

GEOSAT: Sub-metric EO Biomass Estimation

ЦД

Model

Carolina de Castro, Rafael Sousa, César Fernández, Maria Elena Calleja, Lucía García, Rubén Niño, Silvia Fraile | GEOSAT EO for Carbon Markets Forum 2023 | 03 - 05 October 2023 | ESA-ESRIN, Frascati - Italy

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

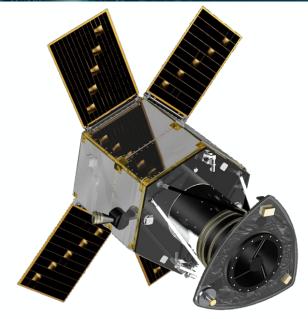
WHO WE ARE: GEOSCIT

Owns & Operates 2 satellites

12+ years of experience

+ 6bn sqkm imagery archive

Rapid tasking & delivery



Machine Learning and Analytics

European provider of Very High-Resolution imagery (TPM)

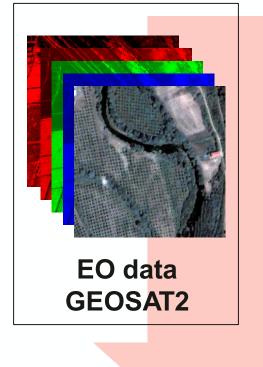
GEOSAT2 SATELLITE

12 km swath 2 days of revisit ✓PAN 5-bands ✓R, G, B ✓NIR

So a

Optical / Agile Satellite Very High Resolution

fer	Geosat-2	VHR1	VHR2
a offei	Band	Pan, VNIR	VNIR
data	Resolution	0.75 m	3 m
SU:	Pansharpened	Yes	/
rnic	Panchromatic	Yes	/
Copernicus	Multispectral	Yes	Yes
	Bundle	Yes	Yes


BIOMASS AND CARBON PRODUCTS

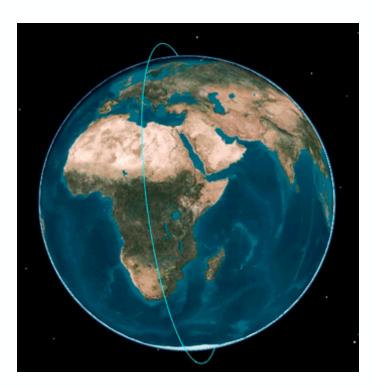
European Green Deal and the Zero pollution Action Plan for 2050

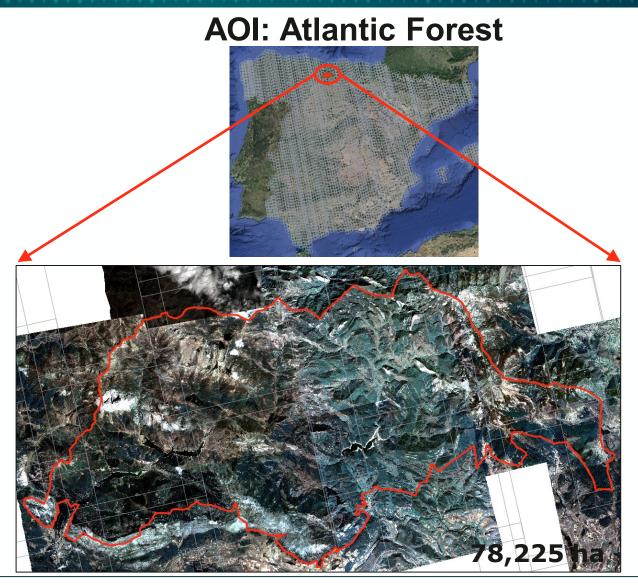

OBJ: Achieve climate neutrality. MEDIA: satellite information is recognized as a crucial tool to measure, monitor and verify carbon storage.

