

Sentinel-2

Aeolus

2023 DLAG SMPOSIUM 3rd YEAR RESULTS REPORTING 11-15 SEPTEMBER 2023

[PROJECT ID. 59358]

[CHINA-ESA FOREST OBSERVATION]

<INSERT DAY & DATE IN PROGRAMME>

ID. 59358

PROJECT TITLE: CHINA-ESA FOREST OBSERVATION

PRINCIPAL INVESTIGATORS: PANG YONG, JUAN SUÁREZ

CO-AUTHORS: [PANG YONG, JUAN SUÁREZ, JAMES HITCHCOCK, GERRARD ENGLISH, DU LIMING, JIA WEN, ANTONY WALKER, JACQUELINE ROSETTE, LI ZENGYUAN, LI SHIMING, MENG SHILI, NIU XIAODONG, YU TAO, LIANG XIAOJUN, YAN MING, LV QIAN]

PRESENTED BY: PANG YONG, JUAN SUÁREZ

- Inform on the project's objectives
- Detail the Copernicus Sentinels, ESA, Chinese and ESA Third Party Mission data utilised after 3 years
- Detail the in-situ data measurements and requirements
- Provide details on field data collection campaigns and periods in P.R. China or other study areas
- Inform on the results after 3 years of activity
- Inform on the project's schedule, planning & contribution of the partners for the following year
- Report on the level and training of young scientists on the project achievements, including plans for academic exchanges
- Report on the peer reviewed publications (nr. of papers, journal name and publication title) after 3 years of activity

EO Data Delivery

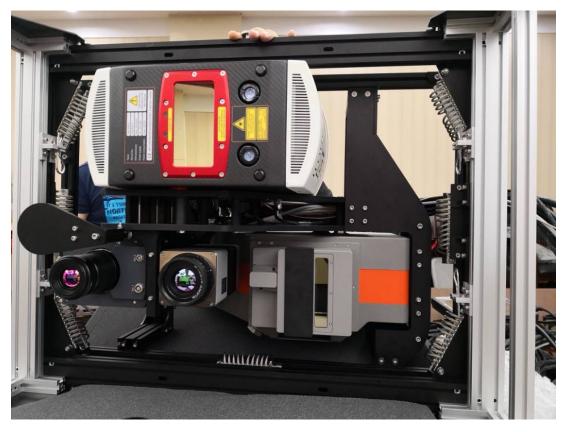
Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert "ftp"

ESA /Copernicus Missions	No. Scenes	ESA Third Party Missions	No. Scenes	Chinese EO data	No. Scenes
1. Sentinel-2A/B	380	1. Ladsat5, 7, 8	1988	1. GF-2	16
2.		2. PLANET	100	2. GF-7 optical stereo images	2
3.		3.		3. GF-7 laser footprints	42
4.		4.		4. TECIS CASAL	67
5.		5.		5. TECIS stereo images	12
6.		6.		6. GF-6	21
Total:	380	Total:	2088	Total:	160
lssues:		Issues: Issues:			used in Pu'er

A total of 575.9 km² airborne LiDAR data were used in Pu'e study area during 3 years.

Name	Institution	Poster title	Contribution including period of research
English Gerrard	Swansea University	Remotely Sensed Vegetation Indices Detect Differing Drought Responses Between Sitka spruce (Picea sitchensis) Genotypes	Calibration of stress VI
Hitchcock James Alan	Forest Research	Methods for assessing forest stress with satellite Remote Sensing	Time-series analysis of satellite imagery monitoring stress

Chinese Young scientists contributions in Dragon 5

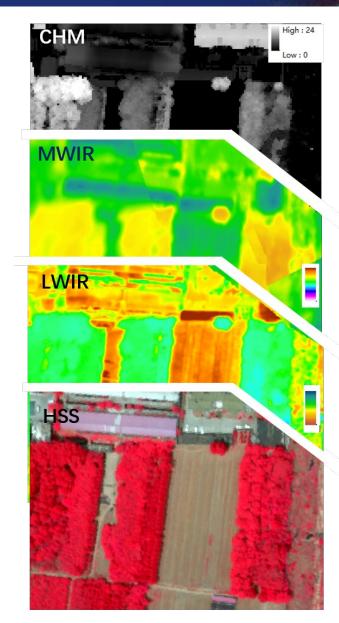

Name	Institution	Poster title	Contribution including period of research
Liming Du	Institute of Forest Resource Information Techniques CAF	Potential Assessment of LBI for forest carbon sink measurement	Forest height estimation using GF-7, biomass estimation using airborne LiDAR
Wen Jia	Institute of Forest Resource Information Techniques CAF	Satellite Reflectance Validation based on BRDF Reconstructed Airborne Hyperspectral Data	hyperspectral RS for China-ESA satellite data evaluation
Tao Yu	Institute of Forest Resource Information Techniques CAF	An optimized method to validate high resolution gross primary production based on flux tower measurement	forest carbon flux parameter inversion and evaluation method using sentinel-2 data

System integration, multi-source LiDAR data acquisition and application

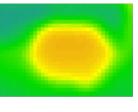
CAF-LiTHy: Chinese Academy of Forestry's Lidar-Thermal-Hyperspectral Airborne Observation System

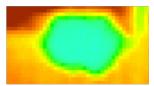
Wavelength 1064 nm		Laser beam divergence	0.25 mrad			
Laser pulse length	3 ns		Scan angle range	±35°		
Maximum laser 2000 kHz		łz	Maximun scanning speed Point density@1000 m	300 lines/s 30 pts/m ²		
Echo intensity 15 / bea		am-forming	Vertical accuracy	0.02 m		
Medium wave infrared (MWIR)			Long wave thermal infrar	• •		
li li	nfraTec I	mageIR	InfraTec VarioC	am HD		
Wavelength		2.0-5.7µm	Wavelength	7.5-14µm		
Spatial pixels		640 x 512	Spatial pixels	1024 x 768		
Frame rate		106 Hz	Frame rate	30 Hz		
Focal length		28.6mm	Focal length	11.1mm		
FOV		33.8°	FOV	46.6°		
Temperature resol	ution	0.02 k	Temperature resolution	0.02 k		
Temperature range	9	-40-1500°C	Temperature range	- 40-2000° C		
		Hyperspectral sensor:	Specim Aisa FENIX1K			
Wavelength	380-250	00 nm	Spatial pixels	1024		
Focal length	18.1mn	n	Spectral resolution	4.5/12 nm		
FOV	40 °		Maximum bands	87-348/256		
Frame rate	100 line	es/s	Output	12/16 bits		

LiDAR scanner: Riegl VQ580-II

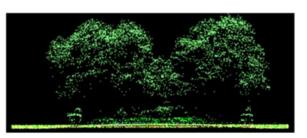

System integration, multi-source LiDAR data acquisition and application

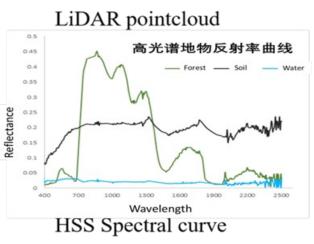
Flight in Pu'er, China Jan 13, 2023





CHM image

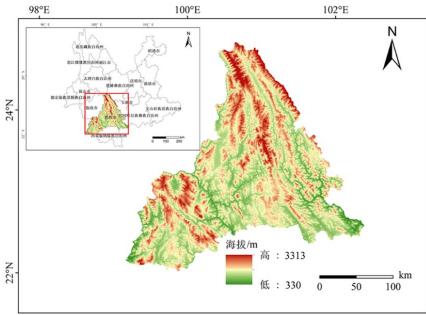

MWIR image



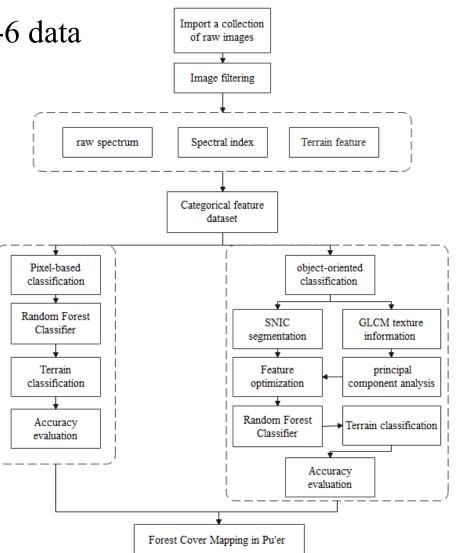
LWIR image

HSS image

System integration, multi-source LiDAR data acquisition and application

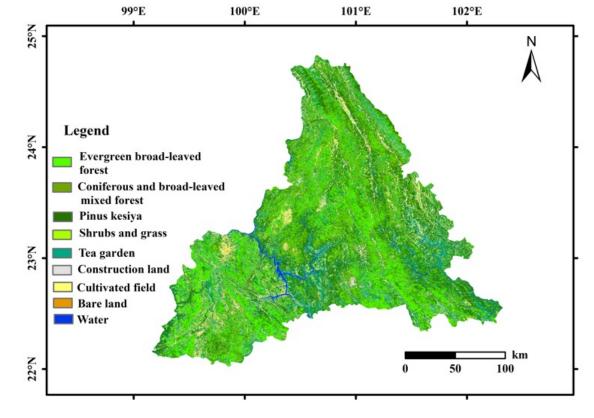


The joint use of Chinese and European satellites



Pu'er forest cover mapping based on Sentinel-2 and GF-6 data Research area and data:

- Sentinel-2 and GF-6 image data were respectively used for mapping.
- Field survey data, airborne data and terrain aid data were used.
- The results were compared with the existing land cover classification products, and the best scheme was selected for the forest cover type mapping in Pu 'er City.



