilahti1, Sonja Jansson1,2, Jana Buzkova1,2, Anu Suomalainen-Wartiovaara1,3

1University of Helsinki, Finland; 2NADMED Ltd, Finland; 3HUS Diagnostic Centre, Finland



ID: 446
New technological developments and OMICS

Enzymatic assay for UDP-GlcNAc and its application in the parallel assessment of substrate availability and protein O-GlcNAcylation

Marc Sunden1,2, Divya Upadhyay1,2, Rishi Banerjee1,2, Nina Sipari3, Vineta Fellman1,2,4, Jukka Kallijarvi1,2, Janne Purhonen1,2

1Folkhalsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; 3Viikki Metabolomics Unit, University of Helsinki, Finland; 4Children’s Hospital, Helsinki University Hospital, Finland



ID: 307
New technological developments and OMICS

Genetic testing for mitochondrial disease: The United Kingdom best practice guidelines

Eleni Mavraki1,2, Robyn Labrum3, Kate Sergeant4, Charlotte L Alston1,2, Cathy Woodward3, Conrad Smith4, Charlotte V Y Knowles1,2, Yogen Patel3, Philip Hodsdon4, Jack P Baines1,2, Emma L Blakely1,2, James Polke3, Robert W Taylor1,2, Carl Fratter4

1NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 2Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 3Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; 4Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK

Bibliography
PMID: 36513735
PMID: 35700042
PMID: 34732400


ID: 432
New technological developments and OMICS

Identification of uncharacterized genes involved in mitochondrial OXPHOS function and integrity.

Marcos Javier Zamora Dorta, Sara Laine Menéndez, David Abia Holgado, Eduardo Balsa Martínez

Centro de Biología Molecular Severo Ochoa, Spain



ID: 388
New technological developments and OMICS

Investigating the role of mito-nuclear genetic variation in determining m.3243A>G variant heteroplasmy

Alia K. Saeed1, Róisín M. Boggan1, Imogen G. Franklin1, Charlotte L. Alston1,2, Emma L. Blakely1,2, Boriana Büchner3, Enrico Bugiardini4, Kevin Colclough5, Gráinne S. Gorman1, Catherine Feeney1, Michael G. Hanna4, Andrew T. Hattersley6, Thomas Klopstock3,7,8, Cornelia Kornblum9, Michelangelo Mancuso10, Yi Shiau Ng1, Kashyap A. Patel6, Robert D. S. Pitceathly4, Chiara Pizzamiglio4, Holger Prokisch11,12, Jochen Schäfer13, Andrew M. Schaefer1, Maggie H. Shepherd6, Annemarie Thaele14, Doug M. Turnbull1, Cathy E. Woodward15, Heather J. Cordell16, Robert McFarland1, Robert W. Taylor1,2, Gavin H. Hudson1, Sarah J. Pickett1

1Wellcome Centre for Mitochondrial Research and Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK; 2NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 3Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University (LMU Klinikum), Munich, Germany; 4Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; 5Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK; 6Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; 7Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 8German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; 9Department of Neurology, University Hospital Bonn, Bonn, Germany; 10Neurological Institute of Pisa, Italy; 11Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany; 12Institute of Neurogenomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; 13Department of Neurology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 14Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; 15Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London, UK; 16Population Health Sciences Institute, Newcastle University, UK



ID: 424
New technological developments and OMICS

Mitochondrial DNA depletion and deletion analysis using smMIPs

Maaike Brink1,2, Sanne van Kraaij1,2, Sanne Sweegers1,2, Roel Smeets1,2, Richard Rodenburg1,2,3

1Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands; 2Radboud Center for Mitochondrial Medicine (RCMM), Radboudumc, Nijmegen, The Netherlands; 3Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands



ID: 513
New technological developments and OMICS

Ultrastructure of mitochondria in 3D from volume electron microscopy

Chenhao Wang1,2, Leif Østergaard3,4, Stine Hasselholt3,4, Jon Sporring1,2

1Department of Computer Science, University of Copenhagen, Denmark; 2Center for Quantification of Imaging Data from MAX IV; 3Department of Clinical Medicine, Aarhus University, Denmark; 4Center of Functionally Integrative Neuroscience



ID: 304
New technological developments and OMICS

Visualizing ATP dynamics in living mice

Masamichi Yamamoto, Jungmi Choi

National Cerebral and Cardiovascular Center, Japan



ID: 184
New technological developments and OMICS

Applying sodium carbonate extraction mass spectrometry to investigate defects in the mitochondrial respiratory chain

David Robert Lindsay Robinson1, Daniella Hock1, Linden Muellner-Wong1,2, Roopingsam Kugapreethan1, Boris Reljic1,3, Elliot Surgenor3,4, Carlos Rodrigues1,5, Nikeisha Caruana1,6, David Stroud1,2

1Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; 2Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia; 3Department of Biochemistry and Molecular Biology, Monash University, Melbourne,Australia; 4The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; 5Baker Heart and Diabetes Institute, Melbourne, Australia; 6Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia

Bibliography
[1]Hock D, Robinson D and Stroud D (2020), “Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome”, Biochemical Journal, 477(21):4085-4132.
[2]Robinson D, Hock D, Muellner-Wong L, Kugapreethan R, Reljic B, Surgenor E, Rodrigues C, Caruana N and Stroud D (2022), “Applying Sodium Carbonate Extraction Mass Spectrometry to Investigate Defects in the Mitochondrial Respiratory Chain”, Front Cell Dev Biol, 10:786268


ID: 587
New technological developments and OMICS

Global analysis of protein methylation in the mitochondrial compartment of cancer cells: a proteomic approach

Ayusi Mondal1,2, Alessandro Vai1,2, Silvia Pedretti1,3, Marianna Maniaci1, Nico Mitro1,3, Tiziana Bonaldi1,4

1Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS Milano, Italy; 2European School of Molecular Medicine (SEMM); 3Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; 4Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy

Bibliography
[1]S.C. Larsen, K.B. Sylvestersen, A. Mund, D. Lyon, M. Mullari, M. V. Madsen, J.A. Daniel, L.J. Jensen, M.L. Nielsen, Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells, Sci. Signal. 9 (2016). https://doi.org/10.1126/SCISIGNAL.AAF7329/SUPPL_FILE/9_RS9_TABLES_S1_TO_S5.ZIP.
[2]J.M. Małecki, E. Davydova, P. Falnes, Protein methylation in mitochondria, J. Biol. Chem. 298 (2022). https://doi.org/10.1016/J.JBC.2022.101791.
[3]M. Maniaci, F.L. Boffo, E. Massignani, T. Bonaldi, Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach, Front. Mol. Biosci. 8 (2021) 818. https://doi.org/10.3389/FMOLB.2021.688973/BIBTEX.
[4]W. juan Li, Y. hui He, J. jing Yang, G. sheng Hu, Y. an Lin, T. Ran, B. ling Peng, B. lan Xie, M. feng Huang, X. Gao, H. hua Huang, H.H. Zhu, F. Ye, W. Liu, Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth, Nat. Commun. 2021 121. 12 (2021) 1–20. https://doi.org/10.1038/s41467-021-21963-1.
[5]V. Spadotto, R. Giambruno, E. Massignani, M. Mihailovich, M. Maniaci, F. Patuzzo, F. Ghini, F. Nicassio, T. Bonaldi, PRMT1-mediated methylation of the microprocessor-associated proteins regulates microRNA biogenesis, Nucleic Acids Res. 48 (2020) 96–115. https://doi.org/10.1093/NAR/GKZ1051.
[6]D. Musiani, R. Giambruno, E. Massignani, M.R. Ippolito, M. Maniaci, S. Jammula, D. Manganaro, A. Cuomo, L. Nicosia, D. Pasini, T. Bonaldi, PRMT1 Is Recruited via DNA-PK to Chromatin Where It Sustains the Senescence-Associated Secretory Phenotype in Response to Cisplatin, Cell Rep. 30 (2020) 1208-1222.e9. https://doi.org/10.1016/J.CELREP.2019.12.061/ATTACHMENT/17FA0EA5-8E2C-4786-AFA1-3008203E27DB/MMC5.XLSX.
[7]Q. Wu, M. Schapira, C.H. Arrowsmith, D. Barsyte-Lovejoy, Protein arginine methylation: from enigmatic functions to therapeutic targeting, Nat. Rev. Drug Discov. 20 (2021). https://doi.org/10.1038/s41573-021-00159-8.
[8]M. Bremang, A. Cuomo, A.M. Agresta, M. Stugiewicz, V. Spadotto, T. Bonaldi, Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome, Mol. Biosyst. 9 (2013) 2231–2247. https://doi.org/10.1039/C3MB00009E.
[9]E. Massignani, A. Cuomo, D. Musiani, S.G. Jammula, G. Pavesi, T. Bonaldi, hmSEEKER: Identification of hmSILAC Doublets in MaxQuant Output Data, Proteomics. 19 (2019). https://doi.org/10.1002/PMIC.201800300.
[10]E. Massignani, M. Maniaci, T. Bonaldi, Heavy Methyl SILAC Metabolic Labeling of Human Cell Lines for High-Confidence Identification of R/K-Methylated Peptides by High-Resolution Mass Spectrometry, Methods Mol. Biol. 2603 (2023) 173–186. https://doi.org/10.1007/978-1-0716-2863-8_14.


ID: 344
New technological developments and OMICS

MITODIAG : The French network of diagnostic laboratories for mitochondrial diseases

Cécile Rouzier1, Emmanuelle Pion2, Céline Bris3, Patrizia Bonneau3, Valérie Desquiret3, Jean-Paul Bonnefont4, Pauline Gaignard5, Elise Lebigot5, Samira Ait-El-Mkadem Saadi1, Sylvie Bannwarth1, Konstantina Fragaki1, Benoit Rucheton6, Marie-Laure Martin-Negrier7, Aurélien Trimouille7, Cécile Acquaviva-Bourdain8, Cécile Pagan8, Anne-Sophie Lebre9, Gaelle Hardy10, Stéphane Allouche11, Pascal Reynier3, Mireille Cossee12, Sharam Attarian13, Véronique Paquis-Flucklinger1, Vincent Procaccio3

1Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Cote d’Azur, CNRS, INSERM, IRCAN, Nice; 2Filnemus, laboratoire de génétique moléculaire, CHU Montpellier; 3Service de génétique, Institut de Biologie en santé, Centre National de référence Maladies Neurodégénératives et Mitochondriales, CHU Angers; 4Fédération de génétique médicale, Service de génétique moléculaire du GH Necker-enfants malades, Hôpital Necker-Enfants Malades, Paris; 5Laboratoire de Biochimie, Pôle BPP, CHU Paris Sud, Hôpital Bicêtre-le Kremlin Bicêtre, Paris; 6Pôle de biologie et pathologie, CHU Bordeaux; 7Unité fonctionnelle d’histologie moléculaire, Service de pathologie, CHU Bordeaux-GU Pellegrin, Bordeaux; 8Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie Est, CHU Lyon HCL, GH Est, Lyon; 9Laboratoire de génétique, Hématologie et Immunologie, CHU Reims; 10Laboratoire de génétique moléculaire: maladies héréditaires et oncologie, Service de biochimie, biologie moléculaire et toxicologie environnementale, CHU Grenoble et des Alpes, Institut de biologie et pathologie, Grenoble; 11Service de biochimie, Pôle Biologie, Pharmacie et Hygiène, CHU Caen, Hôpital de la Côte de Nacre, Caen; 12Laboratoire de Génétique Moléculaire, CHU Montpellier, PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier; 13Filnemus, Assistance Publique Hôpitaux Marseille, Service de Neurologie, Hôpital La Timone, Marseille

Bibliography
Claire B, Pauline G, Elise L, Didier E, Geoffroy D, Célia H, Karin M, Anaïs L, Cécile R, Konstantina F, Saadi Samira AE, Christophe P, Ange-Line Christophe B, Laurence F, François F, Warde Marie-Thérèse A.UQCRC2-related mitochondrial complex III deficiency, about 7 patients. Mitochondrion. 2022 Dec 9:S1567-7249(22)00105-2. doi: 10.1016/j.mito.2022.12.001.
Ait-El-Mkadem Saadi S., Kaphan E., Jaurrieta A., Fragaki K., Chaussenot A., Bannwarth S., Maues De Paula A., Paquis-Flucklinger V., Rouzier C. Splicing variants in NARS2 are associated with milder phenotypes and intra-familial variability. Eur J Med Genet. 2022 Dec;65(12):104643. doi: 10.1016/j.ejmg.2022.104643. Epub 2022 Oct 14.
Bris C, Goudenège D, Desquiret-Dumas V, Gueguen N, Bannwarth S, Gaignard P, Rucheton B, Trimouille A, Allouche S, Rouzier C, Saadi S, Jardel C, Slama A, Barth M, Verny C, Spinazzi M, Cassereau J, Colin E, Armelle M, Pereon Y, Martin-Negrier ML, Paquis-Flucklinger V, Letournel F, Lenaers G, Bonneau D, Reynier P, Amati-Bonneau P, Procaccio V. Improved detection of mitochondrial DNA instability in mitochondrial genome maintenance disorders. Genet Med. 2021 Sep;23(9):1769-1778
Elamine Zereg, Annabelle Chaussenot, Godelieve Morel, Sylvie Bannwarth, Sabrina Sacconi , Marie-Hélène Soriani, Shahram Attarian, Aline Cano, Jean Pouget, Rémi Bellance, Christine Tranchant, Béatrice Lannes, André Maues de Paula, Samira Saadi Ait-El-Mkadem, Bernadette Chafino, Mathieu Berthet, Konstantina Fragaki, Véronique Paquis-Flucklinger, Cécile Rouzier. Single-fiber studies for assigning pathogenicity of eight mitochondrial DNA variants associated with mitochondrial diseases. Hum Mutat . 2020 Aug;41(8):1394-1406. doi: 10.1002/humu.24037. Epub 2020 Jun 12.


ID: 331
New technological developments and OMICS

Multiomic mitochondrial and metabolic screening reveals potential biomarkers in inclusion body myositis

Judith Cantó Santos1,2,3, Laura Valls Roca1,2,3, Ester Tobías1,2,3, Clara Oliva4, Francesc Josep García-García1,2,3, Mariona Guitart Mampel1,2,3, Félix Andújar Sánchez1,2,3, Laia Farré Tarrats1,2,3, Joan Padrosa1,2,3, Raquel Aránega1,2,3, Pedro J. Moreno Lozano1,2,3, José César Milisenda1,2,3, Rafael Artuch4, Josep M. Grau Junyent1,2,3, Glòria Garrabou1,2,3

1Hereditary Metabolic Diseases and Muscular Diseases Lab, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; 2Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain; 3CIBERER— Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain; 4Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain



ID: 465
New technological developments and OMICS

Network analysis of protein-protein interactions identifies intermediate filaments as a novel mitochondrial dynamics related structure

Irene M.G.M. Hemel, Carlijn Steen, Michiel Adriaens, Mike Gerards

Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, The Netherlands



ID: 170
New technological developments and OMICS

Establishment of mitochondrial proline metabolic disorder patient-derived induced pluripotent stem cells as a new cellular model for aging associated disease study

Yu-Wen Huang, Tsung-Han Lee, Dar-Shong Lin

Mackay Memorial Hospital, Taiwan

Bibliography
Huang YW, Chiang MF, Ho CS, Hung PL, Hsu MH, Lee TH, Chu LJ, Liu H, Tang P, Victor Ng W*, Lin DS*. A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. Aging Dis 2018;9(6),1043-1057.


