
1.  Introduction and motivation

The dynamic variation of terrestrial water, energy, and carbon fluxes is

crucial to understand Earth’s climate system and land–atmosphere

processes.

• Research questions:

1. What is the highest spatial resolution of fluxes datasets?

2. What is the highest temporal resolution of fluxes dataset?

3. Can we manage to explore the fluxes change based on the existing

fluxes datasets?

3.  Results

2. Main method

Fig.4. Global mean SSM map of 2020, (a) GSSM1km; (b) ESA-CCI06.1; (c) SMAP. Areas in white means no data. (d) 
Comparison of latitudinal profiles among GSSM1km, GSSM1km-mask, ESA-CCI06.1, and SMAP, SMAP-mask. 
ESACCI06.1 is used as a mask for GSSM1km and SMAP because it has missing data.

Global Surface Soil Moisture (GSSM1km) provides surface soil moisture (0-5 cm) at 1

km spatial and daily temporal resolution over the period 2000-2020. The performance

of the GSSM1km dataset is evaluated with testing and validation datasets, and via

inter-comparisons with existing soil moisture products. The root mean square error of

GSSM1km in testing set is 0.05 cm3/cm3, and correlation coefficient is 0.9.
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Fig.1. Picture of carbon, water and energy cycle by IPCC in 2019

This study aims to predict high spatial and temporal resolution fluxes at the

global scale, with physics-constrained machine learning (ML) algorithms taking

into account remote sensing indices, climatological and meteorological data.

Fig.2. Research framework

Fig.3. Conceptual Workflow for Developing Emulators with Physics-Informed Machine Learning.

Based on GSSM1km and STEMMUS-SCOPE model, LE (latent flux) and H (sensible flux)

are possible to be predicted with ML.
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Fig.5. Testing performance and
feature importance

Future work:

Predict global fluxes with high resolution from 2000 to 2020.