Forest Cover Remote Sensing Mapping Process

- Pu'er forest cover mapping based on Sentinel-2 data
 - The object-oriented method effectively reduce the "salt and pepper phenomenon" and improves the classification accuracy.
 - Feature optimization avoids the influence of redundant information on classification results and improves classification efficiency.
 - The results proves that the short-wave infrared band (B11, B12) and the near-infrared band (B8) play an important role in forest cover classification.

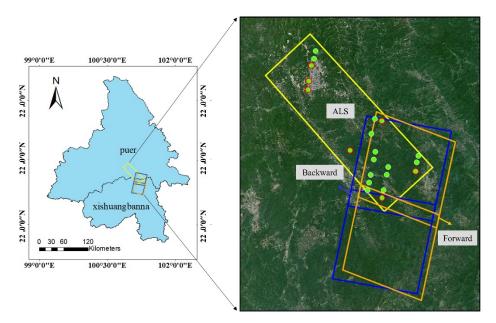
Classification thematic map

Pu'er forest cover mapping based on Sentinel-2 data

• The overall accuracy of
Pu'er LC data was the
highest (86.96%), and the
overall accuracy of the
other three products was
around 75%.

 In general, the four land cover products had high classification accuracy and reliability in Pu 'er.

	ESRI_Land_Cover_10		ESA World Cover		Dynam	nic World	Pu'er LC		
Deteret	m								
Dataset	PA (%)	UA (%)	PA (%)	UA (%)	PA (%)	UA (%)	PA (%)	UA (%)	
Forest	96.56	90.97	97.05	89.57	98.53	87.17	91.40	98.67	
Shrub and	57.89	45.45	42.11	44.94	33.33	38.75	66.32	58.88	
grass land									
Construction	96.43	77.14	23.21	100.00	96.43	80.60	85.71	97.96	
land									
Cultivated field	35.87	66.00	68.48	74.12	42.86	66.10	86.96	71.43	
Bare land	6.67	50.00	80.00	20.00	20.00	100	86.67	56.52	
Water	75.00	100.00	42.50	100.00	82.50	100	92.50	100	
OA (%)	80	0.28	70	5.60	79	9.91	86	.96	
Kappa	0.	673	0.611		0.656		0.796		
coefficient									


Accuracy evaluation result

c The joint use of Chinese and European satellites

■ GF-7 LiDAR and stereo image for forest terrain and height estimation

Study area and data

Pu'er study area

GF-7 stereo images and laser footprints

Two sets of stereo images which were obtained in the same orbit were acquired.

42 level 1A laser footprints covering the flight range of ALS data were obtained.

Airborne and UAV LiDAR data

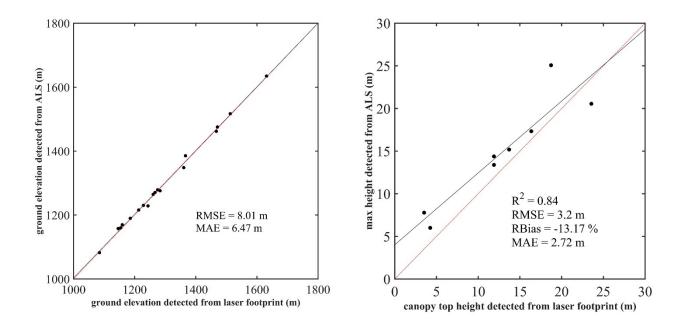
Parameter	ALS	ULS
Sensor	Riegl	DJI L1 laser
	VQ580- II	scanner
	laser scanner	
Time	Dec 2020	Nov 2022
Point density	$2-4 \text{ pts/m}^2$	300 pts/m2
CHM res	0.5 m	0.1 m

Forest inventory data

1726 sub-compartments in the overlap area of GF-7 stereo images and ALS data were utilized to evaluate the results.

The joint use of Chinese and European satellites

• e esa


■ GF-7 LiDAR and stereo image for forest terrain and height estimation

Terrain and canopy height estimation based on the effective laser footprints

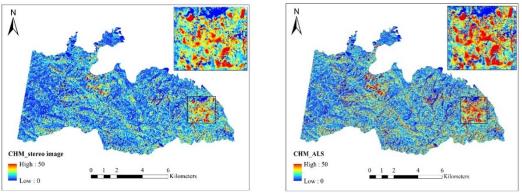
25 effective footprints were used to measure the forest terrain, and 8 effective footprints were used to measure the forest height.

The distance between the starting position of the waveform signal and the ground return position was taken as the canopy top height;

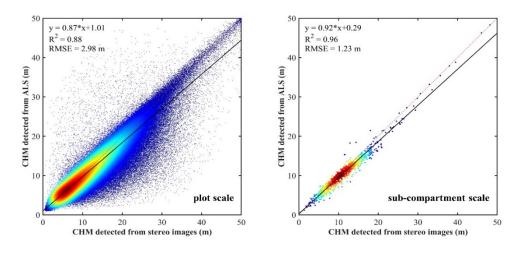
The geodetic height calculated based on the laser echoes ranging value was taken as the ground elevation value of the laser footprint.

Regression of result detected from laser footprints and ALS point clouds

The joint use of Chinese and European satellites



■ GF-7 LiDAR and stereo image for forest terrain and height estimation Canopy height estimation based on stereo images and compared with ALS data

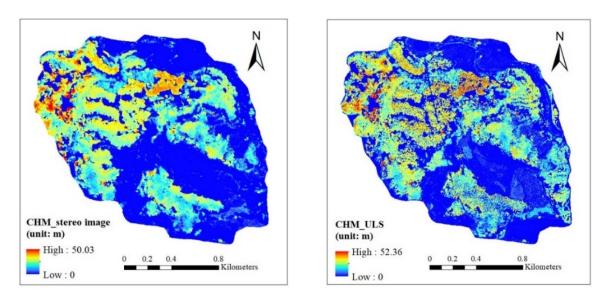

The CHM obtained from ALS point clouds was utilized to build the two scale reference data, and further applied to verify the canopy height calculated from the stereo images of GF-7.

Plot scale: the grid size is $20 \text{ m} \times 20 \text{ m}$, and the corresponding mean height difference of each grid was calculated.

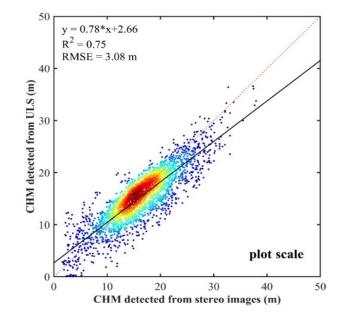
Forest stand scale: Each vector plane in the subcompartment data was inward buffered 20 m and used to calculate the average height of the imaged-based CHM and ALS-based CHM.

CHM obtained from GF-7 stereo images and ALS

Regression result of CHM detected from stereo images and ALS data


BRASEC The joint use of Chinese and European satellites

• e esa


■ GF-7 LiDAR and stereo image for forest terrain and height estimation

Canopy height estimation based on stereo images and compared with ULS data

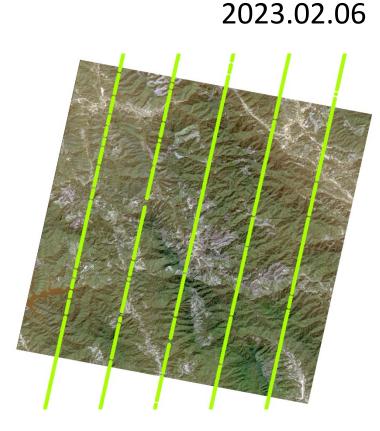
The CHM obtained from ULS point clouds was utilized to build the plot scale reference data, and further applied to verify the canopy height calculated from the stereo images of GF-7.

CHM obtained from GF-7 stereo images and ULS

Regression result of CHM detected from GF-7 stereo images and ULS data

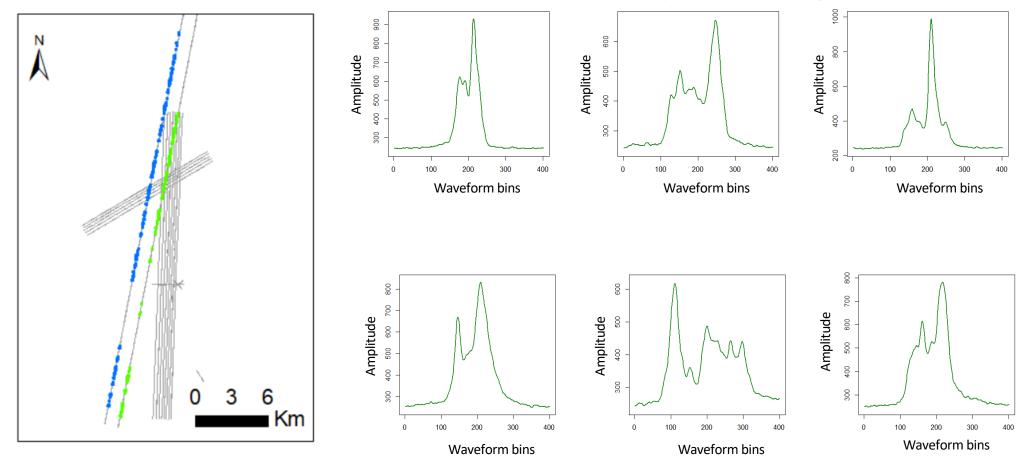
WRSEE The joint use of Chinese and European satellites