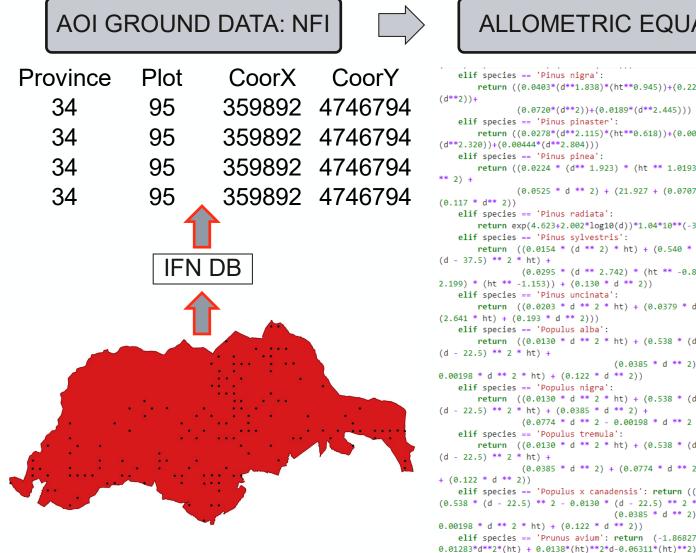
HOW: Quantifying above-ground biomass and estimating carbon sequestration based on earth observation and in-situ field measurements.

- Forest inventories: species georreferenced data
- Forest maps: land used, may be principal tree specie..
- Land use, land-use change and forestry (lulucf)

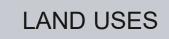
Biomass (tn/ha) CO2 (tn/ha)




