





# 2023 DRAG SYMPOSIUM 3<sup>rd</sup> YEAR RESULTS REPORTING 11-15 SEPTEMBER 2023

[PROJECT ID.57971]

[AUTOMATED IDENTIFYING OF ENVIRONMENTAL CHANGES USING SATELLITE TIME-SERIES]



Dragon 5 3<sup>rd</sup> Year Results Project



<13/SEPT/2023: 2:00PM - 3:30PM>

ID. 57971

# **PROJECT TITLE: MULTI-SOURCE AND MULTI-TEMPORAL REMOTE SENSING IMAGES FOR SHIPBUILDING PRODUCTION STATE MONITORING**

#### **PRINCIPAL INVESTIGATORS:** [YAN SONG, YUNSHENG WANG]

#### **CO-AUTHORS:** [YAN SONG, YUHONG TU, ZEKAI LIU, WANROU QIN]

**PRESENTED BY: [ZEKAI LIU]** 



#### EO Data Delivery



Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert "ftp"

| ESA /Copernicus Missions | No.<br>Scenes | ESA Third Party Missions | No.<br>Scenes | Chinese EO data | No.<br>Scenes |
|--------------------------|---------------|--------------------------|---------------|-----------------|---------------|
| 1. Sentinel-1            | 700           | 1. Google Earth          |               | 1. ZY-3         |               |
| 2.                       |               | 2. Map world             |               | 2.              |               |
| 3.                       |               | 3.                       |               | 3.              |               |
| 4.                       |               | 4.                       |               | 4.              |               |
| 5.                       |               | 5.                       |               | 5.              |               |
| 6.                       |               | 6.                       |               | 6.              |               |
| Total:                   | 700           | Total:                   |               | Total:          |               |
| Issues:                  |               | Issues:                  |               | Issues:         |               |





- Use deep learning methods to observe shipyards based on multi-source and multitemporal remote sensing image
- Explore the deep learning methods to analyse time-series Sentinel-1 datasets
- Develop deep learning architecture to fuse multi-source and multi-temporal RS images' features



#### **Research background and meaning**



The **shipbuilding industry** is important in national defense security, transportation, and marine development. Monitoring shipyard helps to master the profitability in time.

**Satellite remote sensing** data can monitor shipyard production state accurately from the perspective of space and time series efficiently, which makes up for the shortcomings of traditional methods of collecting order data.









**Shipyards** are located near the seashore or water shore, utilized to construct new ships and repair old ones, exerting a crucial effect in the shipbuilding industry.

#### Photos of shipyards taken in Zhoushan, Hangzhou







The shipyard scene includes the **docks**, **slipways**, **assembly areas** and **material storage areas** which are closely related to production.







This study performs **object detection network and status recognition network for docks** based on high-resolution remote sensing images and **deep learning methods**. Meanwhile, according to the imaging characteristics of optical remote sensing images and SAR images of shipbuilding places, we used satellite remote sensing data to dynamically monitor the **shipyard production state** from spatial and time series perspective.



#### Dock dataset



In order to train the networks, a dock status dataset is proposed, which contains more than **1400** images and 4600 docks. The dataset is collected from Google Earth, map world (MW), and ZY-3. And the resolutions of the images are 2m, 0.5m, 0.5m, respectively

#### **Dock dataset**



GE

MW



ZY-3

#### Status dataset









inactive





#### DSAM

We use an object detection network based on the **deformable spatial attention module (DSAM)**, which can be used to detect the docks on high spatial resolution remote sensing image.













Ground truth

Prediction

#### Results of different kernel size in DSAM

| Kernel size | Param. | mAP    |
|-------------|--------|--------|
| 9*9         | 41.50M | 67.43% |
| 7*7         | 41.41M | 71.02% |
| 5*5         | 41.37M | 68.61% |
| 3*3         | 41.36M | 66.88% |





## **Results of different network architecture**

| Network      | Backbone                                | mAP    |
|--------------|-----------------------------------------|--------|
| Faster R-CNN | Proposed architecture                   | 71.02% |
|              | ResNet50+FPN(Without intermediate DSAM) | 68.23% |
|              | ResNet50+FPN(Baseline)                  | 66.03% |
|              | ResNet101+FPN                           | 65.89% |
|              | Xception                                | 60.26% |
|              | MobileNet                               | 59.72% |
| R-FCN        | ResNet50                                | 63.47% |
| Sparse R-CNN | ResNet50                                | 65.30% |





Ground truth















Baseline





## **Results of Ablation Experiments**

|        | Baseline     | Baseline + Different settings |        |        |        |        |
|--------|--------------|-------------------------------|--------|--------|--------|--------|
| DSAM   |              | V                             |        |        |        | V      |
| CAM    | Faster R-CNN |                               | V      |        | V      | V      |
| SAM    |              |                               |        | V      | V      |        |
| mAP    | 66.03        | 71.02                         | 67.11  | 68.45  | 69.13  | 66.78  |
| FPS    | 10           | 8                             | 8      | 8      | 7      | 6      |
| Param. | 41.35M       | 41.41M                        | 41.38M | 41.36M | 41.39M | 41.45M |



## Production status recognition for docks





Since the backbone of the dock object detection network is with the excellent feature extraction capability for docks, this study connects the backbone with a lightweight status recognition network (Status Head) to determine the dock production status information based on the features extracted from the backbone.



Production status recognition for docks



## The recognition results of different methods

| Methods         | R      | Р      | А      | АР     | F1 score |
|-----------------|--------|--------|--------|--------|----------|
| Proposed method | 94.36% | 88.11% | 85.48% | 87.68% | 91.12%   |
| ResNet50        | 86.53% | 87.97% | 80.01% | 83.27% | 87.25%   |
| GoogleNet       | 83.26% | 86.65% | 76.64% | 81.23% | 84.92%   |
| Xception        | 80.71% | 84.72% | 73.26% | 77.14% | 82.67%   |
| VGG             | 80.07% | 87.39% | 75.13% | 77.26% | 83.57%   |



### Production status recognition for docks





(1) As shipbuilding period takes long, single phase observation data cannot fully reflect the production state in different shipbuilding stages.

(2)Shipyards located in coastal areas or along rivers, so that cloudy or rainy day is common.

(3)Assembly areas and material storage areas are also closely related to production.





## **Multi-temporal SAR images for production status recognition**

**Synthetic Aperture Radar (SAR)** with the merits of unaffected by weather can complement the optical satellite imagery for monitoring the shipyard production state fully.

As the shipbuilding procedure is long, the application of multi-temporal RS data to monitor shipyard production state is proposed to increase the amount of observation data avoiding errors caused by single phase data.







In order to found the connection between SAR images and shipbuilding production status, we statistics more than **150** shipyards and **1700** areas.



dock/slipway

] material storage area/assembly area



## Production status recognition for shipyards





production states for the SCP and the MUCP are **0.796** and **0.764**.







SAR images are very sensitive to metal materials, as a result, it is difficult to distinguish between the production core places and other places from SAR.

We are going to develop deep learning architecture to fuse optical remote sensing images and SAR images' features.