Brief introduction of Chinese TECIS


Launched on August 4th, 2022

	Characteristics		Parameters			
	Beams		5			
CASAL	Repetition Frequ	ency /Hz	40			
	Wavelength	/nm		1064		
	Digitization Rat	te /GHz		1.2		
	Observation angle /°	0		±19	±41	
DMC	Spectral Range /nm	450~520 520~590 630~690 770~890		450~520 520~590 630~690 770~890 500~760	450~520 520~590 630~690 770~890 690~730	
	Spatial Resolution /m	2		4/8	6/12	
	Swath width /km			20		
Orbit altitude		506	km			
Design Life		8 ye	ars			

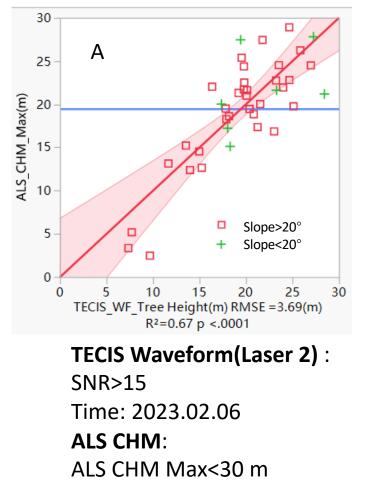
■ Chinese TECIS data acquisition



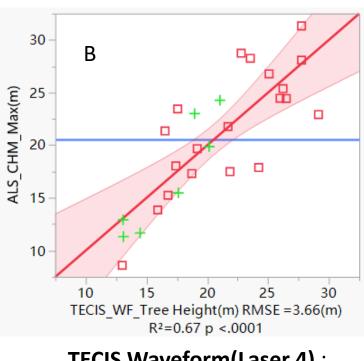
TECIS DMC image(cloud-free) NAD over CASAL footprints

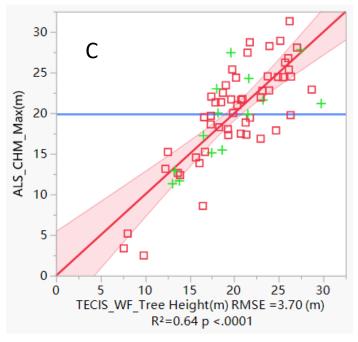
EXAMPLE The joint use of Chinese and European satellites

■ Chinese TECIS data acquisition Number of CASAL footprints: 0122(green): 27 0206 (blue): 40



TECIS overlap flightlines and valid waveform


WRSCE The joint use of Chinese and European satellites


■ Comparison of TECIS and ALS data

TECIS Waveform(Laser 4) : SNR>15 Time: 2023.01.22 **ALS CHM**: ALS CHM Max<30 m **Metrics** : RH₁₀₀, TE, LE

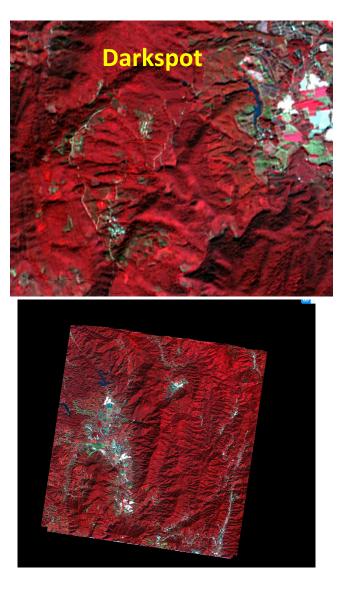
TECIS Waveform(A&B) : SNR>15 Time: 2023.01.22& 02.06 ALS CHM: ALS CHM Max<30 m Metrics : RH₁₀₀, TE, LE

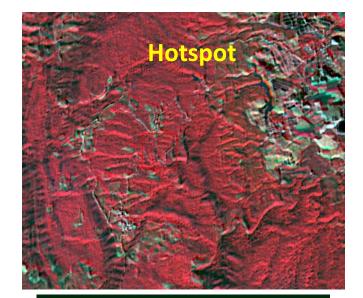
wrscc The joint use of Chinese and European satellites

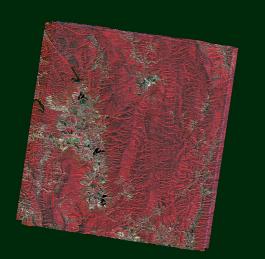
■ BRDF reconstruction and validation of multi-angle satellite images (TECIS)

Site: Pu'er, Yunnan, China.

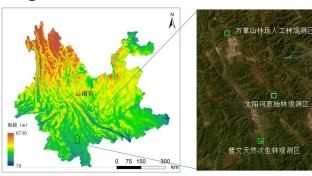
Date: 20230122. Local time: 11:57


## 2000(00972) ## 2000(00972) ## 2000(00972) <td< td=""><td></td><td>293 Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 293 Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 2000 - el Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 2000 - el Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 2000 - el Spectral Profile - 2000 - el Spectral Profile -</td><td>0 2500 600 800</td><td></td></td<>		293 Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 293 Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 2000 - el Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 2000 - el Spectral Profileating (M1 DWC Eloce N224 20300 - el) 20 2000 - el Spectral Profile - 2000 - el Spectral Profile -	0 2500 600 800	
F2M (41°) SZA = 47.4 SAA = 150.2 VZA = 45.0 VAA = 11.2	F1M (19°) SZA = 47.3 SAA = 150.3 VZA = 20.5 VAA = 11.4	NAD (0°) SZA = 47.3 SAA = 150.4 VZA = 0.4 VAA = 185.0	B1M (19°) SZA = 47.2 SAA = 150.6 VZA = 20.5 VAA =191.6	B2M (41°) SZA = 47.2 SAA = 150.8 VZA = 45.1 VAA = 191.7




The joint use of Chinese and European satellites

Reconstructed images



The joint use of Chinese and European satellites

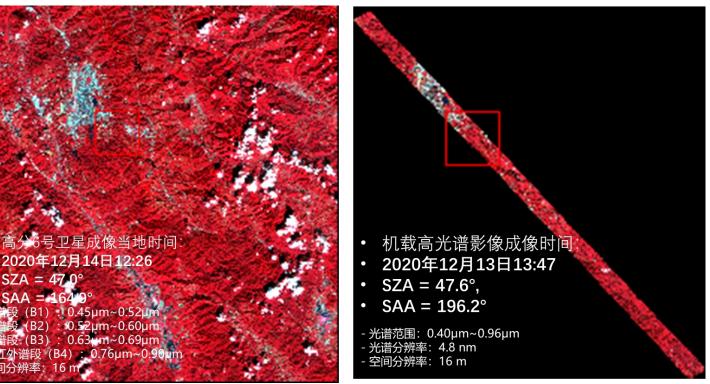
Site: Pu'er, Yunnan province,China.

SNRSCC

Poster ID: 278

P.6.2: ECOSYSTEMS

Time:

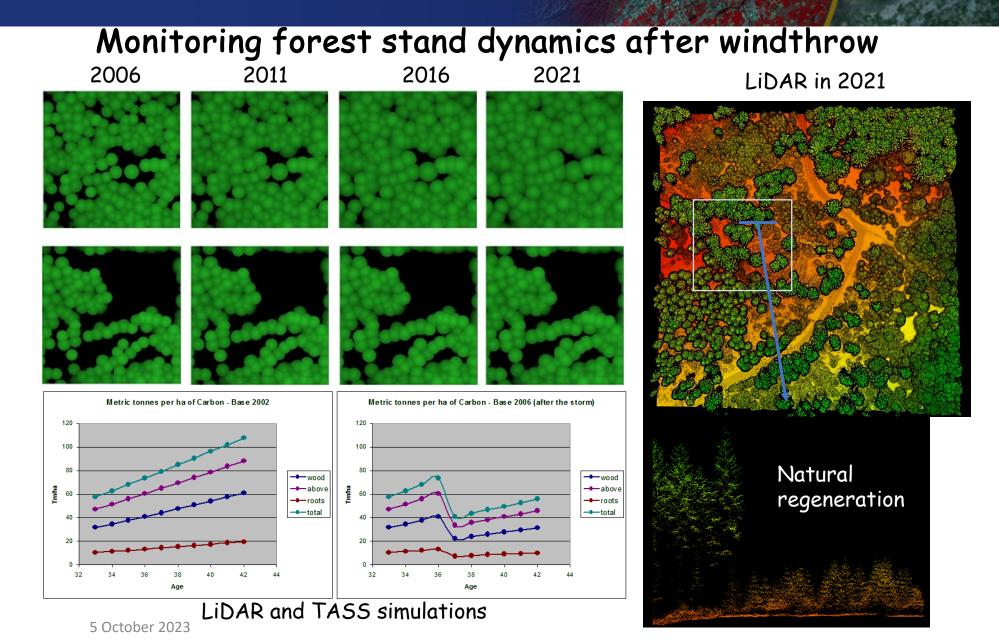

Tuesday, 12/Sept/2023: 4:09pm – 4:17pm

Room:

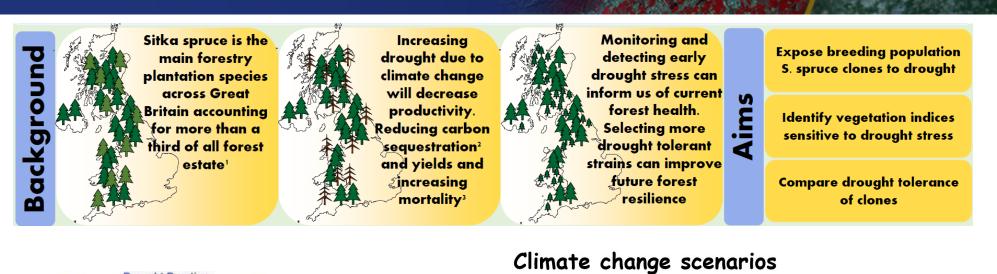
312 - Continuing Education College (CEC)

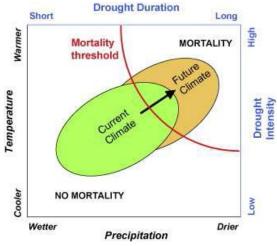
Authors: Wen Jia, Yong Pang*

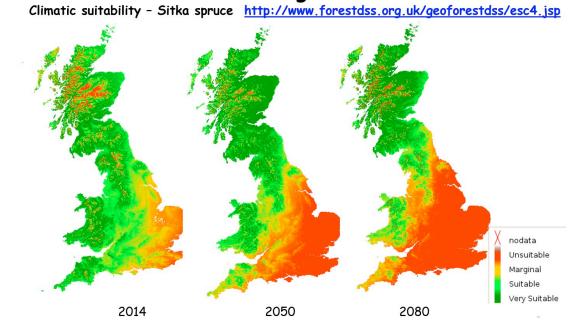
•GF-6: 2020-12-14 12:26 SZA = 47.0°, SAA = 164.9° Blue Band (B1): 0.45µm to 0.52µm Green Band (B2): 0.52µm to 0.60µm Red Band (B3): 0.63µm to 0.69µm NIR Band (B4): 0.76µm to 0.90µm Spatial Resolution: 16 meters •Airborne HSI: 2020-12-13 13:47 SZA = 47.6°, SAA = 196.2° Spectral Range: 0.40µm~0.96µm Spectral Resolution: 4.8 nm Resample the airborne imagery's spatial resolution from 1 meter to match that of the GF-6 imagery, which is 16 meters.



Poster Title: Satellite Reflectance Validation based on BRDF Reconstructed Airborne Hyperspectral Data.


Monitoring structural changes


· e esa



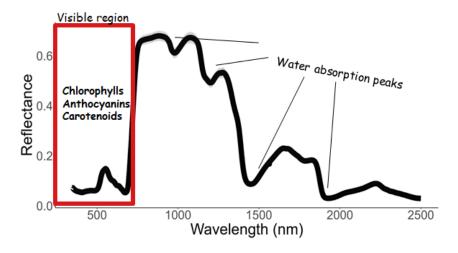
Background Cesa

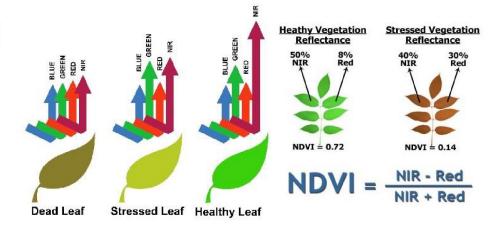
Plant Health – Optical traits

· eesa

Vegetation Indices (VI)

NDVI - Normalised difference Vegetation Index Sensitive to Chlorophyll content or 'Greenness"


ARI - Anthocyanin Reflectance Index Sensitive to **Anthocyanins** (light screening)

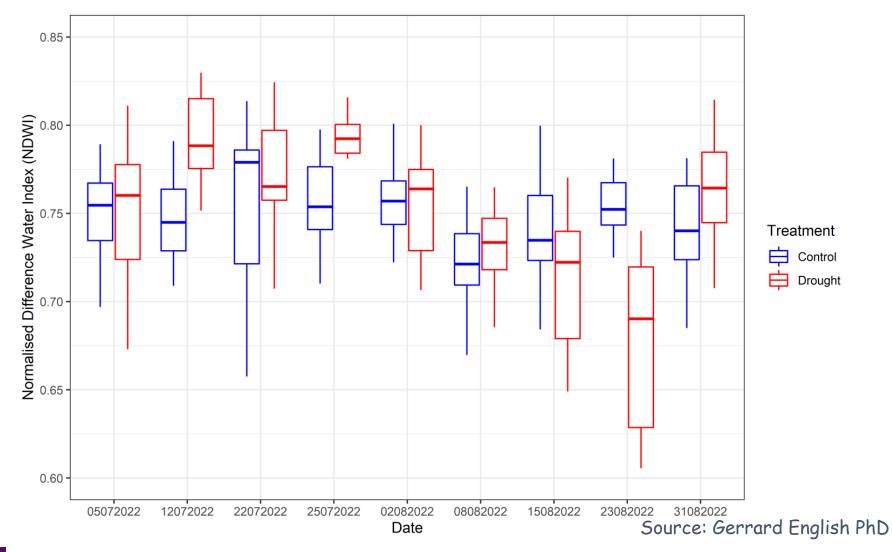

PRI - Photochemical Reflectance Index Sensitive to **Carotenoids** (energy dissipation)

NDWI - Normalised Difference Water Index Sensitive to needle water content

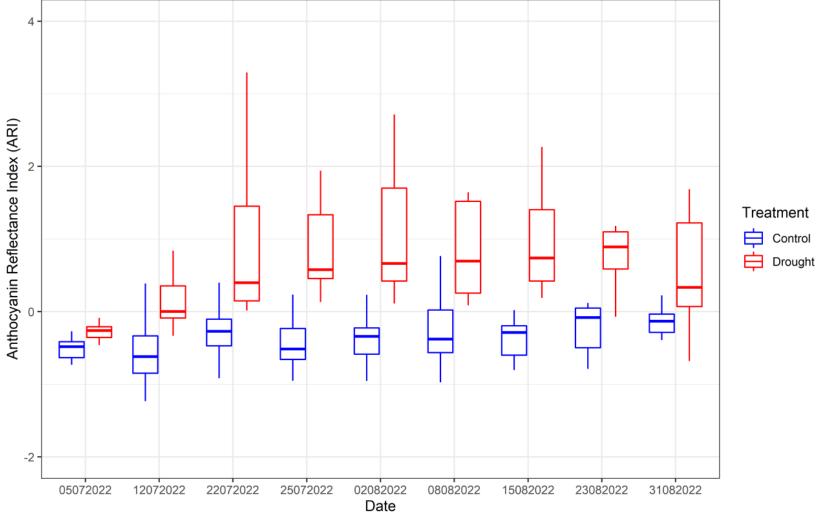
VIs	Equation	Reference
NDVI	(NIR - Red)/(NIR + Red)	Rouse et al. (1974)
NDVI-RE	(NIR – Red-edge)/(NIR + Red-edge)	Gitelson and Merzlyak
ND VI-KE	(INIK - Keu-euge)/(INIK + Keu-euge)	(1994)
GRVI	(Green - Red)/(Green + Red)	Tucker (1979)
GNDVI	(NIR - Green)/(NIR + Green)	Gitelson et al. (1996)
MTCI	$(NIR - Red-edge)^*(Red-edge - Red)$	Dash and Curran (2004)
ARI	$(1/R_{550}) - (1/R_{700})$	Gitelson et al. (2001)

Abbreviations: ARI = Anthocyanin Reflectance Index; GNDVI = Green Normalised Difference Vegetation Index; GRVI = Green Red Vegetation Index; MTCI = MERIS Terrestrial Chlorophyll Index;

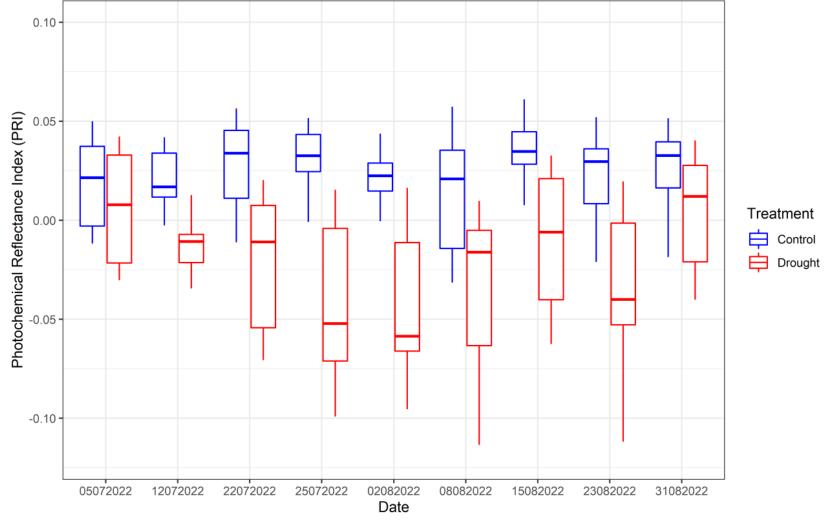
Polytunnel experiments


Polytunnel experiment

- Drought and Control groups
- 6 clones
- 8-week drought period
- Weekly reflectance measurements