GEOSAT2 SATELLITE IMAGES: COVERAGE OF SPAIN

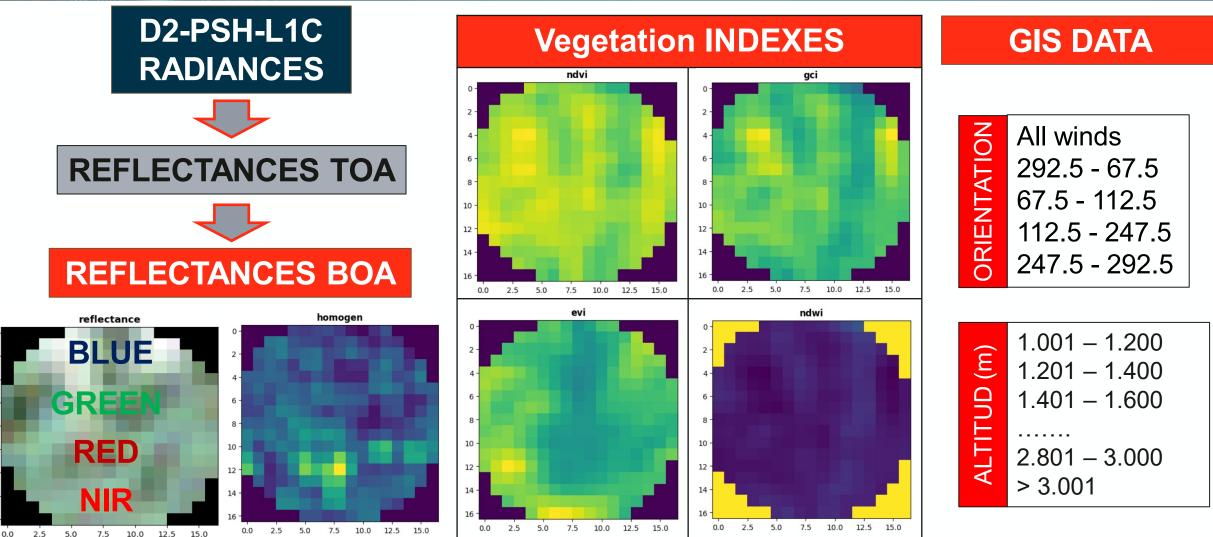


- + 3 years acquiring
- + 7,000 images / year
- + 500,000 km2 / year



ALLOMETRIC EQUATIONS

```
elif species == 'Pinus nigra':
        return ((0.0403*(d**1.838)*(ht**0.945))+(0.228*(d-32.5)**2)+(0.0521*
(d**2))+
                (0.0720*(d**2))+(0.0189*(d**2.445)))
    elif species == 'Pinus pinaster':
        return ((0.0278*(d**2.115)*(ht**0.618))+(0.000381*(d**3.141))+(0.0129*
(d**2.320))+(0.00444*(d**2.804)))
    elif species == 'Pinus pinea':
        return ((0.0224 * (d** 1.923) * (ht ** 1.0193)) + (0.247 * (d - 22.5)
** 2) +
                (0.0525 * d ** 2) + (21.927 + (0.0707 * d) - 2.827 * ht) +
(0.117 * d** 2))
    elif species == 'Pinus radiata':
        return exp(4.623+2.002*log10(d))*1.04*10**(-3)
    elif species == 'Pinus sylvestris':
        return ((0.0154 * (d ** 2) * ht) + (0.540 * (d- 37.5) ** 2 - 0.0119 *
(d - 37.5) ** 2 * ht) +
                 (0.0295 * (d ** 2.742) * (ht ** -0.899)) + (0.530 * (d **
2.199) * (ht ** -1.153)) + (0.130 * d ** 2))
    elif species == 'Pinus uncinata':
        return ((0.0203 * d ** 2 * ht) + (0.0379 * d ** 2) + ((2.740 * d) -
(2.641 * ht) + (0.193 * d ** 2)))
    elif species == 'Populus alba':
        return ((0.0130 * d ** 2 * ht) + (0.538 * (d - 22.5) ** 2 - 0.0130 *
(d - 22.5) ** 2 * ht) +
                                    (0.0385 * d ** 2) + (0.0774 * d ** 2 -
0.00198 * d ** 2 * ht) + (0.122 * d ** 2))
    elif species == 'Populus nigra':
        return ((0.0130 * d ** 2 * ht) + (0.538 * (d - 22.5) ** 2 - 0.0130 *
(d - 22.5) ** 2 * ht) + (0.0385 * d ** 2) +
                 (0.0774 * d ** 2 - 0.00198 * d ** 2 * ht) + (0.122 * d ** 2))
    elif species == 'Populus tremula':
       return ((0.0130 * d ** 2 * ht) + (0.538 * (d - 22.5) ** 2 - 0.0130 *
(d - 22.5) ** 2 * ht) +
                 (0.0385 * d ** 2) + (0.0774 * d ** 2 - 0.00198 * d ** 2 * ht)
+ (0.122 * d ** 2))
    elif species == 'Populus x canadensis': return ((0.0130 * d ** 2 * ht) +
(0.538 * (d - 22.5) ** 2 - 0.0130 * (d - 22.5) ** 2 * ht) +
                                    (0.0385 * d ** 2) + (0.0774 * d ** 2 -
0.00198 * d ** 2 * ht) + (0.122 * d ** 2))
    elif species == 'Prunus avium': return (-1.86827 + 0.21461*d**2 +
```