ID: 659
New technological developments and OMICS

Mitochondrial disorders unraveled by NGS technologies

Yulia Itkis1, Tatiana Krylova1, Natalia Pechatnikova2, Ekaterina Zakharova1

1Research centre for medical genetics, Russian Federation; 2Morozov's Moscow City Child Clinical Hospital, Moscow, Russia

Bibliography
Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106(1):135-59. doi: 10.1093/bmb/ldt017. Epub 2013 May 22. PMID: 23704099; PMCID: PMC3675899.
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018 Jun 23;391(10139):2560-2574. doi: 10.1016/S0140-6736(18)30727-X. Epub 2018 Jun 18. PMID: 29903433.
Legati A, Reyes A, Nasca A, Invernizzi F, Lamantea E, Tiranti V, Garavaglia B, Lamperti C, Ardissone A, Moroni I, Robinson A, Ghezzi D, Zeviani M. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. Biochim Biophys Acta. 2016 Aug;1857(8):1326-1335. doi: 10.1016
/j.bbabio.2016.02.022. Epub 2016 Mar 8. PMID: 26968897.


ID: 427
New technological developments and OMICS

Incorporation of exogenous mitochondria into cells and their effects on the cells

Hisashi Ohta1,2, Yosif El-Darawish1,2, Masae Takeda1,2, Takahiro Shibata1,2, Keiichi Sakakibara1,2, Rick Tsai1, Masashi Suganuma1

1LUCA Science, Japan; 2Biological Drug Development based DDS technology, Hokkaido Univ.

Bibliography
Tateno M., Enami, A., Fujinami K., Ohta H. Polymorphisms in Cha o 1 and Cha o 2, major allergens of Japanese cypress (Chamaecyparis obtuse) pollen from a restricted region in Japan. PLos One 16: e0261327, 2021
Fujimura T, Fujinami K, Ishikawa R, Tateno M, Tahara Y, Okumura Y, Ohta H, Miyazaki H, Taniguchi M. Recombinant Fusion Allergens, Cry j 1 and Cry j 2 from Japanese Cedar Pollen, Conjugated with Polyethylene Glycol Potentiate the Attenuation of Cry j 1-Specific IgE Production in Cry j 1-Sensitized Mice and Japanese Cedar Pollen Allergen-Sensitized Monkeys. Int Arch Allergy Immunol.;168:32-43, 2015


ID: 336
New technological developments and OMICS

Mitochondrial encapsulation technology for mitochondrial transplantation therapy

Yonghui Wang1,2, Oliver Koivisto1,2, Chang Liu1,2, Hongbo Zhang1,2

1Pharmaceutical Sciences Laboratory, Åbo Akademi University, Finland; 2Turku Bioscience Centre, University of Turku and Åbo Akademi University



ID: 130
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Inhibition of mtDNA transcription in liver reverses diet-induced obesity and hepatosteatosis in the mouse

Shan Jiang1, Taolin Yuan1, Laura Kremer1, Florian Schober2, Fynn Hansen2, Diana Rubalcava-Gracia1, Mara Mennuni1, Roberta Filograna1, David Alsina1, Jelena Misic1, Patrick Giavalisco3, Matthias Mann2, Nils-Göran Larsson1

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden; 2Max-Planck Institute of Biochemistry, Martinsried, Germany; 3Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany



ID: 126
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The mitochondrial phenotype of Leigh syndrome SURF1 mutant patient-derived fibroblasts and recovery using small molecules

Rachel M Hughes1, Laura M Ellis1, Naomi Hartopp1, Emily Mossman1, Gauri Bhosale2, Annachiara Gandini2, Alessandro Pristera2, Christopher Doe2, Scott P Allen1, Oliver Bandmann1, Laura Ferraiuolo1, Pamela J Shaw1, Heather J Mortiboys1

1Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom; 2Nanna Therapeutics, Cambridge, United Kingdom



ID: 133
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Knockout of Complex III subunit Uqcrh decreases respiratory capacity and impairs cardiac contractile function independent of mitochondrial ROS production

Nadine Spielmann1,9, Christina Schenkl2,9, Tímea Komlódi3,4, Patricia da Silva-Buttkus1, Estelle Heyne2, Jana Rohde1, Oana V. Amarie1, Birgit Rathkolb1,5,6, Erich Gnaiger3, Torsten Doenst2, Helmut Fuchs1, Valérie Gailus-Durner1, Martin Hrabě de Angelis1,6,7,9, Marten Szibor2,8,9

1Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Germany; 2Jena University Hospital, Friedrich-Schiller University of Jena, Germany; 3Oroboros Instruments, Innsbruck, Austria; 4Department of Biochemistry and Molecular Biology, Semmelweis University Budapest, Hungary; 5Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Germany; 6Member of German Center for Diabetes Research (DZD), Germany; 7Chair of Experimental Genetics Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Germany; 8BioMediTech & Tampere University Hospital, Faculty of Medicine and Health Technology, Tampere University, Finland; 9Contributed equally



ID: 134
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Molecular insights into the role of complex V deficiency in heart development, function and disease

Mario Pavez-Giani1,2, Karen an der Brügge1, Till Stephan4, Felix Lange4, Jakob Fell1,2, Alessandro Prigione3, Stefan Jakobs4, Lukas Cyganek1,2

1Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; 2German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany; 3Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; 4Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany

Bibliography
1. Pavez-Giani MG and Cyganek L. Recent Advances in Modeling Mitochondrial Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Front Cell Dev Biol. 2022 Jan 10;9:800529.

2. Bomer N*, Pavez-Giani MG*, Grote Beverborg N, Cleland J, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med. 2022 Jun;291(6):713-731.

3. Bomer N*, Pavez-Giani MG*, Hoes MF, Deiman FE, Piek A, Simonides W, Boer RA, Berezikov E, Westenbrink D, Silljé HWH, van der Meer P. Identification of DIO2 as a regulator of metabolic reprogramming and mitochondrial function in heart failure. Int J Mol Sci. 2021 Nov 2;22(21):11906.

4. Pavez-Giani MG, Sánchez-Aguilera PI, Bomer N, Miyamoto S, Booij HG, Giraldo P, Oberdorf-Maass SU, Nijholt KT, Yurista SR, Milting H, van der Meer P, Boer RA de, Heller Brown J, Sillje HWH, Westenbrink BD. ATPase Inhibitory Factor-1 Disrupts Mitochondrial Ca2+ Handling and Promotes Pathological Cardiac Hypertrophy through CaMKIIδ. Int J Mol Sci 2021;22.


ID: 147
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Establishing mammalian cell models for research of NDUFS1-associated diseases

Lena Jentsch1, Laura Schröter2, Natascia Ventura1,2

1Heinrich Heine University Düsseldorf, Germany; 2IUF- Leibniz Research Institute for Environmental Medicine



ID: 149
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A neuronal model of mtDNA disease reveals a compensatory reprogramming of the electron transfer chain during neuronal maturation

Shane Thomas Bell1, Rebeca Acín-Pérez2, Iffath Ghouri1, Orian Shirihai2, Robert Lightowlers1, Oliver Russell1

1Wellcome Centre for Mitochondrial Research, Newcastle University, United Kingdom; 2Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles (UCLA), CA, USA

Bibliography
Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Annals of Neurology 77, 753–759 (2015).

Russell, O.M., Fruh, I., Rai, P.K. et al. Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Sci Rep 8, 1799 (2018).


ID: 156
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Development of mutant mtDNA-targeted TALENs and their application to iPSC-based mitochondrial disease model.

Naoki Yahata, Ryuji Hata

Fujita Health University School of Medicine, Japan

Bibliography
Yahata, N., Boda, H. and Hata, R. Elimination of Mutant mtDNA by an Optimized mpTALEN Restores Differentiation Capacities of Heteroplasmic MELAS-iPSCs (2021) Mol Ther Methods Clin Dev. 20, 54-68


ID: 165
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Deficits in mitochondrial oxidative phosphorylation enhance SARS-CoV-2 replication

Yentli E. Soto Albrecht1,2, Ryan Morrow1, Arnold Olali1, Devin Kenney3,4, Prasanth Potluri1, Deborah Murdock1, Alessia Angelin1, Florian Douam3,4, Douglas C. Wallace1,2

1Children's Hospital of Philadelphia, USA; 2University of Pennsylvania, USA; 3Boston University, USA; 4National Emerging Infectious Diseases Laboratories, Boston, USA



ID: 175
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic analysis of mouse sarcopenic skeletal muscle identifies new strategies to increase lifespan in C. elegans

Steffi M Jonk1, Vicki Chrysostomou2, James R Tribble1, Jonathan G Crowston2,3,4, Peter Swoboda1, Pete A Williams1

1Karolinska Institutet, Sweden; 2Centre for Vision Research Duke-NUS & Singapore National Eye Centre, Singapore; 3Save Sight Institute at the University of Sydney, Australia; 4The University of Melbourne, Australia.



ID: 181
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Delineating mitochondrial pathology using a genome-wide CRISPR/Cas9 activation screen

Yasmin Tang1, Angela Pyle1, Krutik Patel1, Robert McFarland1,2, Robert W. Taylor1,2, Monika Oláhová1

1Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH; 2NHS Highly Specialised Rare Mitochondrial Disorders Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH



ID: 188
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Cancer and cellular senescence – two complementary stress models to study turnover and quality control of mitochondrial respiratory complexes.

Hanna Salmonowicz1,2, Mahdi S Mahdi1,2, Deepti Mudartha1, Szymon Gorgon1,2, Stadnik Dorota1,2, Remigiusz Serwa1,2, Karolina Szczepanowska1,2

1IMol Polish Academy of Sciences, Poland; 2ReMedy International Research Agenda



ID: 189
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Proteotoxicity induced mitochondrial integrated stress response in CHCHD10-linked adult-onset spinal muscular atrophy

Sandra Harjuhaahto1, Bowen Hu1, Jouni Kvist1, Fuping Zhang2,3, Tomas Zárybnický2, Kimmo Haimilahti4, Eija Pirinen4, Emilia Kuuluvainen2, Ville Hietakangas2,5, Satu Kuure2,3, Manu Jokela6,7, Emil Ylikallio1,8, Henna Tyynismaa1

1Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki; 2Helsinki Institute of Life Science HiLIFE, University of Helsinki; 3Genetically Modified Rodents Unit, Laboratory Animal Center, University of Helsinki; 4Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki; 5Faculty of Biological and Environmental Sciences, University of Helsinki; 6Division of Clinical Neurosciences, Turku University Hospital and University of Turku; 7Department of Neurology, Neuromuscular Research Center, Tampere University Hospital and Tampere University; 8Clinical Neurosciences, Neurology, Helsinki University Hospital

Bibliography
1. Harjuhaahto S, Rasila TS, Molchanova SM, Woldegebriel R, Kvist J, Konovalova S, Sainio MT, Pennonen J, Torregrosa-Muñumer R, Ibrahim H, Otonkoski T, Taira T, Ylikallio E, Tyynismaa H (2020) ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons. Neurobiol Dis. 2020 Jul;141:104940. doi: 10.1016/j.nbd.2020.104940. Epub 2020 May 11. PMID: 32437855. Cover story.

2. Järvilehto J, Harjuhaahto S, Palu E, Auranen M, Kvist J, Zetterberg H, Koskivuori J, Lehtonen M, Saukkonen AM, Jokela M, Ylikallio E, Tyynismaa H (2022) Serum creatine but not neurofilament light is elevated in CHCHD10-linked spinal muscular atrophy. Front. Neurology, 2022. https://doi.org/10.3389/FNEUR.2022.793937

3. Sainio MT, Rasila T, Molchanova SM, Järvilehto J, Torregrosa-Muñumer R, Harjuhaahto S, Pennonen J, Huber N, Herukka S-K Haapasalo A, Zetterberg H, Taira T, Palmio J, Ylikallio E and Tyynismaa H (2022) Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons. Front. Cell Dev. Biol. 2022, 9:820105. doi: 10.3389/fcell.2021.820105

4. Neupane N, Rajendran J, Kvist J, Harjuhaahto S, Hu B, Kinnunen V, Yang Y, Nieminen A I, Tyynismaa H. (2022) Inter-organellar and systemic survival responses to impaired mitochondrial matrix protein import in skeletal muscle. Commun Biol. 2022 Oct 5;5(1):1060. doi: 10.1038/s42003-022-04034-z.

5. Woldegebriel R, Kvist J, White M, Sinkko M, Hänninen S, Sainio MT, Torregrosa-Munumer R, Harjuhaahto S, Huber N, Herukka K, Haapasalo A, Carpen O, Bassett A, Ylikallio E, Sreedharan J, Tyynismaa H. (2021) Peripheral neuropathy linked mRNA export factor GANP 1 reshapes gene regulation in human motor neurons. bioRxiv 2021.05.18.444636. https://doi.org/10.1101/2021.05.18.444636


ID: 190
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Protective role of mitochondrial stress signaling and fragmentation in mitochondrial cardiomyopathy

Sofia Ahola, Lilli Pazurek, Fiona Mayer, Hendrik Nolte, Thomas Langer

Max Planck Institute for Biology of Ageing, Cologne, Germany



ID: 591
Clinical 1: from new genes to old and novel phenotypes

The Italian reappraisal on the most frequent genetic defects in hereditary optic neuropathies and the global top 10

Claudio Fiorini1, Danara Ormanbekova1, Flavia Palombo1, Alberto Pasti1, Michele Carbonelli2, Giulia Amore2, Martina Romagnoli2, Pietro D'Agati2, Maria Lucia Valentino1,2, Piero Barboni3, Maria Lucia Cascavilla3, Anna Maria De Negri4, Federico Sadun5, Arturo Carta6, Francesco Testa7, Vittoria Petruzzella8, Silvana Guerriero8, Stefania Bianchi Marzoli9, Valerio Carelli1,2, Chiara La Morgia1,2, Leonardo Caporali2

1IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 2Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy; 4Azienda Ospedaliera San Camillo-Forlanini, Rome, Italy; 5Ospedale Oftalmico Roma, Rome, Italy; 6Ophthalmology Unit, University Hospital of Parma, Parma, Italy; 7Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy; 8Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy; 9Neuroophthalmology Service and Ocular Electrophysiology laboratory, Department of Ophthalmology, IRCCS Istituto Auxologico Italiano, Milan, Italy

Bibliography
Rocatcher, Aude et al. “The top 10 most frequently involved genes in hereditary optic neuropathies in 2186 probands.” Brain : a journal of neurology vol. 146,2 (2023): 455-460. doi:10.1093/brain/awac395


ID: 117
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Aberrant ER-mitochondria communication in human mitochondrial disease

Eric A. Schon1, Khushbu Kabra1, Patricia Morcillo1, Delfina Larrea1, Estela Area-Gomez1,2, Orhan Akman1

1Columbia University, USA; 2Centro de Investigaciones Biológicas “Margarita Salas”, Madrid, Spain

Bibliography
Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E (2017). Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J. 36, 3356-3371.