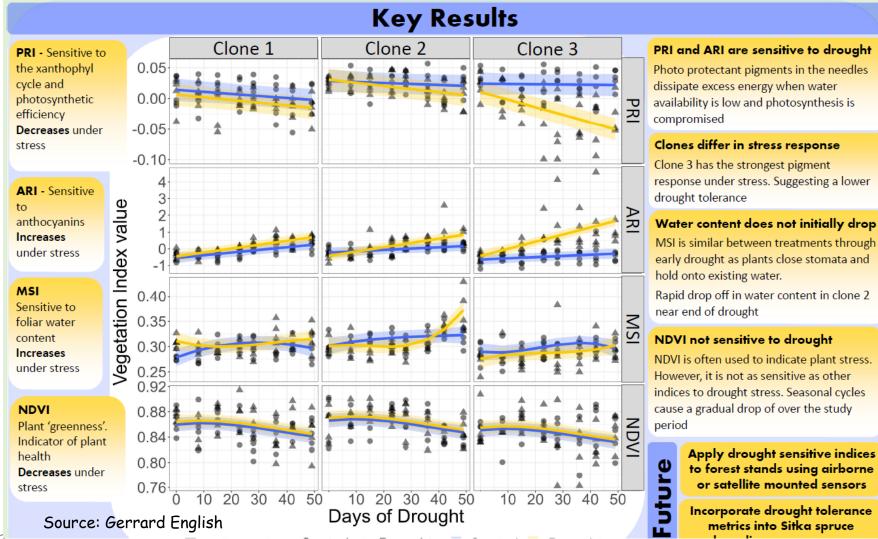

Drought stress in Sitka spruce in polytunnel experiments

Drought stress in Sitka spruce in polytunnel experiments

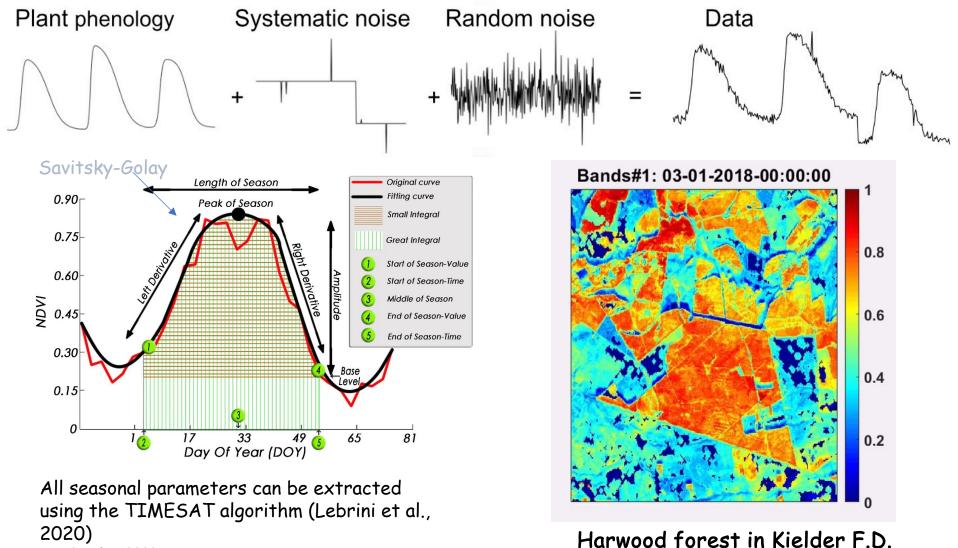


Source: Gerrard English PhD

Drought stress in Sitka spruce in polytunnel experiments

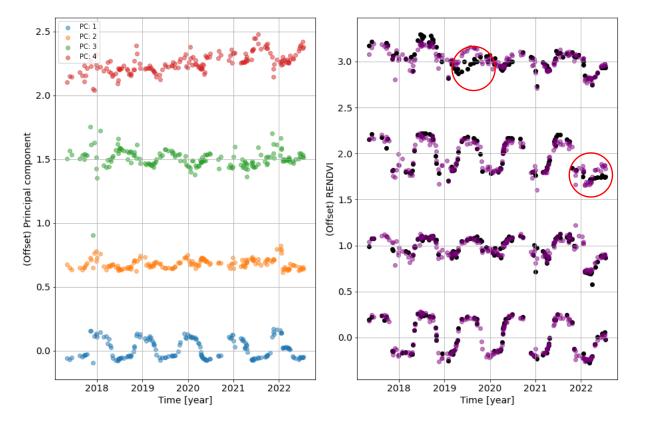


5 October 2023 30 Source: Gerrard English PhD

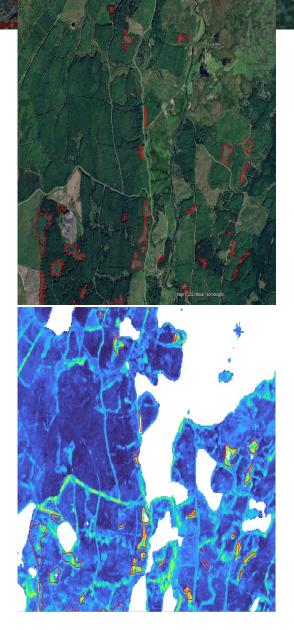

Paramount to early detection is the understanding of the processes of infection and the response mechanisms of different phenotypes

Phenological cycles .cesa

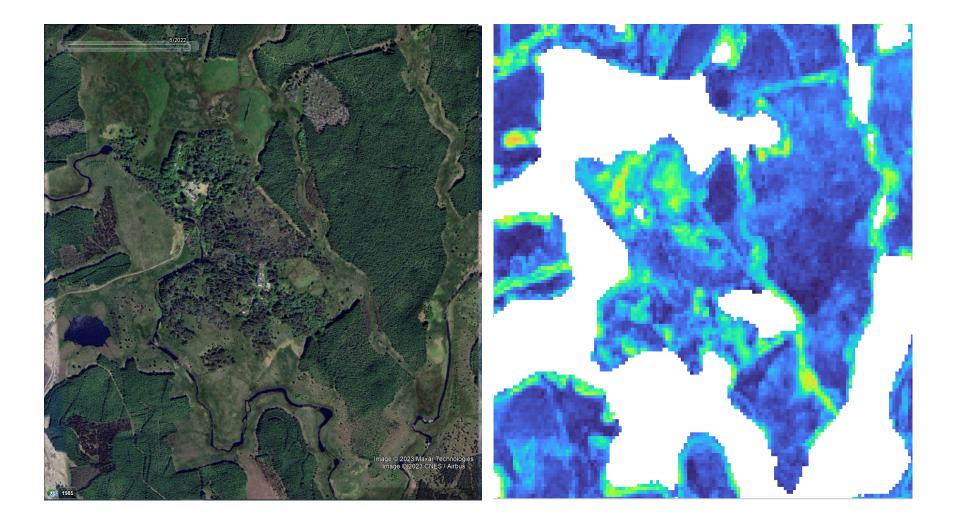
Monitoring processes with Time-series of satellite imagery in GEE

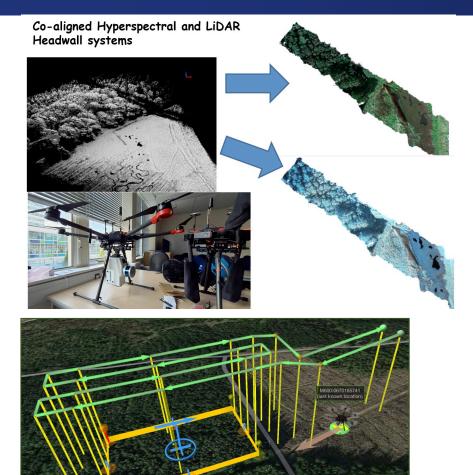


5 October 2023



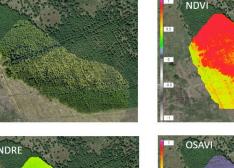
PCA model .eesa


Anomalies are flagged for pixel time series where the observations deviate from the WPCA model predictions. These can highlight felling, or diseases affecting the canopy of trees etc. Conversely, observations for healthy vegetation should show good agreement between the model and data.