LULUCF: 111, 121 & 131

BIOMASS / CARBON CALCULATION

PREDICTORS: GEOSAT2 SATELLITE IMAGES + GIS DATA

12

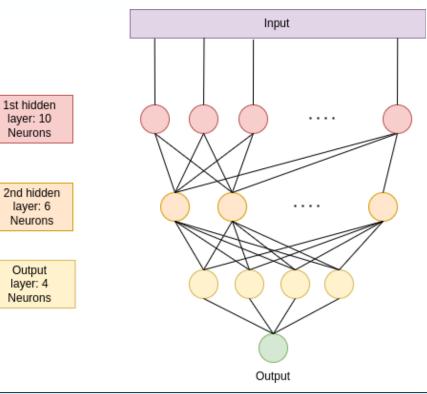
14

BIOMASS / CARBON MODEL

Model data

refl_nir refl_r refl_g refl_b ndvi homogen Orientacion Altitud Biomasa(t/ha) evi qci ndwi 11 Variables X 219.670731 1966.0 284 279.0 134.0 0.830025 6.061885 0.747848 -0.7519190.464093 2.0 6.0 1433.0 28.680761 194 194.0 51.0 0.634302 6.406426 0.762296 -0.7620870.186378 4.0 7.0 1 Variable Y– biomass (tn/ha) 89.657173 2471.0 312.0 146.0 1.024532 306 6.927735 0.780183 -0.7759790.791667 2.0 8.0 2446.0 208.0 0.971845 5.362102 136.501984 389 385.0 0.725534 -0.728338 0.183491 2.0 7.0 - 1.00 29 NFI Plots refl nir 0.5 0.04 0.2 -0.04 0.09 -0.03 -0.2 0.3 0.1 -0.5 0.1 -0.03 -0.3 refl r 0.5 - 0.75 0.3 -0.5 -0.3 refl g 0.9 0.2 0.09 -0.3 - 0.50 refl b 0.4 -0.4 -0.4 0.2 -0.005 -0.2 **Feature selection** 0.1 0.3 0.4 0.4 0.5 -0.4 0.3 0.3 -0.01 -0.07 evi - 0.25 0.04 0.4 -0.04 -0.02 0.05 gci - 0.00 0.2 -0.5 -0.4 0.5 0.05 0.1 ndvi 0.1 **Correlation matrix** -0.04 -0.4 0.04 0.02 -0.05 ndwi - -0.25 0.03 homogen 0.09 -0.5 -0.3 -0.4 0.3 0.1 0.2 --0.500.04 0.03 0.05 -0.4 Orientacion 0.3 0.2 0.2 0.3 -0.04 0.05 Sequential Backward Selection -0.03 -0.005 -0.01 -0.02 0.02 0.1 0.05 -0.4 Altitud -0.03 0.09 0.1 - -0.75 -0.05 0.2 -0.4 -0.4 Biomasa(t/ha) -0.2 -0.2 -0.07 0.05 0.1 -0 3 Sequential Forward Selection refl_nir efl_g efl_b gci ndvi Altitud No. Indwi refl homoge Orientacio

BIOMASS / CARBON MODEL



Implemented regression models/algorithms

- LINEAR REGRESSION
- POLYNOMIAL REGRESSION
 MULTI-LAYER PERCEPTRON (MLP)

	MLP
RMSE	21.1628
MAE	11.1083

- RANDOM FOREST REGRESSOR
- XGBOOST

10

BIOMASS / CARBON MODEL

Expected errors and improvements

Expected Errors	Improvements
Model Overfit in small areas	Feed the model with "Atlantic Forest" data outside the AoI to increase variability
Non Forest tree biomass pixels in "Plot" areas	OBIA (Object Based Image Analisys)

Considerations

- It is not a Global Model
- Images used have different date and adquisition angle

Next Steps

Evatuating Stratified to generalize, try Convolutional Neural Networks

GEOSAT Carbon Product not only monitor Forest and Vegetation, recognizing Forest Changes or Forest Health but also quantify the amount of carbon stored in forests.

GEOSAT Carbon Product has a 0.75 m resolution:

- suitable for private companies and local / regional governments, or more global areas with low data frequency.
- crucial for carbon offset projects.

GEOSAT Carbon Product can be visualized and better understood in platforms, to be designed ad-hoc.

LIMITS AND MARKET USES

Once GEOSAT has GEOSAT Carbon Product Generated.... WHAT?

- How are Carbon Products going to be validated?
- How is going to be the reliability of the data verified?
- How the participation in carbon markets is going to be facilitated?

Needs of uniform standards and clear international rules for the accounting and verification of carbon sinks.

THANK YOU!

Geosat

carolina.decastro@geosat.space