ID: 161
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial F0F1-ATP synthase conditions the responsiveness of mitochondria to fission

Charlène Lhuissier1, Julien Cassereau3, Valérie Desquiret-Dumas2, Guy Lenaers1, Naïg Gueguen2, Arnaud Chevrollier1

1MITOVASC Université d'Angers, France; 2Departments of Biochemistry and Molecular Biology, University Hospital Angers, Angers, France; 3Laboratoire de Neurobiologie et Neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France

Bibliography
Thirty-year progression of an EMPF1 encephalopathy due to defective mitochondrial and peroxisomal fission caused by a novel de novo heterozygous DNM1L variant 2022 Frontiers neurology PMID: 36212643 DOI: 10.3389/fneur.2022.937885

Glutamate-Induced Deregulation of Krebs Cycle in Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-Like Episodes (MELAS) Syndrome Is Alleviated by Ketone Body Exposure 2022 Biomedicines PMID: 35884972 DOI: 10.3390/biomedicines10071665

STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain 2020 Neuropathology and Applied Neurobiology PMID: 32688444 DOI: 10.1111/nan.12646

Autophagy controls the pathogenicity of OPA1 mutations in dominant optic
atrophy 2017 Journal of Cellular and Molecular Medicine PMID: 28378518 DOI: 10.1111/jcmm.13149


ID: 199
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A screening method for mitochondrial disorders by high-resolution respirometry

Kersti Tepp1, Kairit Joost2, Natalja Timohhina1, Marju Puurand1, Tuuli Kaambre1

1National Institute of Chemical Physics and Biophysics, Estonia; 2Clinic of Internal Medicine, East-Tallinn Central Hospital, Estonia

Bibliography
1.Tepp, Kersti; Aid-Vanakova, Jekaterina; Puurand, Marju; Timohhina, Natalja; Reinsalu, Leenu; Tein, Karin; Plaas, Mario; Shevchuk, Igor; Terasmaa, Anton; Kaambre, Tuuli; (2022). Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles. Biochemistry and Biophysics Reports, 30, 101250. DOI: 10.1016/j.bbrep.2022.101250.
2. Tepp, Kersti; Puurand, Marju; Timohhina, Natalja; Aid-Vanakova, Jekaterina; Reile, Indrek; Shevchuk, Igor; Chekulayev, Vladimir; Eimre, Margus; Peet, Nadežda; Kadaja, Lumme; Paju, Kalju; Kaambre, Tuuli (2020). Adaptation of mice striated muscles to wolframin deficiency: alterations in cellular bioenergetics. Biochemica et Biophysica Acta. DOI: 10.1016/j.bbagen.2020.129523.
3. Kaup, Karl Kristjan; Toom, Lauri; Truu, Laura; Miller,Sten; Puurand, Marju; Tepp, Kersti; Kaambre Tuuli; Reile, Indrek (2021). A line-broadening free real-time 31P Pure Shift NMR method for phosphometabolomic analysis. The Analyst, 1−5. DOI: 10.1039/D1AN01198G.
4. Rebane-Klemm, Egle; Truu, Laura; Reinsalu, Leenu; Puurand, Marju; Shevchuk, Igor; Chekulayev, Vladimir; Timohhina, Natalja; Tepp, Kersti; Bogovskaja, Jelena; Afanasjev, Vladimir; Suurmaa, Külliki; Valvere, Vahur; Kaambre, Tuuli (2020). Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps. Cancers, 12 (4), ARTN 815. DOI: 10.3390/cancers12040815.


ID: 1428
Clinical 1: from new genes to old and novel phenotypes

AK3, adenylate kinase isozyme 3, is a new gene associated with PEO and multiple mtDNA deletions

Alessia Nasca1, Andrea Legati1, Teresa Ciavattini1, Nadia Zanetti1, Eleonora Lamantea1, Javier Ramón2, Ramon Martí2, Maria Antonietta Maioli3, Costanza Lamperti1, Holger Prokisch4,5, Daniele Ghezzi1,6

1Fondazione IRCCS Istituto Neurologico Besta, Italy; 2Vall d'Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain; 3Centro Sclerosi Multipla, P.O. Binaghi, ASL Cagliari, Italy; 4Technical University of Munich, School of Medicine, Institute of Human Genetics, 81675 Munich, Germany; 5Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany; 6Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy



ID: 1201
Clinical 1: from new genes to old and novel phenotypes

Heterozygous missense variants in NUTF2 (nuclear transport factor 2) gene, mapping at the OPA8 locus, cause Dominant Optic Atrophy

Agnese Macaluso1, Alessandra Maresca1, Concetta Valentina Tropeano1, Maria Antonietta Capristo1, Flavia Palombo1, Leonardo Caporali1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1, Piero Barboni2,3, Cristina Villaverde4,5, Carmen Ayuso4,5, Maria Esther Gallardo6,5, Majida Charif7, Sylvie Gerber8, Patrizia Amati-Bonneau7, Guy Lanaers7,9, Jean-Michel Rozet7, Bernd Wissinger10, Valerio Carelli1,11, Valentina Del Dotto11

1IRCCS - Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica - Bologna (Italy); 2Studio Oculistico d'Azeglio - Bologna (Italy); 3Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele - Milano (Italy); 4Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD-UAM) - Madrid (Spain); 5Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Madrid (Spain); 6Grupo de investigación traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain; Centro de Investigación Biomédica en Red (CIBERER) - Madrid (Spain); 7Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc - Angers (France); 8Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University - Paris (France); 9Departments of Biochemistry and Genetics, University Hospital Angers - Angers (France); 10Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany; 11Depart. of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna - Bologna (Italy)



ID: 1348
Clinical 1: from new genes to old and novel phenotypes

Southern African paediatric patients with King Denborough syndrome are exclusively associated with an autosomal recessive STAC3 variant: is this a highly prevalent secondary mitochondrial disease in this African population?

Francois Hendrikus van der Westhuizen1, Maryke Schoonen1, Michelle Bisschoff1, Ronel Human2, Elsa Lubbe2, Malebo Nonyane2, Armand Vorster1, Karin Terburgh1, Robert McFarland3, Robert Taylor3, Mahmoud Fassad3, Krutik Patel3, Wilson Lindsay4, Michael Hanna4, Jana Vandrovcova4, The ICGNMD Consortium5, Izelle Smuts2

1Human Metabolomics, North-West University, Potchefstroom, South Africa; 2Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa; 3Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 4Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; 5https://www.ucl.ac.uk/genomic-medicine-neuromuscular-diseases/global-contributor-list

Bibliography
Schoonen, M., Smuts, I., Louw, R., Elson, J. L., van Dyk, E., Jonck, L. M., Rodenburg, R. J. T., van der Westhuizen, F. H. (2019). Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease. The Journal of molecular diagnostics 21, 503–513.

Meldau, S., Owen, E. P., Khan, K., & Riordan, G. T. (2022). Mitochondrial molecular genetic results in a South African cohort: divergent mitochondrial and nuclear DNA findings. Journal of clinical pathology 75, 34–38.

Reinecke, C. J., Koekemoer, G., van der Westhuizen, F. H., Louw, R., Lindeque, J. Z., Mienie, L. J., Smuts, I. (2012). Metabolomics of urinary organic acids in respiratory chain deficiencies. Metabolomics 8, 264-283.

Terburgh, K., Coetzer, J., Lindeque, J. Z., van der Westhuizen, F. H., Louw, R. (2021). Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochimica et biophysica acta. Molecular basis of disease 1867, 166082.


ID: 1356
New technological developments and OMICS

Long-read NGS for detection of mitochondrial DNA large-scale deletions and complex rearrangements

Chiara Frascarelli1, Nadia Zanetti1, Alessia Nasca1, Rossella Izzo1, Costanza Lamperti1, Eleonora Lamantea1, Daniele Ghezzi1,2, Andrea Legati1

1Fondazione IRCCS Istituto Neurologico Carlo Besta (Milan, Italy); 2University of Milan (Milan, Italy)



ID: 1374
New technological developments and OMICS

Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription

Janne Purhonen1,2, Jukka Kallijarvi1,2

1Folkhalsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki

Bibliography
1. Banerjee R, Purhonen J, Kallijärvi J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. FEBS J (2021)
2. Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Res 48(15), e87 (2020)
3. Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 11:322 (2020)


ID: 1125
New technological developments and OMICS

Quantifying mitochondrial proteome remodeling during macrophage polarization

Joan Blanco-Fernandez, Manfredo Quadroni, Alexis A. Jourdain

University of Lausanne, Switzerland

Bibliography
1. C. L. Strelko, et al. J Am Chem Soc. 2011, 133, 16386-16389
2. A. K. Jha, et al. Immunity. 2015, 42, 419-430
3. P. S. Liu, et al. Nat Immunol. 2017, 18, 985-994
4. D. Vats, et al. Cell Metab. 2006, 4, 13-24
5. S. Rath, et al. Nucleic Acids Res. 2021, 49, D1541-D1547
6. A. Michelucci, et al. Proc Natl Acad Sci U S A. 2013, 110, 7820-7825
7. Z. Zhong, et al. Nature. 2018, 560, 198-203
8. S. A. Clayton, et al. Sci Adv. 2021, 7, eabl5182


ID: 158
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial injury in warm ischemia studied by high-resolution respirometry

Alba Timón-Gómez, Luiza HD Cardoso, Eleonora Baglivo, Carolina Doerrier, Erich Gnaiger

Oroboros Instruments GmBH, Austria



ID: 648
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

MitoCluster: integrated phenotyping and mouse model generation platform for mitochondrial disease and dysfunction

Micol Falabella1, Patrick F. Chinnery2, Laura C. Greaves3, Michael G. Hanna1,4, Thomas M. Keane5, Robert McFarland3, Michal Minczuk2, Owen J. Sansom6,7, James B. Stewart3, Michelle Stewart8, Lydia Teboul8, Keira Turner2, Jelle van den Ameele2, Carlo Viscomi9, Sara Wells8, Alexander J. Whitworth2, Robert D. S. Pitceathly1,4

1Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge UK; 3Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, UK; 4NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK; 5European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; 6Cancer Research UK Beatson Institute, Glasgow, UK; 7Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; 8Mary Lyon Centre MRC Harwell, UK; 9University of Padua, Italy

 
4:30pm - 6:00pmSession 2.4: New technological developments and OMICS
Location: Bologna Congress Center - Sala Europa
Session Chair: Holger Prokisch
Session Chair: Leonid Sazanov
Invited Speaker: :S. Churchman; :H. Hillen
 
Invited
ID: 683
Invited Speakers

Decoding the regulatory principles of mitochondrial DNA: packaging, expression, and impact on cellular metabolism

L. Stirling Churchman

Harvard Medical School, United States of America



Invited
ID: 705
Invited Speakers

Mechanisms of mitochondrial RNA biogenesis in health and disease

Hauke Hillen1,2

1Department of Cellular Biochemistry, University Medical Center Göttingen, Germany; 2Research Group Structure and Function of Molecular Machines, Max-Planck-Institute for Multidisciplinary Sciences Göttingen, Germany

Bibliography
Bhatta A, Dienemann C, Cramer P, Hillen HS (2021) Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural & Molecular Biology 28, 713-723.
Bonekamp NA, Peter B, Hillen HS, Felser A, Bergbrede T, Choidas A, Horn M, Unger A, Di Lucrezia R, Atanassov I, Li X, Koch U, Menninger S, Boros J, Habenberger P, Giavalisco P, Cramer P, Denzel MS, Nussbaumer P, Klebl B, Falkenberg M, Gustafsson CM, Larsson N-G (2020) Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712-716
Hillen HS, Temiakov D, Cramer P (2018) Structural basis of mitochondrial transcription. Nature Structural & Molecular Biology 25, 754–765
Hillen HS, Parshin AV, Agaronyan K, Morozov YI, Graber JJ, Chernev A, Schwinghammer K, Urlaub H, Anikin M, Cramer P, Temiakov D (2017) Mechanism of Transcription Anti-termination in Human Mitochondria. Cell 171, 1082-1093.e13
Hillen HS, Morozov YI, Sarfallah A, Temiakov D, Cramer P (2017) Structural Basis of Mitochondrial Transcription Initiation. Cell 171, 1072-1081.e10


Oral presentation
ID: 338
New technological developments and OMICS

Disruption of mitochondrial function induces cell lineage-specific compensatory transcriptional responses during early embryonic development

Stephen P. Burr1,2, Florian Klimm1,2,3, Angelos Glynos1,2, Malwina Prater1,2,4, Maria Falkenberg5, Michal Minczuk2, James B. Stewart6,7, Patrick F Chinnery1,2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 2Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 3Novo Nordisk Research Centre Oxford, Innovation Building, University of Oxford, Old Road Campus, Oxford, UK; 4Functional Genomics Centre, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK; 5Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden; 6Max Planck Institute for Biology of Ageing, Cologne, Germany; 7Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK

Bibliography
1. Burr et al., Cell, 2023, DOI: 10.1016/j.cell.2023.01.034


Oral presentation
ID: 120
New technological developments and OMICS

Single-cell multi-omics reveals dynamics of purifying selection of pathogenic mitochondrial DNA across human immune cells

Caleb A. Lareau1,2,3,4,5, Sonia M. Dubois5, Frank A. Buquicchio1, Yu-Hsin Hsieh6,7, Kopal Garg4,5, Pauline Kautz6,7,8, Lena Nitsch6,7,9, Samantha D. Praktiknjo6,7, Patrick Maschmeyer6,7, Jeffrey M. Verboon4,5, Jacob C. Gutierrez1, Yajie Yin1, Evgenij Fiskin4, Wendy Luo4, Eleni Mimitou10,17, Christoph Muus4,11, Rhea Malhotra4, Sumit Parikh12, Mark D. Fleming13, Lena Oevermann14, Johannes Schulte14, Cornelia Eckert14, Anshul Kundaje3,15, Peter Smibert10,18, Ansuman T. Satpathy1,2, Aviv Regev4,16,19, Vijay Sankaran4,5, Suneet Agarwal5, Leif S. Ludwig4,5,6,7