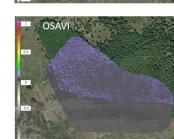


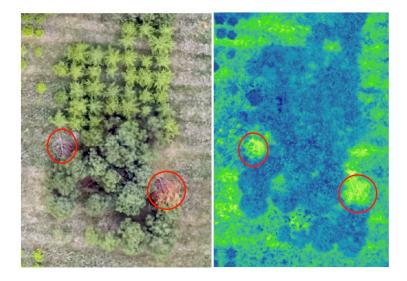
Clouds are a problem

Cal/Val methods-Drones **@esa**


vation profile: Carron Valley Sout

Distance est.: 952.4 m

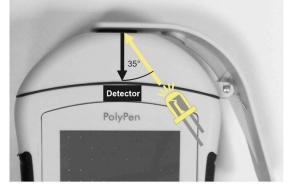

Duration est.: 00:03:50


min. alt. (AMSL / AGL): 386 m / 78 m max. alt. (AMSL / AGL): 395 m / 79 m

Waypoint count: 2

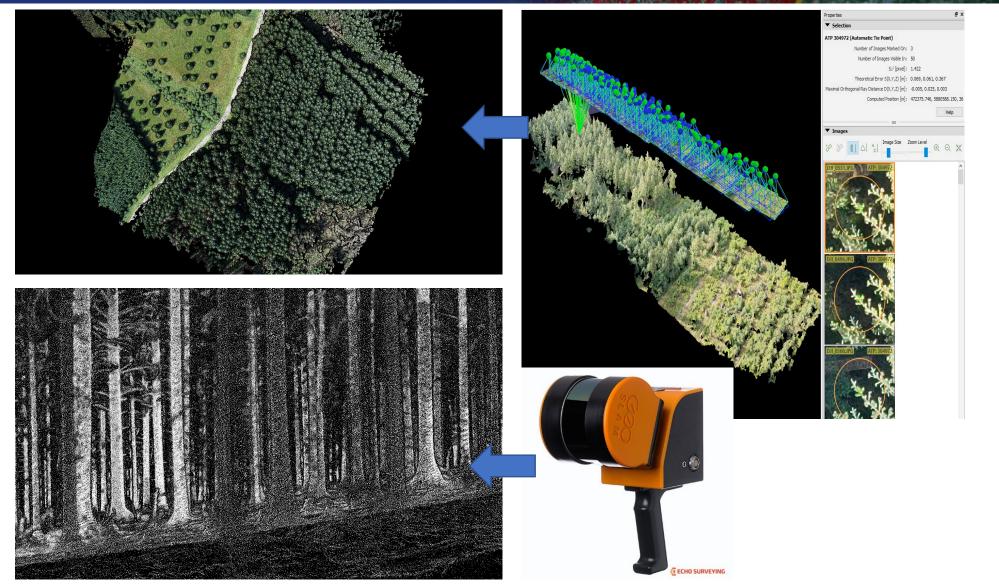
RGB

5 October 2023


Cal/Val - Citizen's science .eesa

PolyPens

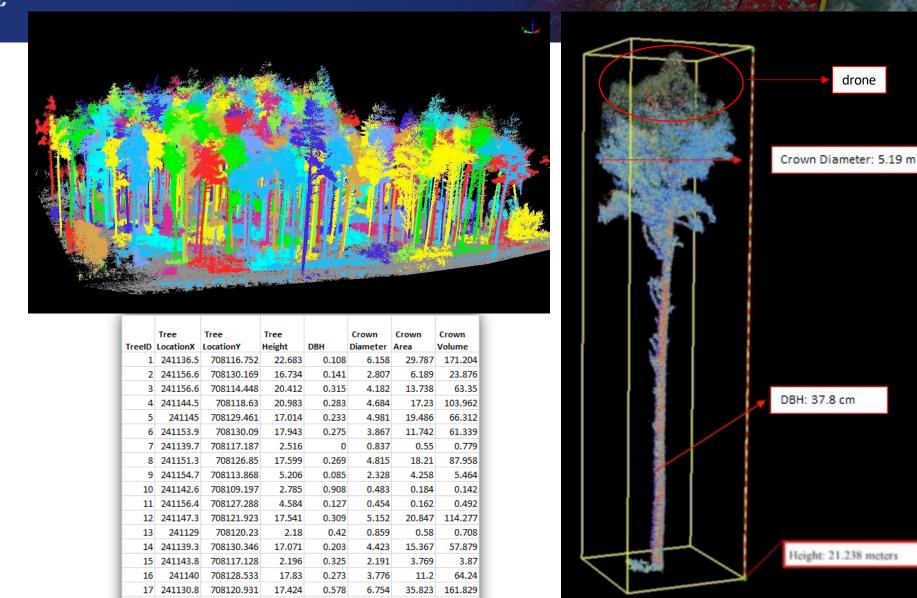
- Field spectroradiometer
- Collect hundreds of samples
- GPS referenced
- Can be operated by non-expert
- It can be customised to calculate VIs



Samples are introduced in a small probe window that it is illuminated by a full-spectrum light

	Scope	Absorbanc	Transmitance													
wnload		Index	Time	Name	NDVI	SR	MCARI1	OSAVI	G	MCARI	TCARI	TVI ^	<<		1	17.4.2015 10:17
	•	1	17.4.2015 10:17:01		0.7746	7,8733	1,9004	0.8506	2,2651	0.854	-0.5394	71.8		 Image: Construction Image: Construction<	2	17.4.2015 10:1: 17.4.2015 10:1:
		2	17.4.2015 10:17:21		0,7856	8,3317	1,8671	0,8499	2,0645	0,7551	-0,46	70,6 ≡			4	17.4.2015 10:11
Open		3	17.4.2015 10:17:42		0,7353	6,5568	1,6634	0,8014	2,0183	0,703	-0,4333	63.0			5	17.4.2015 10:18
		4	17.4.2015 10:18:04		0,7902	8,5329	1,9192	0.8625	2,3739	0,9674	-0.6247	72.6			6	17.4.2015 10:18
		5	17.4.2015 10:18:32		0.7896	8.5083	1.7842	0.8446	1.9456	0.6324	-0.3769	67.8		V	7	17.4.2015 10:15
Save		6	17.4.2015 10:18:43		0.7369	6,6028	1,9276	0.8302	2.3542	1,2046	-0.777	72.4			8 9	17.4.2015 10:15 10:20
_		7	17.4.2015 10:19:31		0.7789	8.0476	1.7457	0.8348	1.857	0.6098	-0,3528	66.0			10	17.4.2015 10:20
Seport		8	17.4.2015 10:19:45		0.7721	7.7793	1.9197	0.8598	2.5963	1.3263	-0.8853	72.5		V	11	17.4.2015 10:20
opon								-				-		V	12	17.4.2015 10:21
		9	17.4.2015 10:20:14		0,7758	7,9218	1,8567	0.8486	2,232	0,8694	-0,5505	70,1			13	17.4.2015 10:21
		10	17.4.2015 10:20:29		0,7959	8,8031	1,763	0,8506	1,9738	0,663	-0,3911	66,9		 ✓ ✓ 	14 15	17.4.2015 10:22
		11	17.4.2015 10:20:54		0,7261	6,3043	1,9701	0,8347	2,5204	1,273	-0,8558	73.7			16	17.4.2015 10:22
		12	17.4.2015 10:21:16		0.7434	6,7945	1,8944	0,8274	2,2674	0,9946	-0.6359	71,2			17	17.4.2015 10:2:
		13	17.4.2015 10:21:46		0,7222	6,1999	1,8864	0,8111	2,1944	1,0098	-0,6335	71,2		V	18	17.4.2015 10:2:
		14	17.4.2015 10:22:03		0.6394	4,5477	1,7948	0,7443	2,1037	0.8905	-0,5791	66.7		v	19	17.4.2015 10:2:
		15 17.4.2015 10:22:22		0,7649	7,5091 1,9541 0,8558 2,5223	2,5223 1,1917 -0,8006	73,5		V		17.4.2015 10:24 17.4.2015 10:24					
		16	17.4.2015 10:22:34		0,7201	6,1459	1,9449	0,8202	2,29	1,1709	-0,764	72,9			21	17.4.2015 10:24
		17	17 4 2015 10 23 15		0.2755	1,7608	0.8638	0.3278	1,2604	0.2209	-0.5349	31.9		V	23	17.4.2015 10:25
		18	17.4.2015 10:23:31		0.7544	7.1462	2.03	0.8701	3.0181	1.6682	-1.2241	75.3		V	24	17.4.2015 10:25
		19	17 4 2015 10:23:53		0.7609	7 3649	1.941	0.8473	2.4725	1 1461	-0.7559	73.2			25	17.4.2015 10:25
		20	17.4.2015 10:24:02		0.708	5.8497	2.0557	0.8397	2,9314	1,6293	-1,1744	76.2			26 27	17.4.2015 10:26
		20	17.4.2015 10:24:02		0.722	6.1949	1.9348	0.8307	2,9314	1,6255	-0.8724	72.2		V	27	17.4.2015 10:26
									-					V	29	17.4.2015 10:23
		22	17.4.2015 10:25:00		0.7273	6,3353	2,0457	0.8453	2,6873	1,5971	-1,1201	76.1 -			30	17 4 2015 10:2

