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Dispersal limitation dominates the spatial distribution of forest fuel loads In

Background Objective

. The amount of forest fuel load affects forest fire behavior indexes, such as the potential spread speed, fire intensity, and flame height |This study aimed to explore the correlation between the forest fuel load and
during a forest fire. three explanatory variables (stand environment, topographic factors, and

. The stand model method establishes the mathematical relationship between the forest fuel load and the stand factor on a fine sample scale, geospatial distance) to determine the key factors which influence the

and the forest fuel load can be predicted quickly by using forest survey data with high accuracy. This stand model method implicitly distribution of the forest fuel load .
assumes that there are significant differences in the forest fuel loads among different stands; however, this hypothesis was not verified _
before modeling was conducted in various cases. Hypothesis

. Studies on the forest fuel load that have focused on the establishment of stand prediction models have only considered the influence of |We hypothesized that: (1) there are significant differences in the composition
environmental and topographic factors and have not yet quantified the relative importance of environmental filtering and dispersal | Of the forest fuel load in different stands, and (2) the spatial heterogeneity of

limitation on driving the formation of the forest fuel load spatial distribution.

the forest fuel load is mainly determined by environmental filtering and

dispersal limitation, with the dominant effect being dispersal limitation.

The interpreted variance of the first ranking axis was 15.14% (P < 0.05), and the interpreted variance of the second ranking axis was 12.74% (P < 0.05). The score of the explanatory variable
. AnalySiS Of Sim”arities (AN OSl |\/|) was expressed as a vector in the tb-RDA ranking chart, and the length of the vector represents the magnitude of the correlation between the fuel load and the environment variable. Among the
. T . . stand factors, the canopy density had a higher explanatory quantity and an average canopy height. Among the topographic factors, the altitude had a higher explanatory quantity(Figure 6).
. Nonmetric Multidimensional Scaling (NMDS) Py density had a higher explanatory quantity ge canopy heig g the topograp gher explanatory quantity(Figure ©)
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Figure 3. Flowchart of data collection and analysis.
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_____ | : I Figure 4. Analysis of similarities in the forest fuel load based on the Bray-Curtis distance. Figure 5. Nonmetric Multidimensional Scaling (NMDS) analysis based on the Bray-
an A total of five quadrants were laid out in each plot Curtis dissimilarity.
(Figure 2). To determine the dry-wet ratio, the
samples were put into the oven and continuously
E = baked at 105 °C for 24 h to reach the absolute dry
® weight. Then, the dry weight of the different kinds
of fuel in each sample square was weighed using an
electronic balance to_ calculate the dry-wet _ratlo of Email: xuanhanyang@bjfu.edu.cn
_____ | 'the fuel (dry-wet ratio of the fuel = dry weight/wet
| | weight). E-mail: zhichao@bjfu.edu.cn
Figure 2. Distribution of the shrubs,
herbs, litter, and humus quadrats in
the plot.
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