1Department of Pathology, Stanford University, Stanford, CA 94305, USA; 2Parker Institute of Cancer Immunotherapy, San Francisco, CA 94129, USA; 3Department of Genetics, Stanford University, Stanford, CA 94305, USA; 4Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; 5Division of Hematology / Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; 6Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; 7Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany; 8Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany; 9Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; 10Technology Innovation Lab, New York Genome Center, New York, NY 10013, USA; 11Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA; 12Center for Pediatric Neurosciences, Mitochondrial Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; 13Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; 14Department of Pediatric Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, 13353 Berlin, Germany; 15Department of Computer Science, Stanford University, Stanford, CA 94305, USA; 16Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; 17Current address: Immunai, New York, NY 10114, USA; 18Current address: 10x Genomics, San Francisco, CA 94111, USA; 19Current address: Genentech, San Francisco, CA 94080, USA



Flash Talk
ID: 125
New technological developments and OMICS

Quantifying mitochondrial proteome remodeling during macrophage polarization

Joan Blanco-Fernandez, Manfredo Quadroni, Alexis A. Jourdain

University of Lausanne, Switzerland

Bibliography
1. C. L. Strelko, et al. J Am Chem Soc. 2011, 133, 16386-16389
2. A. K. Jha, et al. Immunity. 2015, 42, 419-430
3. P. S. Liu, et al. Nat Immunol. 2017, 18, 985-994
4. D. Vats, et al. Cell Metab. 2006, 4, 13-24
5. S. Rath, et al. Nucleic Acids Res. 2021, 49, D1541-D1547
6. A. Michelucci, et al. Proc Natl Acad Sci U S A. 2013, 110, 7820-7825
7. Z. Zhong, et al. Nature. 2018, 560, 198-203
8. S. A. Clayton, et al. Sci Adv. 2021, 7, eabl5182


Flash Talk
ID: 374
New technological developments and OMICS

Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription

Janne Purhonen1,2, Jukka Kallijarvi1,2

1Folkhalsan Research Center, Finland; 2Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki

Bibliography
1. Banerjee R, Purhonen J, Kallijärvi J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. FEBS J (2021)
2. Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Res 48(15), e87 (2020)
3. Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 11:322 (2020)


Flash Talk
ID: 356
New technological developments and OMICS

Long-read NGS for detection of mitochondrial DNA large-scale deletions and complex rearrangements

Chiara Frascarelli1, Nadia Zanetti1, Alessia Nasca1, Rossella Izzo1, Costanza Lamperti1, Eleonora Lamantea1, Daniele Ghezzi1,2, Andrea Legati1

1Fondazione IRCCS Istituto Neurologico Carlo Besta (Milan, Italy); 2University of Milan (Milan, Italy)

 
6:00pm - 7:00pmPoster session
Location: Bologna Congress Center
Session topics:
- Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity
 
ID: 564
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Maintenance on mitochondrial complexes ensures bioenergetic function in differentiated cells

Ilka Wittig1, Julian Heidler1, Heiko Giese2, Ralf P. Brandes1

1Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; 2Molecular Bioinformatics, Goethe University, Frankfurt, Germany

Bibliography
[1] H. Heide, L. Bleier, M. Steger, J. Ackermann, S. Dröse, B. Schwamb, M. Zörnig, A.S. Reichert, I. Koch, I. Wittig, U.Brandt, Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex, Cell Metab. 16 (2012) 538–549.
[2] B. Schwanhäusser, M. Gossen, G. Dittmar, M. Selbach, Global analysis of cellular protein translation by pulsed SILAC, Proteomics 9 (2009) 205–209.


ID: 462
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating pathogenicity and tissue-specificity of mitochondrial aminoacyl-tRNA synthetase defects AARS2, EARS2 and RARS2 in neurons

Oliver Podmanicky, Fei Gao, Denisa Hathazi, Rita Horvath

Department of Clinical Neurosciences, University of Cambridge, United Kingdom



ID: 253
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mutations in Coq2 leads to severe developmental delay and early death in both zebrafish and mouse

Julia Corral-Sarasa1, Sergio López-Herrador2, Juan M. Martínez-Gálvez1,3, Pilar González-García2, Laura Jiménez-Sánchez1, Mª Elena Díaz-Casado1,2, Luis C. López1,2

1Ibs.Granada, Granada, Spain; 2Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 3Biofisika Institute (CSIC,UPV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain

Bibliography
1.Alcázar-Fabra, M., Rodríguez-Sánchez, F., Trevisson, E., & Brea-Calvo, G. (2021). Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radical Biology and Medicine, 167, 141-180. https://doi.org/10.1016/j.freeradbiomed.2021.02.046
2.Mutations in COQ2 in Familial and Sporadic Multiple-System Atrophy. (2013). New England Journal of Medicine, 369(3), 233-244. https://doi.org/10.1056/nejmoa1212115
3.Jakobs, B. S., Van Den Heuvel, L. P., Smeets, R., De Vries, M., Hien, S., Schaible, T., Smeitink, J. A., Wevers, R. A., Wortmann, S. B., & Rodenburg, R. J. (2013). A novel mutation in COQ2 leading to fatal infantile multisystem disease. Journal of the Neurological Sciences, 326(1-2), 24-28. https://doi.org/10.1016/j.jns.2013.01.004
4.Herebian, D., Seibt, A., Smits, S. H. J., Rodenburg, R. J., & Mayatepek, E. (2017). 4-Hydroxybenzoic acid restores CoQ10biosynthesis in human COQ2 deficiency. Annals of clinical and translational neurology, 4(12), 902-908. https://doi.org/10.1002/acn3.486


ID: 297
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Pathogenic variants of the mitochondrial metallochaperone SCO1 result in a severe, combined COX and copper deficiency that causes a dilated cardiomyopathy in the murine heart.

Sampurna Ghosh1, Scot C. Leary1, Paul A. Cobine2

1University of Saskatchewan, Canada; 2Auburn University

Bibliography
Glerum DM, Shtanko A, Tzagoloff A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem. 1996 Jun 14;271(24):14504-9. doi: 10.1074/jbc.271.24.14504. PMID: 8662933.

Srinivasan C, Posewitz MC, George GN, Winge DR. Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry. 1998 May 19;37(20):7572-7. doi: 10.1021/bi980418y. PMID: 9585572.

Hlynialuk CJ, Ling B, Baker ZN, Cobine PA, Yu LD, Boulet A, Wai T, Hossain A, El Zawily AM, McFie PJ, Stone SJ, Diaz F, Moraes CT, Viswanathan D, Petris MJ, Leary SC. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis. Cell Rep. 2015 Feb 17;10(6):933-943. doi: 10.1016/j.celrep.2015.01.019. Epub 2015 Feb 13. PMID: 25683716.

Baker ZN, Jett K, Boulet A, et al. The mitochondrial metallochaperone SCO1 maintains CTR1 at the plasma membrane to preserve copper homeostasis in the murine heart. Hum Mol Genet. 2017;26(23):4617-4628. doi:10.1093/hmg/ddx344

Leary, S.C., Antonicka, H., Sasarman, F., Weraarpachai, W., Cobine, P.A., Pan, M., Brown, G.K., Brown, R., Majewski, J., Ha, K.C.H., et al. (2013a). Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis. Hum. Mutat. 34, 1366–1370.


ID: 196
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Tissue-specific adaptation of stress responses upon COX10 deficiency

Lea Isermann1,2, Milica Popovic1,2, Ming Yang1,2, Christian Frezza1,2, Aleksandra Trifunovic1,2

1CECAD Research Center, Germany; 2Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne



ID: 269
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Using iPSC-derived neurons to unravel the pathomechanisms of Leber’s hereditary optic neuropathy

Camille Peron1, Alessandra Maresca2, Angelo Iannielli3,4, Alberto Danese5, Simone Patergnani5, Danara Ormanbekova2, Andrea Cavaliere1, Carlotta Giorgi5, Paolo Pinton5,6, Vania Broccoli3,4, Valerio Carelli2,7, Valeria Tiranti1

1Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; 2IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; 3Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy; 4National Research Council (CNR), Institute of Neuroscience, Milan, Italy; 5Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; 6Maria Cecilia Hospital, GVM Care & Research, 48033, Cotignola, Ravenna, Italy; 7Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy

Bibliography
Danese A, Patergnani S, Maresca A, Peron C, Raimondi A, Caporali L, Marchi S, La Morgia C, Del Dotto V, Zanna C, Iannielli A, Segnali A, Di Meo I, Cavaliere A, Lebiedzinska-Arciszewska M, Wieckowski MR, Martinuzzi A, Moraes-Filho MN, Salomao SR, Berezovsky A, Belfort R Jr, Buser C, Ross-Cisneros FN, Sadun AA, Tacchetti C, Broccoli V, Giorgi C, Tiranti V, Carelli V, Pinton P. Pathological mitophagy disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. Cell Rep. 2022 Jul 19;40(3):111124. doi: 10.1016/j.celrep.2022.111124. PMID: 35858578; PMCID: PMC9314546.

Peron C, Maresca A, Cavaliere A, Iannielli A, Broccoli V, Carelli V, Di Meo I, Tiranti V. Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Front Neurol. 2021 Jun 8;12:648916. doi: 10.3389/fneur.2021.648916. PMID: 34168607; PMCID: PMC8217617.

Peron C, Mauceri R, Cabassi T, Segnali A, Maresca A, Iannielli A, Rizzo A, Sciacca FL, Broccoli V, Carelli V, Tiranti V. Generation of a human iPSC line, FINCBi001-A, carrying a homoplasmic m.G3460A mutation in MT-ND1 associated with Leber's Hereditary optic Neuropathy (LHON). Stem Cell Res. 2020 Oct;48:101939. doi: 10.1016/j.scr.2020.101939. Epub 2020 Aug 3. PMID: 32771908.


ID: 418
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Stem cell modelling of mitochondrial disease-linked cardiomyopathy

Ann E. Frazier1,2, Yau Chung Low1,2, Cameron L. McKnight1,2, Linden Muellner-Wong1,3, Hayley L. Pointer1, Nikeisha Caruana3, Jordan J. Crameri3, Luke E. Formosa4, Yilin Kang3, Thomas D. Jackson3, Alison G. Compton1,2,5, Michael T. Ryan4, Andrew G. Elefanty1,2,6, Enzo R. Porrello1,6,7,8, David A. Stroud1,3,5, David A. Elliott1,2,6,7, Diana Stojanovski3, David R. Thorburn1,2,5

1Murdoch Children’s Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; 2Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; 3Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; 4Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; 5Victorian Clinical Genetics Services, The Royal Children’s Hospital, Melbourne, VIC, Australia; 6The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; 7Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia; 8Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia



ID: 316
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Biochemical and computational approaches to dissect the effect of MT-CYB pathogenic mutations on respiratory chain activity and assembly

Gaia Tioli, Francesco Musiani, Luisa Iommarini, Anna Maria Porcelli, Anna Maria Ghelli

Department of Pharmacy and Biotechnology, University of Bologna, Italy

Bibliography
1 Fernández-Vizarra E, Ugalde C. Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem Sci. 2022
2 Rugolo M, Zanna C, Ghelli AM. Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel). 2021
3 Mishra SK. PSP-GNM: Predicting Protein Stability Changes upon Point Mutations with a Gaussian Network Model. Int J Mol Sci. 2022


ID: 565
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Exploring the assembly and maintenance of mitochondrial complex I by complexome profiling-based approaches

Alfredo Cabrera-Orefice1,2, Ilka Wittig1

1Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany; 2Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands

Bibliography
[1] S. Guerrero-Castillo, F. Baertling, D. Kownatzki, H.J. Wessels, S. Arnold, U. Brandt, L. Nijtmans, The Assembly Pathway of Mitochondrial Respiratory Chain Complex I, Cell metabolism, 25 (2017) 128-139.
[2] H. Heide, L. Bleier, M. Steger, J. Ackermann, S. Drose, B. Schwamb, M. Zornig, A.S. Reichert, I. Koch, I. Wittig, U. Brandt, Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex, Cell metabolism, 16 (2012) 538-549.
[3] A. Cabrera-Orefice, A. Potter, F. Evers, J.F. Hevler, S. Guerrero-Castillo, Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease, Front Cell Dev Biol, 9 (2022) 796128.


ID: 225
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Functional involvement of actin-binding Gelsolin on mitochondrial Oxphos dysfunction

María Illescas, Ana Peñas, Cristina Ugalde

Fundación Hospital 12 de Octubre, Spain

Bibliography
García-Bartolomé, A., Peñas, A., Illescas, M., Bermejo, V., López-Calcerrada, S., Pérez-Pérez, R., et al. (2020). Altered Expression Ratio of Actin-Binding Gelsolin Isoforms Is a Novel Hallmark of Mitochondrial OXPHOS
Dysfunction. Cells 9, 1922–21. doi:10.3390/cells9091922

Peñas, A., Fernández-De la Torre, M., Laine-Menéndez, S., Lora, D., Illescas, M., García-Bartolomé, A., et al. (2021). Plasma Gelsolin Reinforces the Diagnostic Value of FGF-21 and GDF-15 for Mitochondrial Disorders. Ijms 22, 6396. doi:10.3390/ijms22126396

Illescas M, Peñas A, Arenas J, Martín MA and Ugalde C. 2021. Regulation of Mitochondrial Function by the Actin Cytoskeleton. Front. Cell Dev. Biol. 9:795838. doi: 10.3389/fcell.2021.795838.

Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. 2022 Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. doi: 10.1016/j.cmet.2022.09.005


ID: 472
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

In vivo role of respiratory complex I NDUFA10 subunit in dNTP homeostasis

Andrea Férriz Gordillo1, David Molina-Granada1,2, Javier Ramón1,2, Izaskun Izagirre-Urizar1, Marina Singla-Manau1, Maria Jesús Melià1,2, Antoni Ruiz-Vicaria1, Javier Torres-Torronteras1,2, Mònica Zamora3, Michael T. Ryan4, Cristina Ugalde2,5, Josep Antoni Villena6, Ramon Martí1,2, Yolanda Cámara1,2

1Research Group on Neuromuscular and Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; 2Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; 3BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona 08028, Spain. and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.; 4Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia; 5Instituto de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain.; 6Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Barcelona, Spain

Bibliography
Molina-Granada D, González-Vioque E, Dibley MG, Cabrera-Pérez R, Vallbona-Garcia A, Torres-Torronteras J, Sazanov LA, Ryan MT, Cámara Y, Martí R. Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit. Commun Biol. 2022 Jun 23;5(1):620. doi: 10.1038/s42003-022-03568-6. PMID: 35739187; PMCID: PMC9226000.