More intensive Forest Inventories



More intensive Forest Inventories

drone

5 October 2023

18 241126.6

19 241150.2 708120.727

708124.623

3.986

17.765

0.373

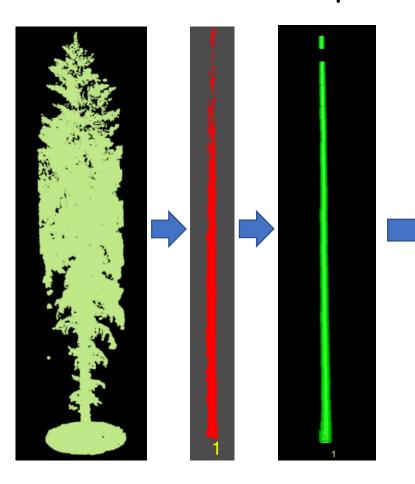
0.263

0.655

4.931

0.337

19.095


0.487

98.912

More intensive Forest Inventories

Reconstruction of stem profiles

*	TreeID ‡	Segment [‡]	x ‡	γ [‡]	Radius 🗘	Error [‡]	AvgHeight ‡	N [‡]
			-17.53903	7.037840	0.29234796	0.0014862970	0.3656768	1084
		2	-17.56081	7.025208	0.25654544	0.0007262826	0.7480973	2598
		3	-17.57246	7.033874	0.23164961	0.0007324386	1.2470507	2187
4		4	-17.59054	7.043299	0.21158950	0.0006658642	1.7538767	2279
		5	-17.59245	7.062224	0.20760750	0.0006143630	2.2538120	2349
		6	-17.59744	7.061986	0.20681464	0.0007376114	2.7449919	1980
		7	-17.60485	7.075518	0.20374520	0.0008178060	3.2450518	1911
8		8	-17.60522	7.087647	0.20018794	0.0006331408	3.7421126	1806
9		9	-17.60551	7.097774	0.19801973	0.0006362345	4.2541146	1592
10		10	-17.60834	7.101378	0.19314777	0.0007074113	4.7416008	1620
11		11	-17.60534	7.111123	0.19282668	0.0007393210	5.2472676	1739
12		12	-17.59714	7.115566	0.19008622	0.0009818980	5.7443693	1301
13		13	-17.59986	7.115121	0.17958328	0.0008372263	6.2580303	1273
14		14	-17.59743	7.119706	0.18212190	0.0009800801	6.7533206	1263
15		15	-17.60035	7.123136	0.18225153	0.0011998649	7.2562225	1098
16		16	-17.60144	7.124760	0.17653747	0.0011435685	7.7432031	1112
17		17	-17.60380	7.137519	0.18135210	0.0012792960	8.2274332	962
18		18	-17.60251	7.152461	0.18171898	0.0013329007	8.7584915	968
19		19	-17.60418	7.132808	0.16686686	0.0015148452	9.2613016	817
20		20	-17.60565	7.136744	0.16927358	0.0022116890	9.7254893	606
21		21	-17.60639	7.161991	0.17636872	0.0013957290	10.2471290	731
22		22	-17.60936	7.137662	0.15913918	0.0017389435	10.7609714	573
23		23	-17.62312	7.140086	0.15708909	0.0024288684	11.2370986	436
24		24	-17.61830	7.152087	0.15605877	0.0023002041	11.7480889	378
25		25	-17.61791	7.151719	0.14960401	0.0024284949	12.2424251	371
26		26	-17.61489	7.160408	0.15124548	0.0030171064	12.7291011	275
27		27	-17.61248	7.165521	0.14717513	0.0031003842	13.2232044	270
28		28	-17.61167	7.153258	0.13773561	0.0041274031	13.7534276	174
29		29	-17.60246	7.165888	0.14434142	0.0045682638	14.2172584	113
30	1	30	-17.59347	7.178635	0.14867545	0.0052401965	14.7412882	102

Source: Jaz Stoddart

5 October 2023

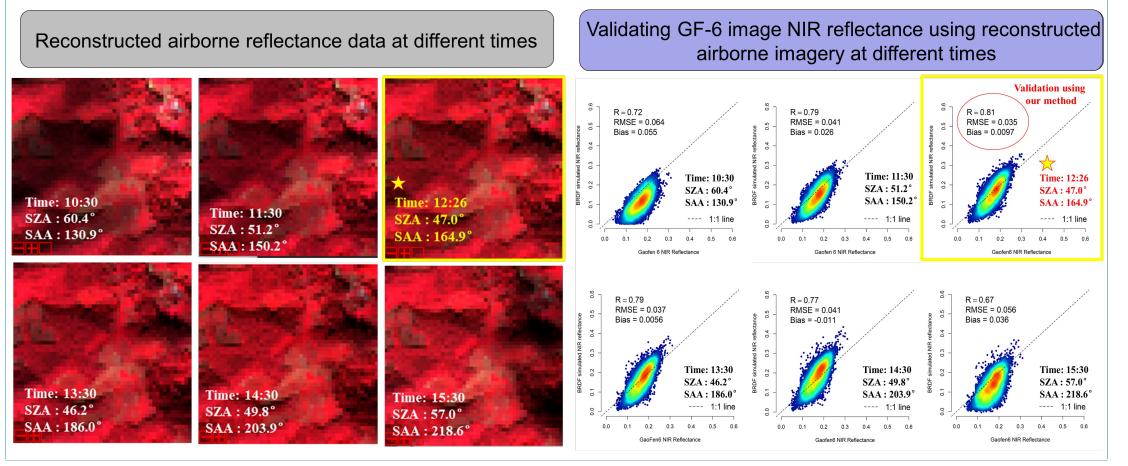
Report on the peer reviewed publications after 3 years of activity

- 1. Liming Du, Yong Pang*, Wenjian Ni, Xiaojun Liang, Zengyuan Li, Juan Suárez & Wei Wei. (2023). Forest terrain and canopy height estimation using stereo images and spaceborne LiDAR data from GF-7 satellite. Geo-spatial Information Science. Dragon Programme Special Issue.
- 2. Li He, Yong Pang^{*}, Zhongjun Zhang, Xiaojun Liang, & Bowei Chen. (2023). ICESat-2 Data Classification and Estimation of Terrain Height and Canopy Height. International Journal of Applied Earth Observation and Geoinformation. 118, 103233, 1-14.
- 3. Shili Meng, Yong Pang^{*}, Kebiao Huang & Zengyuan Li. (2023). A patch filling method for thematic map refinement: a ca se study on forest cover mapping in the Greater Mekong Subregion and Malaysia. GIScience & Remote Sensing, 60(1)-2252225: 1-21.
- 4. Shili Meng, Yong Pang^{*}, Chengquan Huang, & Zhen Li. (2022). Improved forest cover mapping by harmonizing multiple land cover products over China. *GIScience & Remote Sensing*, *59*(1), 1570-1597.
- 5. Ming Yan, Yong Pang^{*}, Yunling He, Shili Meng & Wei Wei (2023). Land Cover Mapping of Pu'er City Based on GEE Cloud Platform and Sentinel-2 Data. Remote Sensing Technology and Application, 38(2): 432-442.
- 6. Ming Yan, Yong Pang^{*}, Yunling He & Shili Meng (2023). Consistency Analysis and Accuracy Evaluation of Multi-Source Land Cover Products in Pu'er. Forest Resources Management,173-182.
- 7. Luxia Liu, Yong Pang^{*}, Guoqing Sang, Zengyuan Li, & Bo Hu. (2022). High resolution remote sensing estimation of tree species diversity in the Pu'er monsoon evergreen broad-leaved forest. Acta Ecologica Sinica,42(20):8398-8413.
- 8. Zhiyong Qi, Shiming Li^{*}, Wei Wei, Qingwang Liu, & Zengyuan Li. (2022). Natural Forest Gap Identification Based on Drone Lidar. Journal of Beijing Forestry University, 44(6): 44-53.

- Research activities of forest cover mapping, stress monitoring, parameter estimation.
- Exchange young scientists.
- More joint research and comparative studies.
- Wrap-up Dragon V outputs and apply Dragon VI.

[PROJECT ID. 59358]

[China-ESA Forest Observation]



Thank you!

The joint use of Chinese and European satellites

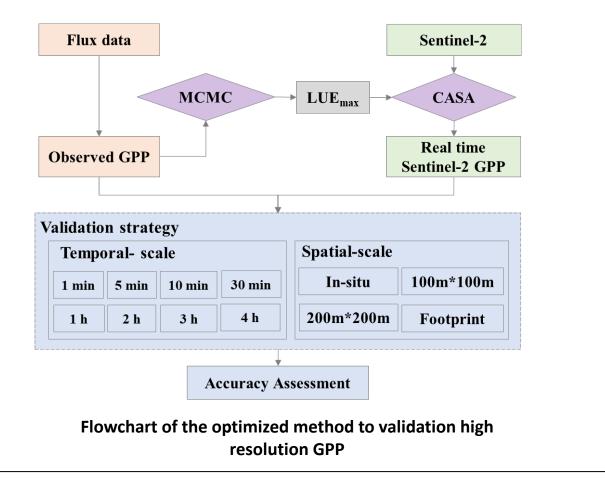
Instead of directly validating satellite data with airborne remote sensing data (NIR: R=0.80, RMSE =0.084, Bias=-0.07), the reconstructed airborne reflectance data (corresponding to the satellite imaging time) based on the BRDF model proves to be more efficient (NIR: R=0.81, RMSE =0.035, Bias=0.0097) for verifying satellite reflectance images in complex forested terrains.

Wen Jia, Yong Pang*. Satellite Reflectance Validation based on BRDF Reconstructed Airborne Hyperspectral Data. **Poster ID:** 278 ; **Time:** Tuesday, 12/Sept/2023 4:09pm – 4:17pm; **Room:** 312 - Continuing Education College (CEC)

EXAMPLE Forest carbon flux monitoring

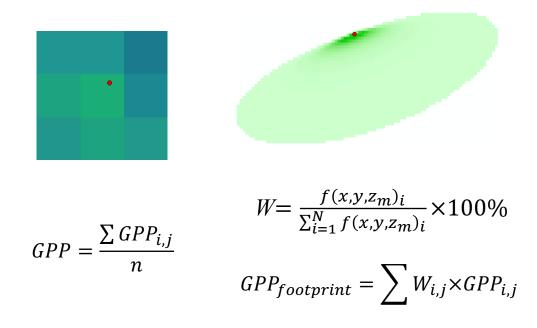
■ Flux tower in Puwen

The flux tower is located in a tropical evergreen broad-leaved forest in Yunnan Province Located at: 22°24 '59 "N,101°5' 25" E, altitude 960 m. Tower is about 36 m tall. The eddy covariance system includes a gas (CO₂/H₂O) analyzer (EC155) and a 3D ultrasonic wind speed sensor (CSAT3A).