ID: 247
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Modeling POLRMT pathogenic variants in the mouse

David Alsina1,2, Roberta Filograna1,2, Rodolfo García-Villegas1,2, Camilla Koolmeister1,2, Nils-Göran Larsson1,2,3

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden; 3Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden



ID: 425
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The role of the CCR4 family member ANGEL1 in the expression of mitochondrial-targeted proteins

Kai Chang1, Paula Clemente1, Joyce Noble1, Björn Reinius1, Anna Wedell1,2, Christoph Freyer1,2, Anna Wredenberg1,2

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; 2Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden

Bibliography
Chang, K§., Liu, P§., Requejo, G & Bai, H. (2022). mTORC2 protects the heart from high-fat diet-induced cardiomyopathy through mitochondrial fission in Drosophila. Front. Cell Dev. Biol., 2022. https://doi.org/10.3389/fcell.2022.866210
§These authors contributed equally to this work

Birnbaum, A., Chang, K., & Bai, H. (2020). FOXO regulates neuromuscular junction homeostasis during Drosophila aging. Front Aging Neurosci, 2021 Jan 27; 12:567861. DOI: 10.3389/fnagi.2020.567861.

Huang, K., Miao, T., Chang, K. et al. Impaired peroxisomal import in Drosophila oenocytes causes cardiac dysfunction by inducing upd3 as a peroxikine. Nat Commun 11, 2943 (2020). https://doi.org/10.1038/s41467-020-16781-w

Kai Chang§, Ping Kang§, Ying Liu, Kerui Huang, Ting Miao, Antonia P. Sagona, Ioannis P. Nezis, Rolf Bodmer, Karen Ocorr & Hua Bai (2019) TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2, Autophagy, DOI: 10.1080/15548627.2019.1704117
§These authors contributed equally to this work

Kang, P., Chang, K., Liu, Y. et al. Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci Rep 7, 16369 (2017) doi:10.1038/s41598-017-16638-1


ID: 600
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Tissue-specific bioenergetics in mouse models of mitochondrial disease

Valeria Balmaceda1, Timea Komoldi2, Massimo Zeviani1, Erich Gnaiger3, Anthony L. Moore4, Erika Fernandez Vizarra1, Carlo Viscomi1

1Università di Padova; 2Semmelweis University; 3Universität Innsbruck; 4University of Sussex



ID: 490
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Yeast as a tool to investigate variants in mtARS genes associated with mitochondrial diseases

Sonia Figuccia1, Camilla Ceccatelli Berti1, Andrea Legati2, Rossella Izzo2, Alessia Nasca2, Daniele Ghezzi2,3, Paola Goffrini1

1Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; 2Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 3Department of Medical Physiopathology and Transplantation, University of Milan, Milan, Italy



ID: 227
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A mutation in mouse mt-Atp6 gene induces respiration defects and opposed effects on the cell tumorigenic phenotype

Raquel Moreno-Loshuertos1, Nieves Movilla1, Joaquín Marco-Brualla2, Ruth Soler-Agesta1, Patricia Ferreira1, José Antonio Enríquez3, Patricio Fernández-Silva1

1University of Zaragoza, Spain; 2University of Zaragoza, Peaches Biotech Group, Spain; 3Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain

Bibliography
1.Moreno-Loshuertos, R.; Marco-Brualla, J.; Meade, P.; Soler-Agesta, R.; Enriquez, J. A.; Fernandez-Silva, P., How hot can mitochondria be? Incubation at temperatures above 43 degrees C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion 2023, 69, 83-94.
2.Moreno-Loshuertos, R.; Movilla, N.; Marco-Brualla, J.; Soler-Agesta, R.; Ferreira, P.; Enriquez, J. A.; Fernandez-Silva, P., A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023, 24, (2).
3.Novo, N.; Romero-Tamayo, S.; Marcuello, C.; Boneta, S.; Blasco-Machin, I.; Velázquez-Campoy, A.; Villanueva, R.; Moreno-Loshuertos, R.; Lostao, A.; Medina, M.; Ferreira, P., Beyond a platform protein for the degradosome assembly: The Apoptosis-Inducing Factor as an efficient nuclease involved in chromatinolysis. PNAS Nexus 2022, 2, (2).
4.Soler-Agesta, R.; Marco-Brualla, J.; Minjarez-Saenz, M.; Yim, C. Y.; Martinez-Julvez, M.; Price, M. R.; Moreno-Loshuertos, R.; Ames, T. D.; Jimeno, J.; Anel, A., PT-112 Induces Mitochondrial Stress and Immunogenic Cell Death, Targeting Tumor Cells with Mitochondrial Deficiencies. Cancers (Basel) 2022, 14, (16).
5.Pinol, R.; Zeler, J.; Brites, C. D. S.; Gu, Y.; Tellez, P.; Carneiro Neto, A. N.; da Silva, T. E.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Gallego, A. I.; Martinez-Lostao, L.; Martinez, A.; Carlos, L. D.; Millan, A., Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles. Nano Lett 2020, 20, (9), 6466-6472.
6.Gu, Y.; Yoshikiyo, M.; Namai, A.; Bonvin, D.; Martinez, A.; Pinol, R.; Tellez, P.; Silva, N. J. O.; Ahrentorp, F.; Johansson, C.; Marco-Brualla, J.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Cui, Y.; Ohkoshi, S. I.; Millan, A., Magnetic hyperthermia with epsilon-Fe(2)O(3) nanoparticles. RSC Adv 2020, 10, (48), 28786-28797.
7.Delavallee, L.; Mathiah, N.; Cabon, L.; Mazeraud, A.; Brunelle-Navas, M. N.; Lerner, L. K.; Tannoury, M.; Prola, A.; Moreno-Loshuertos, R.; Baritaud, M.; Vela, L.; Garbin, K.; Garnier, D.; Lemaire, C.; Langa-Vives, F.; Cohen-Salmon, M.; Fernandez-Silva, P.; Chretien, F.; Migeotte, I.; Susin, S. A., Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Mol Metab 2020, 40, 101027.


ID: 242
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A systemic Muscle-WAT crosstalk progressively depletes protein and fat stores aggravating mitochondrial myopathy.

Nneka Southwell1, Guido Primiano3, Emelie Beattie1, Nicola Rizzardi1, Serenella Servidei3, Giovanni Manfredi1, Qiuying Chen2, Marilena D'Aurelio1

1Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY; 2Weill Cornell Medicine, Department of Pharmacology, New York, NY; 3Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.



ID: 646
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A novel mitochondrial assembly factor RTN4IP1 has an essential role in the final stages of Complex I assembly

Monika Oláhová1,2, Jack J. Collier1,3, Rachel M. Guerra4, Juliana Heidler5, Kyle Thompson1, Robert N. Lightowlers1, Zofia M.A. Chrzanowska-Lightowlers1, Ilka Wittig5, David J. Pagliarini4, Robert W. Taylor1

1Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 2Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK; 3Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; 4Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; 5Functional Proteomics Group, Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany

Bibliography
1 Charif M et al. Neurologic Phenotypes Associated With Mutations in RTN4IP1 (OPA10) in Children and Young Adults. JAMA Neurol. 2017


ID: 599
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

ETFDH supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis

Beñat Salegi Ansa1, Juan Cruz Herrero Martín1, José M. Cuezva1,2,3,4, Laura Formentini1,2,3,4

1Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO-UAM-CSIC), Madrid, Spain; 2Instituto Universitario de Biología Molecular (IUBM), Autonomous University of Madrid, Madrid, Spain; 3Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; 4Instituto de Investigación Hospital 12 de octubre, i+12, Universidad Autónoma de Madrid, Madrid, Spain



ID: 559
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic rewiring as an adaptive mechanism in COX null cells

Guillermo Puertas-Frias1,2, Kristýna Čunátová1,2, Petr Pecina1, Marek Vrbacký1, Lukáš Alán1, Tomáš Čajka3, Josef Houštěk1, Tomáš Mráček1, Alena Pecinová1

1Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 2Faculty of Science, Charles University, 12800 Prague, Czech Republic; 3Laboratory of Translational Metabolomics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic



ID: 383
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Metabolic rewiring due to progressive increase in mtDNA mutation heteroplasmy reveals markers of disease severity

Karin Terburgh1, Marianne Venter1, Jeremie Z Lindeque1, Emi Ogasawara2, Mirian C H Janssen3, Jan A M Smeitink3, Kazuto Nakada4, Roan Louw1

1North-West University, South Africa; 2Osaka University, Japan; 3Radboud University Medical Center, Netherlands; 4University of Tsukuba, Japan



ID: 442
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Novel or rare AIFM1 pathogenic variants: their impact on mitochondrial metabolism and clinical manifestation in eight patients, including 3 girls

Tereza Rakosnikova1, Jan Kulhanek1, Martin Reboun1, Hana Stufkova1, Lenka Dvorakova1, Dagmar Grecmalova2, Pavlina Plevova2, Tomas Honzik1, Hana Hansikova1, Jiri Zeman1, Marketa Tesarova1

1Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague; 2Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava



ID: 558
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Pathological molecular mechanisms underlying COA8 loss of function

Kristyna Cunatova1,2, Michele Brischigliaro1,2, Alfredo Cabrera-Orefice3, Cinzia Franchin1, Jimin Pei4, Marco Roverso5, Sara Bogialli5, Qian Cong4, Giorgio Arrigoni1, Susanne Arnold3,6, Carlo Viscomi1,2, Massimo Zeviani2,7, Erika Fernández-Vizarra1,2

1Department of Biomedical Sciences, University of Padova, Padova, Italy; 2Veneto Institute of Molecular Medicine, Padova, Italy; 3Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; 4University of Texas Southwestern Medical Center, Dallas, TX, USA; 5Department of Chemical Sciences, University of Padova, Padova, Italy; 6Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; 7Department of Neurosciences, University of Padova, Padova, Italy

Bibliography
Hedberg-Oldfors, C., Darin, N., Thomsen, C., Lindberg, C., and Oldfors, A. (2020). COX deficiency and leukoencephalopathy due to a novel homozygous APOPT1/COA8 mutation. Neurol Genet 6, e464.
Melchionda, L., Haack, T.B., Hardy, S., Abbink, T.E., Fernandez-Vizarra, E., Lamantea, E., Marchet, S., Morandi, L., Moggio, M., Carrozzo, R., et al. (2014). Mutations in APOPT1, Encoding a Mitochondrial Protein, Cause Cavitating Leukoencephalopathy with Cytochrome c Oxidase Deficiency. Am J Hum Genet 95, 315-325.
Pei, J., Zhang, J., and Cong, Q. (2022). Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics.
Sharma, S., Singh, P., Fernandez-Vizarra, E., Zeviani, M., Van der Knaap, M.S., and Saran, R.K. (2018). Cavitating Leukoencephalopathy With Posterior Predominance Caused by a Deletion in the APOPT1 Gene in an Indian Boy. J Child Neurol 33, 428-431.
Signes, A., Cerutti, R., Dickson, A.S., Beninca, C., Hinchy, E.C., Ghezzi, D., Carrozzo, R., Bertini, E., Murphy, M.P., Nathan, J.A., et al. (2019). APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO molecular medicine 11.


ID: 366
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Retinal pathophysiology characterisation of the novel mitochondrial heteroplasmy mouse model

Lucia Luengo-Gutierrez1, Keira Turner1, James B Stewart2, Patrick Yu-Wai-Man1, Michal Minczuk1

1University of Cambridge, United Kingdom; 2Newcastle University, United Kingdom



ID: 666
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Impaired spermatogenesis driven by mitochondrial dysfunction and ferroptosis in primary spermatocytes in a mouse model of Leigh syndrome

Enrico Radaelli1, Charles-Antoine Assenmacher1, Esha Banerjee1, Florence Manero2, Salim Khiati3, Anais Girona3, Guillermo Lopez-Lluch4, Placido Navas4, Marco Spinazzi3,5

1University of Pennsylvania,USA; 2University of Angers, SFR ICAT, SCIAM, 49000 Angers, France; 3MITOLAB, University of Angers, INSERM U1083, France; 4Pablo de Olavide University, Spain; 5Neuromuscular Reference Center CHU Angers, France



ID: 574
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitophagy dysfunction in mitochondrial myopathy and therapy by mitophagy activator CAP1902

Takayuki Mito1, Amy E. Vincent2, Julie Faitg2, Kathleen Rodgers3, Kevin Gaffney3, Thomas G. McWilliams1, Orian Shirihai4, Anu Suomalainen1

1STEMM Research Program, Biomedicum Helsinki, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 2Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; 3Department of Pharmacology, Center for Innovations in Brain Science, University of Arizona, Tucson, AZ, USA; 4Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA



ID: 192
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mtfp1 controls oxidative phosphorylation and cell death in liver disease

Cecilia Patitucci1, Juan Diego Hernández-Camacho1, Elodie Vimont1, Etienne Kornobis2, Thibault Chaze3, Quentin Giai Gianetto3,4, Mariette Matondo3, Anastasia Gazi5, Ivan Nemanyy6, Daniella Hock7, Erminia Donnarumma1, Timothy Wai1

1Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France.; 2Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France.; 3Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France.; 4Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France.; 5Institut Pasteur Ultrastructural Bio Imaging, UTechS, Université Paris Cité, Paris, France.; 6Platform for Metabolic Analyses, SFR Necker, INSERM US24/CNRS UMS 3633, Paris, France.; 7Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia.



ID: 319
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Non-canonical function of succinate dehydrogenase assembly factor 2 (SDHAF2) during OXPHOS dysfunction

Kugapreethan Roopasingam1, Joanna Sacharz1, Tegan Stait2, Yau chung Low2,3, Ann E. Frazier2,3, David P. De souza4, David R. Thorburn2,3,5, David A. Stroud1,3,5

1Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; 2Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; 3Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; 4Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; 5Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia



ID: 502
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

NUAK1-dependent metabolic underpinnings of adult muscle stem cells

Ha-My Ly, Caroline Brun, Géraldine Meyer-Dihet, Julien Courchet, Rémi Mounier

Physiopathology and Genetics of Neurons and Muscles Laboratory, Institut NeuroMyoGène, Lyon, France



ID: 415
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

A novel approach to measure complex V ATP hydrolysis in frozen cell lysates and tissue homogenates

Lucia Fernandez del Rio1,2, Cristiane Benincá1,2, Frankie Villalobos1,2, Cynthia Shu1,2, Linsey Stiles1,2,3, Marc Liesa1,2,4,5, Ajit S. Divakaruni2,3, Rebeca Acin-Perez1,2, Orian S. Shirihai1,2,3,4

1Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095 USA; 2Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; 3Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; 4Molecular & Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA.; 5Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Catalonia, 08028, Spain



ID: 440
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

OxPhos defects cause cell-autonomous and whole-body signs of hypermetabolism in cells and in patients with mitochondrial diseases

Gabriel Sturm1, Karan Kalpita1, Anna S Monzel1, Balaji Santhanam1, Tanja Taivassalo2, Céline Bris3, Atif Towheed1, Albert Higgins-Chen4, Meagan McManus5, Andres Cardenas6, Jue Lin7, Elissa Epel7, Shamima Rahman8, Jon Vissing9, Bruno Grassi10, Morgan Levine11, Steve Horvath11, Ronald G Haller12, Guy Lenaers3, Douglas C Wallace5, Marie-Pierre St-Onge1, Saeed Tavasoie1, Vincent Procaccio3, Brett A Kaufman13, Erin L Seifert14, Michio Hirano1, Martin Picard1

1Columbia University Irving Medical Center, United States of America; 2University of Florida, United States of America; 3Angers University, UMR CNRS 6015 - INSERM U1083, MitoVasc Institute, Angers, France; 4Yale University, United States of America; 5University of Pennsylvania, United States of America; 6Stanford University, United States of America; 7University of California San Francisco, United States of America; 8Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; 9University of Copenhagen, Denmark; 10University of Udine, Italy; 11Altos labs, United States of America; 12University of Texas Southwestern Medical Center, United States of America; 13University of Pittsburgh, United States of America; 14Thomas Jefferson University, United States of America

Bibliography
Sturm G et al. A multi-omics longitudinal aging dataset in primary human fibroblasts with mitochondrial perturbations. Sci Data 9, 751 (2022). https://doi.org/10.1038/s41597-022-01852-y

Sturm G. et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 6, 22 (2023). https://doi.org/10.1038/s42003-022-04303-x


ID: 605
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dysfunction of mitochondrial chaperone HSP60 triggers disruption of mitochondrial pathways activating multiple regulatory responses

Cagla Cömert1, Paula Fernandez-Guerra1, Kasper Kjær-Sørensen2, Jakob Hansen3, Jesper Just4,5, Jasper Carlsen1, Lisbeth Schmidt-Laursen2, Johan Palmfeldt1, Peter Bross1

1Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; 3Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; 4Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; 5Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Bibliography
1. Bie AS, Cömert C, Körner R, et al. An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space. Cell Stress Chaperones. 2020;25(3):407-416.
2. Bross P, Naundrup S, Hansen J, et al. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem. 2008;283(23):15694-15700.
3. Magen D, Georgopoulos C, Bross P, et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet. 2008;83(1):30-42.
4. Cömert C, Brick L, Ang D, et al. A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy. Cold Spring Harb Mol Case Stud. 2020;6(3):a004879. Published 2020 Jun 12.


ID: 365
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Generation of iPSCs derived neural progenitors and cardiomyocytes as cellular models to study the pathophysiology of Pearson Syndrome

Chiara Fasano1, Luca Sala2,3, Camille Peron1, Andrea Cavaliere1, Maria Nicol Colombo1, Valeria Tiranti1

1Unit of Medical genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; 2Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy; 3Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy



ID: 476
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

High aerobic exercise capacity predicts increased mitochondrial response to exercise training

Estelle Heyne1, Susanne Zeeb1, Luren G Koch2, Steven L Britton3, Torsten Doenst1, Michael Schwarzer1

1Department of Cardiothoracic Surgery, University Hospital of Friedrich-Schiller-University Jena, Germany; 2Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States; 3Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States

Bibliography
Heyne E, Schrepper A, Doenst T, Schenkl C, Kreuzer K, Schwarzer M. High-fat diet affects skeletal muscle mitochondria comparable to pressure overload-induced heart failure. J Cell Mol Med. 2020 Jun;24(12):6741-6749. doi: 10.1111/jcmm.15325. Epub 2020 May 4. PMID: 32363733; PMCID: PMC7299710.
Schwarzer M, Molis A, Schenkl C, Schrepper A, Britton SL, Koch LG, Doenst T. Genetically determined exercise capacity affects systemic glucose response to insulin in rats. Physiol Genomics. 2021 Sep 1;53(9):395-405. doi: 10.1152/physiolgenomics.00014.2021. Epub 2021 Jul 23. PMID: 34297615; PMCID: PMC8530732.


ID: 488
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating the role of LONP1 in heart and skeletal muscle metabolism

Franziska Baumann1, Dieu Hien Rozsivalova1, Katharina Senft1, Simon Geißen2, Aleksandra Trifunovic3

1Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; 2Department III of Internal Medicine, Heart Center, University Hospital of Cologne, 50931 Cologne, Germany; 3Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany



ID: 229
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial dysfunction promotes liver fibrosis through the ACOT2-MCT6-OXCT1 axis.

Xiaoshan Zhou1, Sophie Curbo1, Wei Wang2, Xinling Li2, Jingyi Yan1, Yu Lei1, Raoul Kuiper3, Ujjwal Noegi1, Anna Karlsson1

1Karolinska Institutet, Sweden; 2Zhengzhou University, China; 3Norwegian Veterinary Institute, Norway

Bibliography
Zhou X, Mikaeloff F, Curbo S, Zhao Q, Kuiper R, Végvári Á, Neogi U, Karlsson A.Coordinated pyruvate kinase activity is crucial for metabolic adaptation and cell survival during mitochondrial dysfunction.Hum Mol Genet. 2021 Oct 13;30(21):2012-2026


ID: 655
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

PNC2 (SLC25A36) deficiency associated with the hyperinsulinism/hyperammonemia syndrome

Francesco Massimo Lasorsa1, Deborah Fratantonio2, Maher A. Shahroor3, Vito Porcelli1, Bassam Abu-Libdeh3, Orly Elpeleg4, Luigi Palmieri1

1Università degli Studi di Bari Aldo Moro, Italy; 2Libera Università Mediterranea Giuseppe Degennaro, Italy; 3Department of Pediatrics and Genetics, Al Makassed Hospital and Al-Quds University, Palestine.; 4Department of Genetics, Hadassah, Hebrew University Medical Center, Israel

Bibliography
[1] M.A. Shahroor, F.M. Lasorsa, V. Porcelli V, I. Dweikat, M.A. Di Noia, M. Gur, G. Agostino, A . Shaag A, T. Rinaldi, G. Gasparre, F. Guerra, A. Castegna, S. Todisco, B. Abu-Libdeh, O. Elpeleg, L. Palmieri, PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome, J Clin Endocrinol Metab, 107(2022):1346-1356.
[2] L. Jasper, P. Scarcia, S. Rust, J. Reunert, F. Palmieri, T. Marquardt, Uridine Treatment of the First Known Case of SLC25A36 Deficiency, Int J Mol Sci. 22(2021) 9929.
[3] Safran A, Proskorovski-Ohayon R, Eskin-Schwartz M, Yogev Y, Drabkin M, Eremenko E, Aharoni S, Freund O, Jean MM, Agam N, Hadar N, Loewenthal N, Staretz-Chacham O, Birk OS.Hyperinsulinism/hyperammonemia syndrome caused by biallelic SLC25A36 mutation. J Inherit Metab Dis. 2023 Jan 25. doi: 10.1002/jimd.12594. Online ahead of print


ID: 397
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Cultured neurons with CoQ10 deficiency reveal alterations of lipid metabolism

Alba Pesini1, Eliana Barriocanal-Casado1, Giacomo Monzio-Compagnoni2, Kleiner Giulio1, Agustin Hidalgo-Gutierrez1, Mohammed Bakkali3, Yashpal Singh Chhonker4, Saba Tadesse1, Delfina Larrea1, Daryl J Murry4, Caterina Mariotti5, Barbara Castellotti5, Luis Carlos Lopez3, Alesio Di Fonzo2, Estela Area-Gomez1, Catarina Quinzii1

1Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, United States; 2IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; 3Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada, 18100, Spain; 4Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE; 5Unita` di Genetica delle Malattie Neurodegenerative e Metaboliche, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, 20126, Italy

Bibliography
1. Turunen, M.; Olsson, J.; Dallner, G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta - Biomembr. 2004, 1660, 171–199, doi:10.1016/j.bbamem.2003.11.012.
2. Quinzii, C.M.; López, L.C.; Gilkerson, R.W.; Dorado, B.; Coku, J.; Naini, A.B.; Lagier-Tourenne, C.; Schuelke, M.; Salviati, L.; Carrozzo, R.; et al. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J. 2010, 24, 3733–3743, doi:10.1096/fj.09-152728.
3. Emma, F.; Montini, G.; Parikh, S.M.; Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. 2016, doi:10.1038/nrneph.2015.214.
4. Ernster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1995, 1271, 195–204.


ID: 426
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration

M. Tanvir Rahman1, M. Kristian Koski2, Joanna Panecka-Hofman3,4, Werner Schmitz5, Alexander J. Kastaniotis1, Rebecca C. Wade4,6, Rik K. Wierenga1, J. Kalervo Hiltunen1, Kaija J. Autio1

1Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; 2Biocenter Oulu, University of Oulu, Oulu, Finland; 3Faculty of Physics, University of Warsaw, Warsaw, Poland; 4Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; 5Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany; 6Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany

Bibliography
Rahman M.T., Koski M.K., Panecka-Hofman J., Schmitz W, Kastaniotis A.J., Wade R.C., Wierenga R.K., Hiltunen J.K. & Autio K.J. (2023) An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration. Nature Communications 14(1):619. doi: 10.1038/s41467-023-36358-7
Alam J., Sah-Teli S.K., Venkatesan R., Koski M.K., Autio K.J., Hiltunen J K. & Kastaniotis A.J. (2021) Biophysical and structural analysis of the SAM-dependent Saccharomyces cerevisiae methyltransferase family protein Rsm22. Acta Crystallographica Section D. 77:840-853
Kastaniotis A.J., Autio K.J. & Nair R.R. (2021) Mitochondrial fatty acids and neurodegenerative disorders. Neuroscientist 27(2):143-158


ID: 561
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Antibiotics directly affect mitochondrial respiration

Judith Sailer1, Sabine Schmitt2, Hans Zischka1,3, Erich Gnaiger2

1Technische Universität München, Germany; 2Oroboros Instruments GmbH, Innsbruck, Austria; 3Helmholtz Zentrum München, Germany

Bibliography
[1] Tarantino G. et al. (2017): Hepatol Res. 37:410‐415
[2] O'Reilly M. et al. (2019):. Front Cell Neurosci. 13;13:416. doi: 10.3389/fncel.2019.00416.
[3] Oyebode OT. et al. (2018) Toxicology Mechanisms and Methods, 1–31.doi:10.1080/15376516.2018.1528651


ID: 471
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Can transmission of mitochondria over the species barrier promote climate change adaptation?

Kateryna Gaertner1, Craig Michell2, Riikka Tapanainen2, Steffi Goffart2, Sina Saari1, Manu Soininmäki2, Eric Dufour1, Jaakko Pohjoismäki2

1Tampere University, Finland; 2University of Eastern Finland

Bibliography
Gaertner K, Michell C, Tapanainen R, et al. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (Lepus spp., Lagomorpha: Leporidae) [published online ahead of print, 2022 Nov 1]. Mol Ecol. 2022; doi:10.1111/mec.16755


ID: 626
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Developing an in vitro model to study the impact of the m.3243A>G mutation in iPSC-derived myofibers

Gabriel E. Valdebenito, Anitta R. Chacko, Michael R. Duchen

University College London, United Kingdom



ID: 334
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Discordant phenotype in fibroblast cell lines generated from the same MELAS patient

Monica Moresco1, Valentina Concetta Tropeano1, Valentina Del Dotto2, Mariantonietta Capristo1, Claudio Fiorini1, Danara Ormanbekova1, Chiara La Morgia1,2, Maria Lucia Valentino1,2, Valerio Carelli1,2, Alessandra Maresca1

1IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy; 2Department of Biomedical and Neuromuscular Sciences (DIBINEM), University of Bologna



ID: 531
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Generation of a novel CoQ deficient mouse model to elucidate the role of COQ4

Eliana Barriocanal Casado, Agustin Hidalgo-Gutierrez, Alba Pesini, Catarina M Quinzii

Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA.

Bibliography
1.Guerra, R.M. and D.J. Pagliarini, Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci, 2023.
2.Alcázar-Fabra, M., E. Trevisson, and G. Brea-Calvo, Clinical syndromes associated with Coenzyme Q. Essays Biochem, 2018. 62(3): p. 377-398.
3.Belogrudov, G.I., et al., Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys, 2001. 392(1): p. 48-58.
4.Casarin, A., et al., Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. Biochem Biophys Res Commun, 2008. 372(1): p. 35-9.
5.Marbois, B., et al., Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem, 2005. 280(21): p. 20231-8.
6.Marbois, B., et al., The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys Acta, 2009. 1791(1): p. 69-75.


ID: 414
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Perivascular adipose tissue remodeling impairs mitochondrial function in thermoneutral-housed rats

Amy C Keller1, Melissa M Henckel1, Leslie A Knaub1, Greg B Pott1, Georgia James2, Jane E-B Reusch1

1University of Colorado/Rocky Mountain Regional VA Medical Center, United States of America; 2Cornell College, United States of America

Bibliography
1. Chun J.H., Henckel M.M., Knaub L.A., Hull S.E., Pott G.B., Ramirez D.G., Reusch J.E.-B., Keller A.C. (-)-Epicatechin Reverses Glucose Intolerance in Rats Housed at Thermoneutrality. Planta Med. 2022 Aug;88(9-10):735-744. doi: 10.1055/a-1843-9855.

2. Keller A.C., Chun J.H., Knaub L.A., Henckel M.M., Hull S.E., Scalzo R.L., Pott G.B., Walker L.A., Reusch J.E.-B. Thermoneutrality induces vascular dysfunction and impaired metabolic function in male Wistar rats: a new model of vascular disease. J Hypertens. 2022 Nov 1;40(11):2133-2146. doi: 10.1097/HJH.0000000000003153.

3. Vaughan O.R., Rosario F.J., Chan J., Cox L.A., Ferchaud-Roucher V., Zemski-Berry K.A., Reusch J.E.- B., Keller A.C., Powell T.L., Jansson T. Maternal obesity causes fetal cardiac hypertrophy and alters adult offspring myocardial metabolism in mice. J Physiol. 2022 Jul;600(13):3169-3191. doi: 10.1113/JP282462.

4. Chun J.H., Henckel M.M., Knaub L.A., Hull S.E., Pott G., Walker, L.A., Reusch J.E.B., Keller A.C. (–)-Epicatechin improves vasoreactivity and mitochondrial respiration in thermoneutral-housed Wistar rat vasculature. Nutrients. 2022 14(5), 1097;doi.org/10.3390/nu14051097.