Eddy covariance system

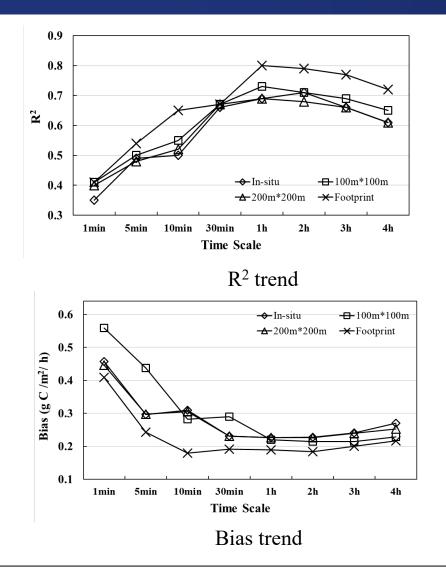
Sensor of photosynthetically

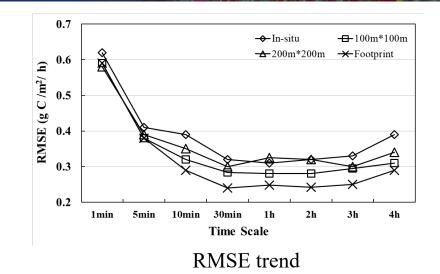
EXAMPLE Forest carbon flux monitoring


An optimized method to validate high resolution gross primary production based on flux tower measurement

 $GPP = PAR \times FPAR \times \varepsilon_{max} \times f_1(T) \times f_2(\beta)$

LUE_{max}: MCMC


Footprint model: Footprint Source Area Model, FSAM



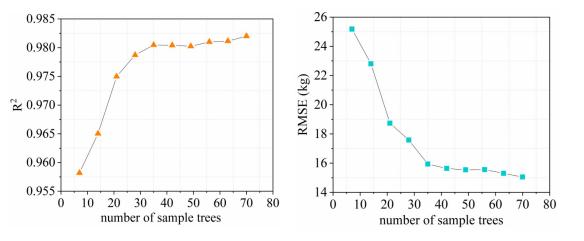
Tao Yu, Yong Pang^{*}, Xiaodong Niu, Zengyuan Li. An optimized method to validate high resolution gross primary production based on flux tower measurement **Poster ID:** 279 ; **Time:** Tuesday, 12/Sept/2023 4:17pm - 4:25pm; **Room:** 312 - Continuing Education College (CEC)

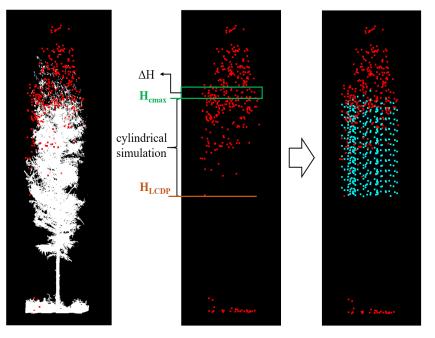
Serverse Content Forest carbon flux monitoring

- Better linear relationships could be achieved between
 Sentinel-2 GPP and flux tower GPP when taking into account the footprint of flux data.
- □ Better correlation could be observed between Sentinel-2
 - GPP and flux tower GPP derived in 30min~2h of the

satellite overpassing time.

Tao Yu, Yong Pang*, Xiaodong Niu, Zengyuan Li. An optimized method to validate high resolution gross primary production based on flux tower measurement **Poster ID:** 279 ; **Time:** Tuesday, 12/Sept/2023 4:17pm - 4:25pm; **Room:** 312 - Continuing Education College (CEC)

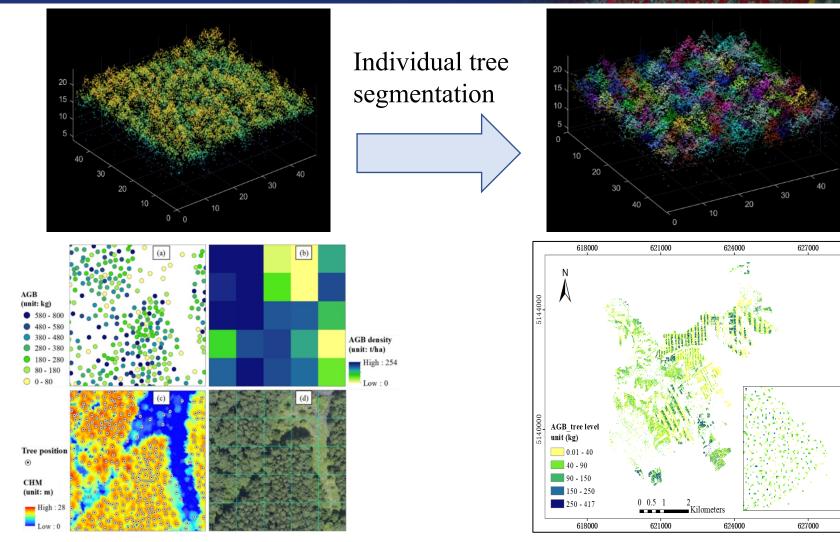



AGB estimation using LBI (LiDAR biomass index)

$$LBI = \lim_{\Delta H \to 0} \sum_{H=H_c}^{H_T} U_L(H) \cdot [r(H)]^2 \cdot \Delta H \cdot H \qquad lnAGB = ln\kappa + \beta lnH_T + \frac{2\beta}{\alpha} lnLBI$$

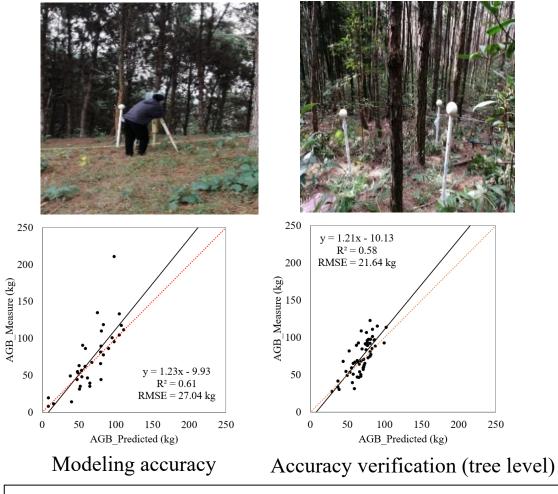
a, β, κ can be obtained by regression of a small amount of field measured data

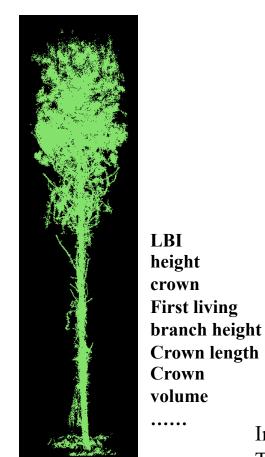
LBI can estimate the biomass of a large range of area by selecting a few sample trees (i.e., 35) to calibrate the model

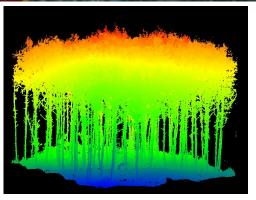

points compensation of individual tree **Main step:**

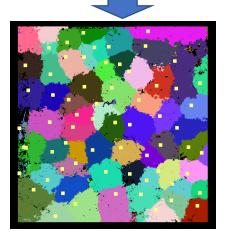
- Points compensation
- LBI and tree height calculation
- AGB calculation

Liming Du, Yong Pang*. Potential Assessment of LBI for forest carbon sink measurement. **Poster ID:** 275 ; **Time:** Tuesday, 12/Sept/2023 4.01pm - 4:09pm; **Room:** 312 - Continuing Education College (CEC)

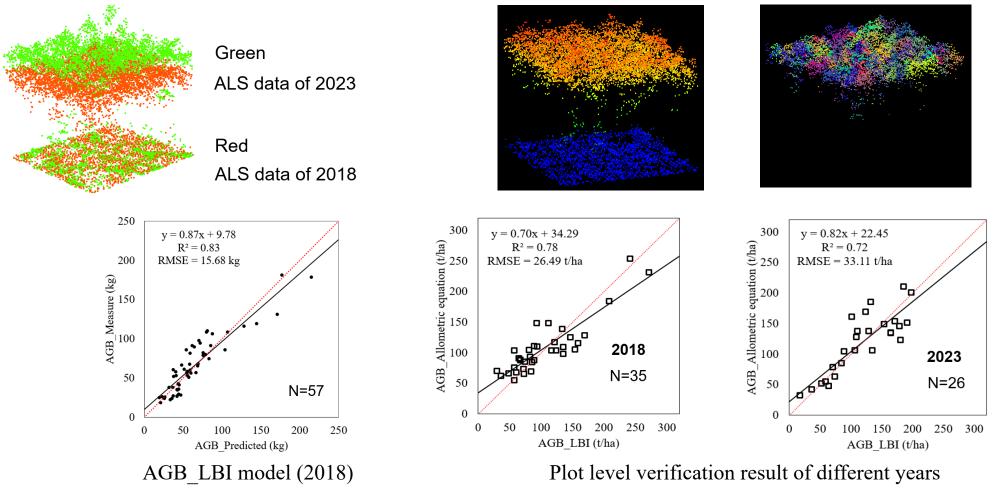


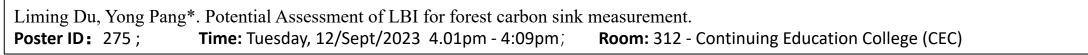

Liming Du, Yong Pang*. Potential Assessment of LBI for forest carbon sink measurement.
Poster ID: 275; Time: Tuesday, 12/Sept/2023 4.01pm - 4:09pm; Room: 312 - Continuing Education College (CEC)




• AGB calculation of Pu'er based on TLS data

Original TLS data


Individual Tree Segmentation result of TLS data


Liming Du, Yong Pang*. Potential Assessment of LBI for forest carbon sink measurement. **Poster ID:** 275 ; **Time:** Tuesday, 12/Sept/2023 4.01pm - 4:09pm; **Room:** 312 - Continuing Education College (CEC)

• AGB calculation of Pu'er based on ALS data of 2018 and 2023