5. Keller, A.C., Hull, S.E., Elajaili, H., Johnston, A., Knaub, L.A., Chun, J.H., Walker, L.A., Nozik-Grayck, E., Reusch, J.E.-B. (–)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress. Oxidative Medicine and Cellular Longevity. 2020. doi.org/10.1155/2020/6392629


ID: 595
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Temporal analysis of mitochondrial complexome profiling coupled to multi-omics analysis unveils implications of CIV remodelling in postnatal heart development

Milica Popovic, Aleksandra Trifunovic

University of Cologne, Germany

Bibliography
1. Porter Jr G., et al. (2011) Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 75–81. doi: 10.1016/j.ppedcard.2011.02.002;
2. Gan J., Sonntag H-J., Tang Mk., Cai D., Lee KKH. (2015) Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome. PLoS ONE 10 (7): e0133288. doi:10.1371/journal.pone.0133288
3. Gu Y., et al. (2022) Multi-omics profiling visualizes dynamics of cardiac development and functions, Cell Reports, Volume 41, Issue 13,111891, ISSN 2211-1247, https://doi.org/10.1016/j.celrep.2022.111891.
4.Talman V., et al. (2018). Molecular Atlas of Postnatal Mouse Heart Development. J Am Heart Assoc. 2018;7:e010378. DOI: 10.1161/JAHA.118.010378


ID: 258
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial dysfunction in immune cells leads to distinct transcriptome profile and improved immune competence in Drosophila

Yuliya Basikhina1, Laura Vesala1,2, Tea Tuomela1, Emilia Siukola1, Anssi Nurminen1, Pedro F. Vale3, Tiina S. Salminen1

1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; 2Department of Molecular Biology, Umeå University, Umeå, Sweden; 3Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom



ID: 376
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Molecular mechanisms of extraocular muscle manifestation in mitochondrial myopathy

Swagat Pradhan, Takayuki Mito, Thomas McWilliams, Nahid Khan, Anu Suomalainen

STEMM, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland

Bibliography
Forsström, S., Jackson, C. B., Carroll, C. J., Kuronen, M., Pirinen, E., Pradhan, S., … Suomalainen, A. (2019). Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress Responses in Mitochondrial Myopathy with mtDNA
Deletions. Cell Metabolism, 1–15. https://doi.org/10.1016/j.cmet.2019.08.019.

Khan, N. A., Nikkanen, J., Yatsuga, S., Jackson, C., Wang, L., Pradhan, S., … Suomalainen, A. (2017). mTORC1 Regulates
Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metabolism, 26(2), 419-428.e5.
https://doi.org/10.1016/j.cmet.2017.07.007

Pradhan, S...Lopus M (2017) “Elucidation of the Tubulin-Targeted Mechanism of Action of 9-(3-Pyridyl) Noscapine.” Cur.
Top. in Medicinal Chemistry, vol. 17, no. 22, 2017, pp. 2569–74, doi:http://dx.doi.org/10.2174/1568026617666170104150304.


ID: 572
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Redox metabolites and transporters: Differential expression and ratios in specific Ndufs4 knockout mice organs.

Jeremie Zander Lindeque, Marthinus Theodorus Jooste, Daneël Nel, Belinda Fouché, Marianne Venter

Human Metabolomics, North-West University, South Africa



ID: 475
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

What makes folding of a mitochondrial protein dependent on the HSP60/HSP10 chaperone complex?

Peter Bross, Cagla Cömert, Paula Fernandez-Guerra, Johan Palmfeldt

Aarhus University and Aarhus University Hospital, Denmark

Bibliography
1.Henriques, B. J., Katrine Jentoft Olsen, R., Gomes, C. M., andBross, P. (2021) Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease Gene 145407 10.1016/j.gene.2021.145407
2.Cömert, C., Brick, L., Ang, D., Palmfeldt, J., Meaney, B. F., Kozenko, M. et al. (2020) A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy Cold Spring Harb Mol Case Stud 6, 10.1101/mcs.a004879
3.Bie, A. S., Comert, C., Korner, R., Corydon, T. J., Palmfeldt, J., Hipp, M. S. et al. (2020) An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space Cell Stress Chaperones 25, 407-416 10.1007/s12192-020-01080-6
4.Palmfeldt, J., andBross, P. (2017) Proteomics of human mitochondria Mitochondrion 33, 2-14 10.1016/j.mito.2016.07.006


ID: 385
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

OXPHOS composition is altered in the FXNI151F mouse model of Friedreich Ataxia in a progressive and a tissue-specific way

Maria Pazos-Gil, Marta Medina-Carbonero, Arabela Sanz-Alcázar, Marta Portillo-Carrasquer, Fabien Delaspre, Elisa Cabiscol, Joaquim Ros, Jordi Tamarit

Dept. Ciències Mèdiques Bàsiques, Fac. Medicina, Universitat de Lleida. IRB Lleida.

Bibliography
Medina-Carbonero M, Sanz-Alcázar A, Britti E, Delaspre F, Cabiscol E, Ros J, Tamarit J. Mice harboring the FXN I151F pathological point mutation present decreased frataxin levels, a Friedreich ataxia-like phenotype, and mitochondrial alterations. Cell Mol Life Sci. 2022 Jan 17;79(2):74.


ID: 482
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Disease causing-Mfn2 mutations alter mitochondrial fusion and fission dynamics and metabolism.

Daniel Lagos1,2, Nicolas Perez2, Pamela R. de Santiago2, Diego Troncoso2, Benjamin Cartes-Saavedra2, Rita Horvath1, Veronica Eisner2

1Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.; 2School of Biological Sciences, Department of Cellular and Molecular Biology, Pontificia Universidad Catolica de Chile, Santiago, Chile.



ID: 284
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dissecting the mitochondrial disease-associated ATAD3 gene cluster and its pathogenic variants

Linden Muellner-Wong1,2, Ann E. Frazier2,3, Eric Hanssen4, Tegan Stait2,3,5, Alice J. Sharpe6, Danielle L. Rudler7,8,9, Shuai Nie10, Luke E. Formosa6, Michael T. Ryan6, Aleksandra Filipovska7,8,9, David R. Thorburn2,3,5, David A. Stroud1,2,5

1Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria,Australia; 2Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; 3Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; 4Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia; 5Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia; 6Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; 7Harry Perkins Institute of Medical Research and The University of Western Australia Centre for Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; 8ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre and University of Western Australia, Nedlands, Western Australia, Australia; 9Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia; 10Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia



ID: 340
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Dynamics of adenine nucleotides in colorectal cancer clinical material

Sten Miller1,2, Leenu Reinsalu1,2, Marju Puurand1, Natalja Timohhina1, Kersti Tepp1, Igor Sevchuk1, Indrek Reile1, Heiki Vija1, Vahur Valvere3, Jelena Bogovskaja3, Tuuli Käämbre1

1National Institute of Chemical Physics and Biophysics, Estonia; 2Tallinn University of Technology, Estonia; 3North Estonia Medical Centre

Bibliography
Klepinin, A., Miller, S., Reile, I., Puurand, M., Rebane-Klemm, E., Klepinina, L., Vija, H., Zhang, S., Terzic, A., Dzeja, P., & Kaambre, T. (2022). Stable Isotope Tracing Uncovers Reduced γ/β-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Frontiers in oncology, 12, 892195. https://doi.org/10.3389/fonc.2022.892195

Reinsalu, L., Puurand, M., Chekulayev, V., Miller, S., Shevchuk, I., Tepp, K., Rebane-Klemm, E., Timohhina, N., Terasmaa, A., & Kaambre, T. (2021). Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Frontiers in oncology, 11, 698951. https://doi.org/10.3389/fonc.2021.698951

Kaup, K. K., Toom, L., Truu, L., Miller, S., Puurand, M., Tepp, K., Käämbre, T., & Reile, I. (2021). A line-broadening free real-time 31P pure shift NMR method for phosphometabolomic analysis. The Analyst, 146(18), 5502–5507. https://doi.org/10.1039/d1an01198g


ID: 521
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The role of SURF1 protein in cytochrome c oxidase biogenesis

Maria Jose Saucedo Rodriguez1, Petr Pecina1, Kristýna Čunátová1, Marek Vrbacký1, Alena Pecinová1, Roman Sobotka2, Carlo Viscomi3, Massimo Zeviani4, Tomáš Mráček1, Josef Houštěk1

1Institute of Physiology of the Czech Academy of Sciences, Czech Republic; 2Institute of Microbiology, Czech Academy of Sciences, Trebon, Czech Republic; 3Departement of Biomedical Sciences, University of Padova, Padova, Italy; 4Departement of Neurosciences, University of Padova, Padova, Italy

Bibliography
N. Kovářová, P. Pecina, H. Nůsková, M. Vrbacký, M. Zeviani, T. Mráček, C. Viscomi, J. Houštěk, Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects, BBA, 1862 (2016), 705-15.


ID: 447
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Depicting inclusion body myositis using a patient-derived fibroblast model

Judith Cantó Santos1,2,3, Laura Valls Roca1,2,3, Ester Tobías1,2,3, Francesc Josep García García1,2,3, Mariona Guitart Mampel1,2,3, Félix Andújar Sánchez1,2,3, Anna Esteve Codina4,5, Beatriz Martín Mur4, Mercedes Casado3,6, Rafael Artuch3,6, Estel Solsona Vilarrasa7,8, José Carlos Fernández Checa7,8, Carmen García Ruiz7,8, Carles Rentero9, Carlos Enrich9, Pedro Juan Moreno Lozano1,2,3, José César Milisenda1,2,3, Francesc Cardellach1,2,3, Josep Maria Grau Junyent1,2,3, Glòria Garrabou1,2,3

1Laboratory of Inherited Metabolic Disorders and Muscle Disease, Centre de Recerca Biomèdica CELLEX - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; 2Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain; 3CIBERER— Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain; 4CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; 5Universitat Pompeu Fabra (UPF), Barcelona, Spain; 6Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu; Esplugues de Llobregat, Barcelona, Spain; 7Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit-HCB-IDIBAPS, Barcelona, Spain; 8CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain; 9Department of Biomedicine, Cell Biology Unit, CELLEX-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain



ID: 223
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Effect of physiological cell culture media on cell viability and NRF2 activation

Anton Terasmaa, Rutt Taba, Marie Põlluaed, Tuuli Käämbre

National Institute of Chemical and Biological Physics, Estonia



ID: 637
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Genetic and functional characterization of a new patient with COX4I1 deficiency

Frederic Tort1, Olatz Ugarteburu1, Gerard Muñoz-Pujol1, María Unceta2, Ainhoa García2, Arantza Arza2, Javier de las Heras2, Antonia Ribes1, Laura Gort1

1Hospital Clinic, IDIBAPS, CIBERER, Barcelona, Spain; 2Hospital Universitario de Cruces, Spain



ID: 233
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Application of the Escherichia coli Model System to Study the Human Polyribonucleotide Phosphorylase

Roberto Pizzoccheri, Federica Anna Falchi, Andrea Alloni, Francesca Forti, Sarah Sertic, Giulio Pavesi, Federica Briani

Università degli Studi di Milano, Italy



ID: 523
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Phase two biotransformation is highly affected by mitochondrial disease: considerations for pharmacological therapies.

Marianne Venter, Belinda Fouché, Louis Mostert, Zander Lindeque, Rencia van der Sluis

Human Metabolomics, North-West University, South Africa

Bibliography
1.Kühn, S., Williams, M. E., Dercksen, M., Sass, J. O., & van der Sluis, R. (2023). The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA-an in-silico and in vitro validation. Computational and Structural Biotechnology Journal, 21, 1236-1248. https://doi.org/10.1016/j.csbj.2023.01.041
2.Gruosso, F., Montano, V., Simoncini, C., Siciliano, G., & Mancuso, M. (2020). Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020. Journal of Clinical Medicine, 10(1), 94. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jcm10010094
3.Fouché, B. R. (2021). Differential expression of genes involved in phase two biotransformation in an NDUFS4 deficient mouse model (Master’s dissertation, North-West University (South Africa)). http://hdl.handle.net/10394/38596


ID: 436
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial phenotyping of fibroblasts from Kearns Sayre’s patients to model the disease

Laura Valls-Roca1,2,3, Judith Cantó-Santos1,2,3, Ester Tobías1,2,3, Francesc Josep García-García1,2,3, Félix Andújar-Sánchez1,2, Laia Farré-Tarrats1,2, Cristina Núñez de Arenas3,6, Rocío Garrido-Moraga5, Joan Padrosa1,2, Raquel Aránega1,2, Pedro J. Moreno-Lozano1,2,3, José César Milisenda1,2, Mar O’Callaghan3,4, Teresa García-Silva3,5, Montserrat Morales-Conejo3,5, Rafael Artuch3,4, Miguel Ángel Martín3,5, José M. Cuezva3,6, Josep M. Grau-Junyent1,2,3, Mariona Guitart-Mampel1,2,3, Glòria Garrabou1,2,3

1Laboratory of Inherited Metabolic Disorders and Muscle Disease, Centre de Recerca Biomèdica CELLEX - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences - Universitat de Barcelona (UB); Barcelona, Spain.; 2Internal Medicine Department - Hospital Clínic de Barcelona; Barcelona, Spain.; 3CIBERER—Spanish Biomedical Research Centre in Rare Diseases; Madrid, Spain.; 4Hospital Sant Joan de Déu (HSJdD) de Barcelona, Barcelona, Spain.; 5Grupo de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (imas12). Madrid. Spain.; 6Centro de Biología Molecular S.O., Universidad Autónoma de Madrid (UAM); Madrid, Spain.



ID: 343
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Effect of various mutations in the GTPase and middle domain of Drp1 on the mitochondrial network, nucleoids, and peroxisomes

Nikol Volfová1, Aleš Hnízda1, Lukáš Alán2, Robert Dobrovolný1, Jakub Sikora1, Jana Křížová1, Lucie Zdražilová1, Hana Hansíková1, Jiří Zeman1, Markéta Tesařová1

1Department of Paediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic; 2Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic



ID: 317
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Importance of human ClpXP protease for mitochondrial function

Daniela Burska, Jana Tesarova, Jana Krizova, Nikol Volfova, Hana Hansikova, Jiri Zeman, Lukas Stiburek

First Faculty of Medicine, Charles University; and General University Hospital in Prague



ID: 581
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Ketogenic diet mitigates the pathogenic phenotype in TMEM70 deficient animal models

Aleksandra Marković1, Petr Pecina1, Alena Pecinová1, Marek Vrbacký1, Jana Mikešová1, Hana Nuskova1, Kateřina Tauchmannová1, Otto Kučera3, Zuzana Cervinkova3, Radislav Sedláček2, Josef Houštěk1, Tomáš Mráček1

1Institute of Physiology of the Czech Acad. Sci., Prague, Czech Republic; 2Institute of Molecular Genetics of the Czech Acad. Sci., Prague, Czech Republic; 3Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic



ID: 276
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mutation in Coq5 leads to CoQ10 deficiency, developmental delay and early death in zebrafish

Sergio López-Herrador1, Julia Corral-Sarasa2, Macarena Gil1, Yaco Morillas1, Luis C. López1,2, Mª. Elena Díaz-Casado1,2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs.Granada, Granada, Spain

Bibliography
[1] Malicdan MCV, Vilboux T, Ben-Zeev B, et al. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat. 2018;39(1):69-79


ID: 364
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Omega-3 supplementation effects on mitochondrial and metabolic profile in a rabbit model of intrauterine growth restriction

Félix Andújar-Sánchez1,2,3, Mariona Guitart-Mampel1,2,3, Míriam Illa3,4, Ester Tobías1,2,3, Laura Valls-Roca1,2,3, Judith Cantó-Santos1,2,3, Laia Farré-Tarrats1,2,3, Clara Oliva3,5, Francesc Cardellach1,2,3, Rafael Artuch3,5, Fàtima Crispi3,4, Glòria Garrabou1,2,3, Francesc J García-García1,2,3

1Inherited metabolic diseases and muscular disorders Lab, Cellex - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science - University of Barcelona (UB), 08036 Barcelona, Spain; 2Internal Medicine Unit, Medicine Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; 3Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; 4BCNatal—Barcelona Centre for Maternal-Foetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, 08036 Barcelona, Spain; 5Department of Clinical Biochemistry, Institut de Recerca de Sant Joan de Deu, Esplugues de Llobregat, 08036 Barcelona, Spain



ID: 616
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Redundant and divergent roles of COQ8A and COQ8B in cell metabolism.

Agata Valentino1, Elisa Baschiera1, Iolanda Spera2, Luna Laera2, Valentina Giorgio3, Alessandra Castegna2, Leonardo Salviati1, Maria Andrea Desbats1

1Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova and “Fondazione Istituto di Ricerca Pediatrica Città Della Speranza”, 35127 Padova, Italy.; 2Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70121 Bari, Italy; 3Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy.



ID: 305
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Loss of CHCHD8 (COA4) caused mitochondrial respiratory Complex IV deficiency

Taku Amo, Yuga Hikage

National Defense Academy, Japan



ID: 341
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Delving into the phenotypic heterogeneity of Coenzyme Q biosynthesis defects

Ariadna Crespo-González1, María del Mar Blanquer-Rosselló1,2, Laura García-Corzo1,2, Carmine Staiano1,2, María Chacón1, Ana Belén Cortés-Rodríguez3, Estefanía Sanabria-Reinoso1, María Almuedo-Castillo1, Miguel Ángel Moreno-Mateos1,2, Gloria Brea-Calvo1,2

1Centro Andaluz de Biología del Desarrollo/Universidad Pablo de Olavide-CSIC-JA, Seville, Spain; 2CIBERER, Instituto de Salud Carlos III, Madrid, Spain; 3Laboratorio de Fisiopatología Celular y Bioenergética, Seville, Spain.



ID: 654
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Investigating the impact of mtDNA point mutations on mitochondrial function and bioenergetics using patient fibroblasts and hiPSC derived neuronal models

Anitta Rose Chacko, Gabriel Esteban Valdebenito, Michael R Duchen

University College London, United Kingdom



ID: 632
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Human COQ10A and COQ10B genes are essential for Coenzyme Q function in mitochondrial respiration

Elisa Baschiera1, Carlo Viscomi1, Maria Andrea Desbats2, Placido Navas3, Leonardo Salviati1,2

1University of Padova, Italy; 2Isituto di Ricerca Pediatrica - Cittá della Speranza, Italy; 3Pablo de Olavide University, Sevilla, Spain

Bibliography
[1] Stefely JA, Pagliarini DJ. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem Sci. 2017 Oct;42(10):824-843. doi: 10.1016/j.tibs.2017.06.008. Epub 2017 Sep 17. PMID: 28927698; PMCID: PMC5731490.
[2] Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, Ibarra H, Clubb RT, Blaby-Haas CE, Clarke CF. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res. 2019 Jul;60(7):1293-1310. doi: 10.1194/jlr.M093534. Epub 2019 May 2. PMID: 31048406; PMCID: PMC6602128.


ID: 286
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The use of β-RA in leptin-deficient mice reveals novel mechanisms of this compound for the treatment of obesity

Sara Torres-Rusillo1, Sergio López-Herrador1, Pilar González-García1, Mª. Elena Díaz-Casado1,2, Laura Jiménez-Sánchez2, Julia Corral-Sarasa2, Julio Ruiz-Travé1, Luis C. López1,2

1Physiology Department, Biomedical Research Center, University of Granada, Granada, Spain; 2Ibs.Granada, Granada, Spain

Bibliography
Santos AL, Sinha S. Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev. 2021;67:101268

Hidalgo-Gutiérrez A, Barriocanal-Casado E, Díaz-Casado ME, et al. β-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight. Biomedicines. 2021;9(10):1457


ID: 274
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oocyte-specific mitofusin 2 knockout enhances the metabolic disfunction of offspring born to obese mothers

Jaiane Santana da Paz, Angélica Camargo dos Santos, Lindomar Oliveira Alves, Julio Cesar Valerio Roncato, Renan Omete Ferreira, Victória Hass Gonçalves, Mirela Souza Cáceres, Marcos Roberto Chiaratti

Federal University of Sao Carlos, Brazil

Bibliography
GARCIA, B.M.; MACHADO, T.S.; CARVALHO, K.F.; NOLASCO, P.; NOCITI, R.P.; DEL COLLADO, M.; CAPO BIANCO, M.J.D.; GREJO, M.P.; AUGUSTO NETO, J.D.; SUGIYAMA, F.H.C.; TOSTES, K.; PANDEY, A.K.; GONÇALVES, L.M.; PERECIN, F.; MEIRELLES, F.V.; FERRAZ, J.B.S.; VANZELA, E.C.; BOSCHERO, A.C.; GUIMARÃES, F.E.G.; ABDULKADER, F.; LAURINDO, F.R. M.; KOWALTOWSKI, A.J.; CHIARATTI, M.R. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Molecular Human Reproduction, v. 26, p. 938-952, 2020.


ID: 489
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Off-target effects of etomoxir: inhibition of mitochondrial Complex I and fatty acid oxidation

Timea Komlódi1,2, Filomena SG Silva3, Ana I Duarte3,4,5, Débora Mena3,5,6, Luiz F Garcia-Souza1, Marina Makrecka-Kuka7, Guida Bento3, Luís F Grilo3,5,6, Paulo J Oliveira3, Erich Gnaiger1

1Oroboros Instruments, Innsbruck, Austria; 2Dept Biochem, Semmelweis Univ, Budapest, Hungary; 3CNC-Center Neurosci and Cell Biol, Univ Coimbra, Portugal; 4IIUC-Inst Interdisciplinary Research, Univ Coimbra, Portugal; 5CIBB-Center for Innovative Biomed Biotechnol, Univ Coimbra, Portugal; 6PDBEB-PhD Programme in Exp Biol Biomed, IIUC, Univ Coimbra, Portugal; 7Lab Pharmaceut Pharmacol, Latvian Inst Organic Synthesis, Riga, Latvia

Bibliography
Fischer C, Valente de Souza L, Komlódi T, Garcia-Souza LF, Volani C, Tymoszuk P, Demetz E, Seifert M, Auer K, Hilbe R, Brigo N, Petzer V, Asshoff M, Gnaiger E, Weiss G (2022) Mitochondrial respiration in response to iron deficiency anemia. Comparison of peripheral blood mononuclear cells and liver. https://doi.org/10.3390/metabo12030270

Komlódi T, Tretter L (2022) The protonmotive force – not merely membrane potential. Bioenerg Commun 2022.16. https://doi.org/10.26124/bec:2022-0016

Pallag G, Nazarian S, Ravasz D, Bui D, Komlódi T, Doerrier C, Gnaiger E, Seyfried TN, Chinopoulos C (2022) Proline oxidation supports mitochondrial ATP production when Complex I is inhibited. https://doi.org/10.3390/ijms23095111

Komlódi T, Cardoso LHD, Doerrier C, Moore AL, Rich PR, Gnaiger E (2021) Coupling and pathway control of coenzyme Q redox state and respiration in isolated mitochondria. https://doi.org/10.26124/bec:2021-0003

Komlódi T, Sobotka O, Gnaiger E (2021) Facts and artefacts on the oxygen dependence of hydrogen peroxide production using Amplex UltraRed. https://doi.org/10.26124/bec:2021-0004


ID: 542
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Mitochondrial alterations in sirtuin1 heterozygous mice fed high fat diet and melatonin

Alessandra Stacchiotti1,2, Francesca Arnaboldi1, Gaia Favero3, Aleksandra Korac4, Maria Monsalve5, Rita Rezzani3

1Dept Biomedical Sciences for Health, University of Milan, Milan, Italy; 2Laboratorio Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy; 3Dept Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; 4Center for Electron Microscopy, University of Belgrade, Belgrade, Serbia; 5Instituto de Investigaciones Biomedicas “Alberto Sols” (CSIC-UAM), Madrid, Spain

Bibliography
1. Paramesha B. et al. Antioxidants (2021) 10: 338;
2. Stacchiotti A. et al. Cells (2019) 8: 1053.
3. Stacchiotti A et al. Nutrients (2017) 9:1323.


ID: 1300
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Microproteins in metabolic regulation

Jiemin Nah1, Baptiste Kerouanton1, David Robinson2, Kyle Dunlap3, Pooja Sridnivasan1, Sonia Chothani1, Greg Ducker3, Owen Rackham4, David Stroud2, Lena Ho1

1Duke-NUS Medical School, Singapore; 2University of Melbourne, Australia; 3University of Utah, USA; 4University of Southampton, UK

Bibliography
Lena Ho, PhD (lead PI), is regarded as a pioneer in the field of microprotein research with over 30 primary research articles (5991 citations, H-index of 21) in top-tier journals. With more than 12 years of experience in microprotein discovery, functionalization and therapeutic development, Lena and her team have developed a framework of bioinformatic tools for mining ribo-seq data for disease-relevant small ORF peptides, as well as an extensive range of biochemical tools to validate their function and uncover their molecular mechanism. Lena is an EMBO Young Investigator and HHMI international scholar.
Recent publications :
1) Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity.
Lee CQE, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, Hock DH, Lim R, Nadkarni R, Huynh VT, Lim D, Chew WL, Zhong FL, Stroud DA, Schafer S, Tergaonkar V, St John AL, Rackham OJL, Ho L. Nat Commun. 2021 Apr 9;12(1):2130. doi: 10.1038/s41467-021-22397-5.

2) Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis.
Liang C, Zhang S, Robinson D, Ploeg MV, Wilson R, Nah J, Taylor D, Beh S, Lim R, Sun L, Muoio DM, Stroud DA, Ho L. Cell Rep. 2022 Aug 16;40(7):111204. doi: 10.1016/j.celrep.2022.111204.

3) Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly.
Zhang S, Reljić B, Liang C, Kerouanton B, Francisco JC, Peh JH, Mary C, Jagannathan NS, Olexiouk V, Tang C, Fidelito G, Nama S, Cheng RK, Wee CL, Wang LC, Duek Roggli P, Sampath P, Lane L, Petretto E, Sobota RM, Jesuthasan S, Tucker-Kellogg L, Reversade B, Menschaert G, Sun L, Stroud DA, Ho L.

4) Viral proteases activate the CARD8 inflammasome in the human cardiovascular system.
Nadkarni R, Chu WC, Lee CQE, Mohamud Y, Yap L, Toh GA, Beh S, Lim R, Fan YM, Zhang YL, Robinson K, Tryggvason K, Luo H, Zhong F, Ho L. J Exp Med. 2022 Oct 3;219(10):e20212117. doi: 10.1084/jem.20212117. Epub 2022 Sep 21.


ID: 1301
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Oxphos deficiency indicates novel functions for the mitochondrial protein import subunit tim50

Jordan J Crameri1, Catherine S Palmer1, David Coman2, David A Stroud1, David R Thorburn3,4,5, Ann E Frazier3,4, Diana Stojanovski1

1Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia; 2Queensland Children’s Hospital, Department of Metabolic Medicine, South Brisbane, Brisbane, Queensland, 4001, Australia; 3Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia; 4Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3052, Australia; 5Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, Victoria, 3052, Australia



ID: 1226
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

The levels and activation state of the pyruvate dehydrogenase complex modulate the SCAFI-dependent organization of the mitochondrial respiratory chain

Sandra Lopez-Calcerrada1, Ana Sierra-Magro1, Erika Fernández-Vizarra2, Cristina Ugalde1,3

1Instituto de Investigación Hospital 12 de Octubre, Madrid 28041, Spain; 2Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; 3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, Spain

Bibliography
Fernández-Vizarra E, López-Calcerrada S, Sierra-Magro A, Pérez-Pérez R, Formosa LE, Hock DH, Illescas M, Peñas A, Brischigliaro M, Ding S, Fearnley IM, Tzoulis C, Pitceathly RDS, Arenas J, Martín MA, Stroud DA, Zeviani M, Ryan MT, Ugalde C. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. 2022 Nov 1;34(11):1792-1808.e6. doi: 10.1016/j.cmet.2022.09.005. PMID: 36198313.


ID: 631
Modelling pathogenic mechanisms: OXPHOS, metabolic rewiring and tissue specificity

Development of a yeast model to characterize OPA1 mutations associated with different neuromuscular disorders

Cristina Calderan1, Marco Marchi1, Mara Doimo1, Maria Andrea Desbats1, Geppo Sartori2, Leonardo Salviati1

1Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy; 2Department of Biomedical Sciences, University of Padua, Padua, Italy



ID: 263
Clinical 1: from new genes to old and novel phenotypes

An ultra-special family with an ultra-rare condition: three children with mithochondrial complex III deficiency due to homozygous mutations in Lyrm7

Francesca Manzoni, Titia Anita Wischmeijer, Elisa Boni, Lucio Parmeggiani, Andrea Bordugo, Francesca Pellegrini

Bolzano Hospital, Italy

Bibliography
Invernizzi, Federica et al. “A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity.” Human mutation. 2013.
Sánchez E et al. LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells. Biochim Biophys Acta. 2013.
Dallabona C. et al. LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain. 2016.
Hempel M. et al. LYRM7 - associated complex III deficiency: A clinical, molecular genetic, MR tomographic, and biochemical study. Mitochondrion. 2017.
Cherian A. et al. Multifocal cavitating leukodystrophy-A distinct image in mitochondrial LYRM7 mutations. Mult Scler Relat Disord. 2021.
Peruzzo R et al. Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nat Commun. 2021.